
Freem
an

Rattz, Jr.

Companion
eBook Available

LINQ in C# 2010

Pro

7.5 x 9.25 spine = 1.5625" 840 page count

THE EXPERT’S VOICE® IN .NET

Pro

Language Integrated Query in C# 2010

Adam Freeman and Joseph C. Rattz, Jr.

LINQ

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Joseph C. Rattz, Jr., Author of

Pro LINQ: Language

Integrated Query in C# 2008

Pro LINQ: Language Integrated
Query in VB 2008

US $44.99

Shelve in:
.NET

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Pro
ASP.NET MVC 2

Pro
Silverlight

Pro LINQ
Pro C# 2010

and the
.NET 4 Platform

Pro ASP.NET 4
in C# 2010

Introducing
.NET 4.0

Accelerated
C# 2010

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2653-6

9 781430 226536

54499

Pro LINQ: Language Integrated
Query in C# 2010
Dear Reader,

Pro LINQ: Language Integrated Query in C# 2010 is all about code. The book
starts with code, ends with code and every chapter is packed with code through-
out. We set out to write a book that is a treasury of meaningful LINQ examples.
We’ve tried to paint the whole picture and demonstrate the breadth of LINQ
operators and prototypes that are available to you. With this information, you
will be able to put LINQ to use as it was intended and get the full benefit from
this powerful and flexible tool.

We aim to give you the information you really need in a form that you can
actually use. So, rather than obscure the LINQ principles by focusing on a com-
plex demonstration application you can put to any practical use, Pro LINQ cuts
right to the chase for each LINQ operator, method and class, telling you what you
need to know—clearly and concisely. For example, code samples demonstrating
how to handle concurrency conflicts actually create concurrency conflicts, so
you can step through the code and see them unfold.

This book is for anyone with an elementary understanding of C# who wants
to understand LINQ and the LINQ-related C# 4.0 language features. You don’t
need to be up to speed on all the new .NET 4.0 features to understand Pro LINQ—
when a deeper knowledge of an advanced language feature is required, we begin
from the ground up to make sure everyone is equipped for the discussion.

Adam Freeman and Joseph C. Rattz, Jr.

Adam Freeman, Author of

Programming .NET Security

Microsoft .NET XML Web

Services Step by Step

C# for Java Developers

Pro LINQ

Language Integrated Query in C#
2010

■ ■ ■

Adam Freeman and Joseph C. Rattz, Jr.

■ CONTENTS

ii

Pro LINQ: Language Integrated Query in C# 2010

Copyright © 2010 by Adam Freeman and Joseph C. Rattz, Jr.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2653-6

ISBN-13 (electronic): 978-1-4302-2654-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Kim Wimpsett
Compositor: Bronkella Publishing LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

 ■ CONTENTS

iii

Dedicated to my wife, Jacqui Griffyth

—Adam Freeman

For my parents, Joe and Josie Rattz, that believed I could do anything and encouraged me to
believe the same. Thank you.

—Joseph C. Rattz, Jr.

■ CONTENTS

iv

Contents at a Glance

Contents at a Glance .. iv

Contents .. vi

About the Author .. xx

About the Technical Reviewer .. xxi

Acknowledgments .. xxii

Part 1: Pro LINQ: Language Integrated Query in C# 2010... 1

■Chapter 1: Hello LINQ ... 3

■Chapter 2: C# Language Enhancements for LINQ ... 21

Part 2: L INQ to Objects .. 55

■Chapter 3: LINQ to Objects Introduct ion .. 57

■Chapter 4: Deferred Operators .. 69

■Chapter 5: Nondeferred Operators .. 151

Part 3: L INQ to XML ... 211

■Chapter 6: LINQ to XML Introduction .. 213

■Chapter 7: The LINQ to XML API .. 219

■Chapter 8: LINQ to XML Operators .. 313

■Chapter 9: Addit ional XML Capabil it ies .. 345

Part 4: L INQ to DataSet .. 387

■Chapter 10: LINQ to DataSet Operators .. 389

■Chapter 11: Addit ional DataSet Capabil it ies .. 427

Part 5: L INQ to SQL435

■Chapter 12: LINQ to SQL Introduct ion .. 437

 ■ CONTENTS

v

■Chapter 13: LINQ to SQL T ips and Tools .. 449

■Chapter 14: LINQ to SQL Database Operations .. 475

■Chapter 15: LINQ to SQL Ent ity C lasses .. 521

■Chapter 16: The LINQ to SQL DataContext .. 569

■Chapter 17: LINQ to SQL Concurrency Conf l icts .. 635

■Chapter 18: Addit ional LINQ to SQL Capabi l it ies .. 653

Part 6: L INQ to Ent it ies .. 665

■Chapter 19: LINQ to Entit ies Introduction .. 667

■Chapter 20: LINQ to Entit ies Operations .. 679

■Chapter 21: LINQ to Entit ies C lasses .. 723

Part 7: Paralle l LINQ749

■Chapter 22: Paral lel LINQ Introduction .. 751

■Chapter 23: Using Para llel LINQ ... 757

■Chapter 24: Paral lel LINQ Operators .. 773

Index .. 795

■ CONTENTS

vi

Contents

Contents at a Glance .. iv

Contents .. vi

About the Author .. xx

About the Technical Reviewer .. xxi

Acknowledgments .. xxii

Part 1: Pro LINQ: Language Integrated Query in C# 2010... 1

■Chapter 1: Hello LINQ ... 3

A Paradigm Shift... 3
Query XML ... 4

Query a SQL Server Database.. 5

Introduction... 7
LINQ Is About Data Queries.. 7

How to Obtain LINQ.. 8

LINQ Is Not Just for Queries.. 8

Tips to Get You Started ... 12
Use the var Keyword When Confused.. 12

Use the Cast or OfType Operators for Legacy Collections ... 14

The OfType Operator versus the Cast Operator ... 15

Don’t Assume a Query Is Bug-Free.. 15

Take Advantage of Deferred Queries... 16

Use the DataContext Log ... 17

Use the LINQ Forum... 18

Summary .. 18

 ■ CONTENTS

vii

■Chapter 2: C# Language Enhancements for LINQ ... 21

C# Language Additions ... 21
Lambda Expressions.. 22

Expression Trees ... 27

Keyword var, Object Initialization, and Anonymous Types .. 28

Extension Methods .. 33

Partial Methods ... 39

Query Expressions ... 41

Summary .. 52

Part 2: L INQ to Objects .. 55

■Chapter 3: LINQ to Objects Introduct ion .. 57

LINQ to Objects Overview ... 57

IEnumerable<T>, Sequences, and the Standard Query Operators............................... 58

Returning IEnumerable<T>, Yielding, and Deferred Queries 59

Func Delegates ... 62

The Standard Query Operators Alphabetical Cross-Reference..................................... 64

A Tale of Two Syntaxes... 66

Summary .. 66

■Chapter 4: Deferred Operators .. 69

Referenced Namespaces.. 69

Referenced Assemblies .. 69

Common Classes .. 69

The Deferred Operators by Purpose ... 71
Restriction ... 71

Projection... 74

Partitioning .. 85

Concatenation.. 93

Ordering... 96

Join .. 116

■ CONTENTS

viii

Grouping .. 120

Set ... 126

Conversion... 133

Element.. 140

Generation ... 145

Summary .. 148

■Chapter 5: Nondeferred Operators .. 151

Referenced Namespaces.. 151

Common Classes .. 151

The Nondeferred Operators by Purpose ... 154
Conversion... 155

Equality.. 168

Element.. 172

Quantifiers ... 187

Aggregate .. 193

Summary .. 209

Part 3: L INQ to XML ... 211

■Chapter 6: LINQ to XML Introduction .. 213

Introduction... 215

Cheating the W3C DOM XML API... 216

Summary .. 217

■Chapter 7: The LINQ to XML API .. 219

Referenced Namespaces.. 219

Significant API Design Enhancements.. 219
XML Tree Construction Simplified with Functional Construction .. 220

Document Centricity Eliminated in Favor of Element Centricity .. 222

Names, Namespaces, and Prefixes ... 224

Node Value Extraction ... 227

The LINQ to XML Object Model ... 230

 ■ CONTENTS

ix

Deferred Query Execution, Node Removal, and the Halloween Problem.................... 231

XML Creation .. 234
Creating Elements with XElement ... 234

Creating Attributes with XAttribute.. 237

Creating Comments with XComment... 238

Creating Containers with XContainer... 238

Creating Declarations with XDeclaration ... 239

Creating Document Types with XDocumentType... 240

Creating Documents with XDocument... 241

Creating Names with XName... 242

Creating Namespaces with XNamespace.. 243

Creating Nodes with XNode... 243

Creating Processing Instructions with XProcessingInstruction ... 243

Creating Streaming Elements with XStreamingElement ... 246

Creating Text with XText.. 247

Creating CData with XCData .. 248

XML Output ... 248
Saving with XDocument.Save().. 248

Saving with XElement.Save()... 250

XML Input.. 251
Loading with XDocument.Load().. 251

Loading with XElement.Load() ... 253

Parsing with XDocument.Parse() or XElement.Parse() .. 254

XML Traversal ... 254
Traversal Properties .. 255

Traversal Methods ... 260

XML Modification .. 276
Adding Nodes .. 276

Deleting Nodes .. 281

Updating Nodes ... 284

■ CONTENTS

x

XElement.SetElementValue() on Child XElement Objects .. 289

XML Attributes .. 290
Attribute Creation .. 291

Attribute Traversal ... 291

Attribute Modification .. 295

XML Annotations... 300
Adding Annotations with XObject.AddAnnotation().. 300

Accessing Annotations with XObject.Annotation() or XObject.Annotations() ... 300

Removing Annotations with XObject.RemoveAnnotations() .. 301

Annotations Example ... 301

XML Events ... 304
XObject.Changing .. 305

XObject.Changed ... 305

A Couple of Event Examples .. 306

Trick or Treat, or Undefined?... 310

Summary .. 310

■Chapter 8: LINQ to XML Operators .. 313

Introduction to LINQ to XML Operators ... 313

Ancestors.. 314
Prototypes.. 314

Examples ... 314

AncestorsAndSelf ... 319
Prototypes.. 319

Examples ... 319

Attributes .. 322
Prototypes.. 322

Examples ... 322

DescendantNodes... 324
Prototypes.. 324

Examples ... 325

 ■ CONTENTS

xi

DescendantNodesAndSelf .. 326
Prototypes.. 326

Examples ... 327

Descendants ... 328
Prototypes.. 328

Examples ... 329

DescendantsAndSelf... 331
Prototypes.. 331

Examples ... 331

Elements... 334
Prototypes.. 334

Examples ... 334

InDocumentOrder.. 336
Prototypes.. 337

Examples ... 337

Nodes.. 338
Prototypes.. 338

Examples ... 339

Remove... 340
Prototypes.. 340

Examples ... 340

Summary .. 343

■Chapter 9: Addit ional XML Capabil it ies .. 345

Referenced Namespaces.. 345

Queries.. 346
No Reaching .. 346

A Complex Query ... 348

Transformations.. 355
Transformations Using XSLT ... 355

Transformations Using Functional Construction.. 357

■ CONTENTS

xii

Tips .. 359

Validation .. 366
The Extension Methods ... 366

Prototypes.. 367

Obtaining an XML Schema .. 368

Examples ... 370

XPath .. 383
Prototypes ... 383

Examples ... 384

Summary .. 384

Part 4: L INQ to DataSet .. 387

■Chapter 10: LINQ to DataSet Operators .. 389

Assembly References ... 390

Referenced Namespaces.. 390

Common Code for the Examples... 390

DataRow Set Operators .. 392
Distinct .. 392

Except.. 396

Intersect... 399

Union ... 401

SequenceEqual .. 403

DataRow Field Operators .. 405
Field<T>.. 410

SetField<T>... 415

DataTable Operators ... 419
AsEnumerable ... 419

CopyToDataTable<DataRow> ... 419

Summary .. 425

■Chapter 11: Addit ional DataSet Capabil it ies .. 427

Required Namespaces.. 427

 ■ CONTENTS

xiii

Typed DataSets... 427

Putting It All Together ... 429

Summary .. 432

Part 5: L INQ to SQL435

■Chapter 12: LINQ to SQL Introduct ion .. 437

Introducing LINQ to SQL.. 438
The DataContext .. 439

Entity Classes .. 440

Associations .. 440

Concurrency Conflict Detection ... 441

Concurrency Conflict Resolution ... 441

Prerequisites for Running the Examples... 442
Obtaining the Appropriate Version of the Northwind Database... 442

Generating the Northwind Entity Classes .. 442

Generating the Northwind XML Mapping File .. 444

Using the LINQ to SQL API... 444

IQueryable<T>.. 444

Some Common Methods... 444
GetStringFromDb() ... 445

ExecuteStatementInDb() .. 446

Summary .. 447

■Chapter 13: LINQ to SQL T ips and Tools .. 449

Introduction to LINQ to SQL Tips and Tools .. 449

Tips ... 449
Use the DataContext.Log Property... 450

Use the GetChangeSet() Method.. 451

Consider Using Partial Classes or Mapping Files .. 451

Consider Using Partial Methods... 451

Tools ... 452
SQLMetal ... 452

■ CONTENTS

xiv

The Object Relational Designer ... 458

Use SQLMetal and the O/R Designer Together ... 472

Summary .. 473

■Chapter 14: LINQ to SQL Database Operations .. 475

Prerequisites for Running the Examples... 475
Some Common Methods ... 475

Using the LINQ to SQL API ... 476

Standard Database Operations... 476
Inserts.. 476

Queries .. 480

Updates.. 506

Deletes... 510

Overriding Database Modification Statements ... 513
Overriding the Insert Method... 513

Overriding the Update Method... 514

Overriding the Delete Method.. 514

Example ... 514

Overriding in the Object Relational Designer... 517

Considerations... 517

SQL Translation... 517

Summary .. 520

■Chapter 15: LINQ to SQL Ent ity C lasses .. 521

Prerequisites for Running the Examples... 521

Entity Classes ... 521
Creating Entity Classes.. 521

XML External Mapping File Schema .. 552

Projecting into Entity Classes vs. Nonentity Classes ... 552

Extending Entity Classes with Partial Methods... 558

Important System.Data.Linq API Classes.. 560

 ■ CONTENTS

xv

EntitySet<T> ... 560

EntityRef<T> ... 560

Table<T> ... 563

IExecuteResult ... 564

ISingleResult<T>... 565

IMultipleResults ... 565

Summary .. 567

■Chapter 16: The LINQ to SQL DataContext .. 569

Prerequisites for Running the Examples... 569
Some Common Methods ... 569

Using the LINQ to SQL API ... 569

[Your]DataContext Class ... 569

The DataContext Class.. 570
The DataContext Class Implements IDisposable ... 573

Primary Purposes .. 573

The Data Context Lifetime ... 580

DataContext() and [Your]DataContext() .. 580

SubmitChanges() ... 594

DatabaseExists() .. 602

CreateDatabase() ... 603

DeleteDatabase() ... 604

CreateMethodCallQuery()... 605

ExecuteQuery() .. 607

Translate().. 610

ExecuteCommand().. 612

ExecuteMethodCall() .. 613

GetCommand() ... 621

GetChangeSet() .. 623

GetTable() .. 625

Refresh() .. 626

Summary .. 634

■ CONTENTS

xvi

■Chapter 17: LINQ to SQL Concurrency Conf l icts .. 635

Prerequisites for Running the Examples... 635
Some Common Methods ... 635

Using the LINQ to SQL API ... 635

Concurrency Conflicts... 635
Optimistic Concurrency ... 636

Pessimistic Concurrency ... 647

An Alternative Approach for Middle Tiers and Servers.. 650

Summary .. 652

■Chapter 18: Addit ional LINQ to SQL Capabi l it ies .. 653

Prerequisites for Running the Examples... 653
Using the LINQ to SQL API ... 653

Using the LINQ to XML API... 653

Database Views .. 653

Entity Class Inheritance .. 655

Transactions ... 661

Summary .. 663

Part 6: L INQ to Ent it ies .. 665

■Chapter 19: LINQ to Entit ies Introduction .. 667

Introducing LINQ to Entities .. 668
The ObjectContext ... 669

Entity Classes .. 669

Associations .. 670

Prerequisites for Running the Examples... 670
Obtaining the Appropriate Version of the Northwind Database... 670

Generating the Northwind Entity Data Model .. 670

Using the LINQ to Entities API ... 674

IQueryable<T>.. 674

Some Common Methods... 675

 ■ CONTENTS

xvii

GetStringFromDb() ... 675

ExecuteStatementInDb() .. 676

Summary .. 677

■Chapter 20: LINQ to Entit ies Operations .. 679

Prerequisites for Running the Examples... 679
Some Common Methods ... 679

Standard Database Operations... 680
Inserts.. 680

Queries .. 687

Updates.. 704

Deletes... 705

Managing Concurrency... 715
Enabling Concurrency Checks... 716

Handling Concurrency Conflicts .. 717

Summary .. 722

■Chapter 21: LINQ to Entit ies C lasses .. 723

Prerequisites for Running the Examples... 723

The ObjectContext Class ... 723
Constructor .. 724

DatabaseExists() .. 726

DeleteDatabase() ... 726

CreateDatabase() ... 727

SaveChanges()... 727

Refresh() .. 728

AddObject() .. 729

CreateObject() .. 730

DeleteObject() .. 731

EntityObject... 732
Constructor .. 732

Factory Method.. 733

■ CONTENTS

xviii

Primitive Properties ... 735

Navigation Properties .. 737

EntityReference .. 740
Load()... 740

Value.. 741

EntityCollection ... 741

Add() ... 741
Remove().. 743

Clear() .. 745

Contains()... 745

Load()... 747

Count ... 747

Summary .. 748

Part 7: Paralle l LINQ749

■Chapter 22: Paral lel LINQ Introduction .. 751

Introducing Parallel LINQ .. 751
Parallel LINQ Is for Objects .. 756

Using the LINQ to Entities API ... 756

Summary .. 756

■Chapter 23: Using Para llel LINQ ... 757

Creating a Parallel LINQ Query.. 757

Preserving Result Ordering... 760

Controlling Parallelism.. 763
Forcing Parallel Execution ... 763

Limiting the Degree of Parallelism .. 764

Dealing with Exceptions ... 764

Queries Without Results ... 768

Creating Ranges and Repetitions.. 770

Summary .. 771

 ■ CONTENTS

xix

■Chapter 24: Paral lel LINQ Operators .. 773

ParallelQuery Creation Operators ... 773
AsParallel... 773

Range .. 777

Repeat... 778
Empty... 779

Execution Control Operators ... 779
AsOrdered .. 779

AsUnordered .. 782

AsSequential.. 783

AsEnumerable ... 784

WithDegreeOfParallelism... 785

WithExecutionMode... 786

WithMergeOptions ... 787

Conversion Operators ... 790
Cast.. 790

OfType ... 791

The ForAll Operator... 792
Prototypes ... 792

Examples ... 792

Summary .. 793

Index .. 795

■ CONTENTS

xx

About the Authors

■ Adam Freeman is an experienced IT professional who has held senior positions
in a range of companies, most recently as Chief Technology Officer and Chief
Operating Officer of a global bank. He has written several books on Java and
.NET and has had a long-term interest in all things parallel.

■ Joseph C. Rattz, Jr., unknowingly began his career in software development in 1990 when a friend asked
him for assistance writing an ANSI text editor named ANSI Master for the Commodore Amiga. A
hangman game (The Gallows) soon followed. From these compiled Basic programs, he moved on to
programming in C for more speed and power. Joe then developed applications that were sold to
JumpDisk, an Amiga disk magazine, as well as Amiga World magazine. Due to developing in a small
town on a fairly isolated platform, Joe learned all the wrong ways to write code. It was while trying to
upgrade his poorly written applications that he gained respect for the importance of easily maintainable
code. It was love at first sight when Joe spotted a source-level debugger in use for the first time.

Two years later, Joe obtained his first software development opportunity at Policy Management Systems
Corporation as an entry-level programmer developing a client/server insurance application for OS/2
and Presentation Manager. Through the years, he added C++, Unix, Java, ASP, ASP.NET, C#, HTML,
DHTML, and XML to his skill set while developing applications for SCT, DocuCorp, IBM and the Atlanta
Committee for the Olympic Games, CheckFree, NCR, EDS, Delta Technology, Radiant Systems, and the
Genuine Parts Company. Joe enjoys the creative aspects of user interface design, and he appreciates the
discipline necessary for server-side development. But, given his druthers, his favorite development
pastime is debugging code.

Joe can be found working for the Genuine Parts Company—the parent company of NAPA—in the
Automotive Parts Group Information Systems department, where he works on his baby, the Storefront
web site. This site for NAPA stores provides a view into their accounts and data on a network of AS/400s.
Joe can be reached at his web site, www.linqdev.com.

http://www.linqdev.com

 ■ CONTENTS

xxi

About the Technical Reviewer

■ Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for Brain Force (www.brainforce.com) in its Italian branch
(www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified
Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical
reviewer. Over the past ten years, he’s written articles for Italian and international magazines and
coauthored more than ten books on a variety of computer topics.

http://www.brainforce.com
http://www.brainforce.it

■ CONTENTS

xxii

Acknowledgments

We would like to thank Jon Skeet and Judson White, and everyone at Apress for working so hard to bring
this book to print. In particular, we would like to thank Mary Tobin for keeping things on track and Ewan
Buckingham for commissioning and editing the book. We would also like to thank Kim Wimpsett and
Fabio Ferracchiati whose respective efforts as copy editor and technical reviewer made this book far
better than it would have been without them.

Adam Freeman and Joseph C. Rattz, Jr.

P A R T 1

■ ■ ■

1

Pro LINQ: Language
Integrated Query in C# 2010

2

C H A P T E R 1

■ ■ ■

3

Hello LINQ

Listing 1-1. Hello LINQ

using System;
using System.Linq;

string[] greetings = {"hello world", "hello LINQ", "hello Apress"};

var items =
 from s in greetings
 where s.EndsWith("LINQ")
 select s;

foreach (var item in items)
 Console.WriteLine(item);

■ NNote The code in Listing 1-1 was added to a project created with the Console Application template in Visual

Studio 2010. If one is not already present, you should add a using directive for the System.Linq namespace.

Running the previous code by pressing Ctrl+F5 outputs the following data to the console window:

hello LINQ

A Paradigm Shift
Did you just feel your world shift? As a .NET developer, you should have. With the trivial programming
example in Listing 1-1, you just ran what somewhat appears to be a Structured Query Language (SQL)

CHAPTER 1 ■ HELLO LINQ

4

query on an array of strings.1 Check out that where clause. If it looks like we used the EndsWith method
of a string object, it’s because we did. You may be wondering, what is with that variable type var? Is C#
still performing static type checking? The answer is yes; it still statically checks types at compile time.
What feature of C# is allowing all of this? The answer is Microsoft’s Language Integrated Query,
otherwise known as LINQ.

Query XML
Although the example in Listing 1-1 is trivial, the example in Listing 1-2 may begin to indicate the
potential power that LINQ puts into the hands of the .NET developer. It displays the ease with which one
can interact with and query Extensible Markup Language (XML) data utilizing the LINQ to XML API. You
should pay particular attention to how we construct the XML data into an object named books that we
can programmatically interact with.

Listing 1-2. A Simple XML Query Using LINQ to XML

using System;
using System.Linq;
using System.Xml.Linq;

XElement books = XElement.Parse(
 @"<books>
 <book>
 <title>Pro LINQ: Language Integrated Query in C# 2010</title>
 <author>Joe Rattz</author>
 </book>
 <book>
 <title>Pro .NET 4.0 Parallel Programming in C#</title>
 <author>Adam Freeman</author>
 </book>
 <book>
 <title>Pro VB 2010 and the .NET 4.0 Platform</title>
 <author>Andrew Troelsen</author>
 </book>
 </books>");

var titles =
 from book in books.Elements("book")
 where (string) book.Element("author") == "Joe Rattz"
 select book.Element("title");

foreach(var title in titles)
 Console.WriteLine(title.Value);

1 Most noticeably, the order is inverted from typical SQL. Additionally, there is the added s in portion of the query

that provides a reference to the set of elements contained in the source, which in this case is the array of strings
"hello world", "hello LINQ", and "hello Apress".

CHAPTER 1 ■ HELLO LINQ

5

■ NNote The code in Listing 1-2 requires adding the System.Xml.Linq.dll assembly to the project references

if it is not already added. Also notice that we added a using directive for the System.Xml.Linq namespace.

Running the previous code by pressing Ctrl+F5 outputs the following data to the console window:

Pro LINQ: Language Integrated Query in C# 2010

Did you notice how we parsed the XML data into an object of type XElement? Nowhere did we
create an XmlDocument. Among the benefits of LINQ to XML are the extensions made to the XML API.
Now instead of being XmlDocument-centric as the W3C Document Object Model (DOM) XML API
requires, LINQ to XML allows the developer to interact at the element level using the XElement class.

■ NNote In addition to query features, LINQ to XML provides a more powerful and easier-to-use interface for

working with XML data.

Again, notice that we used the same SQL-like syntax to query the XML data as though it were a
database.

Query a SQL Server Database
Our next example shows how to use LINQ to SQL to query database tables. In Listing 1-3, we query the
standard Microsoft Northwind sample database.

Listing 1-3. A Simple Database Query Using LINQ to SQL

using System;
using System.Linq;
using System.Data.Linq;

using nwind;

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var custs =
 from c in db.Customers
 where c.City == "Rio de Janeiro"
 select c;

CHAPTER 1 ■ HELLO LINQ

6

foreach (var cust in custs)
 Console.WriteLine("{0}", cust.CompanyName);

■ NNote The code in Listing 1-3 requires adding the System.Data.Linq.dll assembly to the project
references if it is not already added. Also notice that we added a using directive for the System.Data.Linq

namespace.

You can see that we added a using directive for the nwind namespace. For this example to work,
you must use the SQLMetal command-line utility or the Object Relational Designer to generate entity
classes for the targeted database, which in this example is the Microsoft Northwind sample database.
See Chapter 12 to read how this is done with SQLMetal. The generated entity classes are created in the
nwind namespace, which we specified when generating them. We then added the SQLMetal-generated
source module to our project and the using directive for the nwind namespace.

■ NNote You may need to change the connection string that is passed to the Northwind constructor in Listing 1-3
for the connection to be properly made. Read the section on DataContext() and [Your]DataContext() in

Chapter 16 to see different ways to connect to the database.

Running the previous code by pressing Ctrl+F5 outputs the following data to the console window:

Hanari Carnes
Que Delícia
Ricardo Adocicados

This simple example demonstrates querying the Customers table of the Northwind database for
customers in Rio de Janeiro. Although it may appear that there is nothing new or special going on here
that we wouldn’t already have with existing means, there are some significant differences. Most
noticeably, this query is integrated into the language, and this means we get language-level support that
includes syntax checking and IntelliSense. Gone are the days of writing a SQL query into a string and not
detecting a syntax error until runtime. Want to make your where clause dependent on a field in the
Customers table but cannot remember the name of the field? IntelliSense will show the table’s fields to
you. Once you type in c. in the previous example, IntelliSense will display all the fields of the Customers
table to you.

All the previous queries use the query expression syntax. You will learn in Chapter 2 that two
syntaxes are available for LINQ queries, of which the query expression syntax is one. Of course, you can
always use the standard dot notation syntax that you are accustomed to seeing in C# instead. This syntax
is the normal object.method() invocation pattern you have always been using.

CHAPTER 1 ■ HELLO LINQ

7

Introduction
As the Microsoft .NET platform and its supporting languages C# and VB have matured, it has become
apparent that one of the more troublesome areas still remaining for developers is that of accessing data
from different data sources. In particular, database access and XML manipulation are often
cumbersome at best and problematic at worst.

The database problems are numerous. First, there is the issue that we cannot programmatically
interact with a database at the native language level. This means syntax errors often go undetected until
runtime. Incorrectly referenced database fields are not detected either. This can be disastrous, especially
if this occurs during the execution of error-handling code. Nothing is more frustrating than having an
entire error-handling mechanism fail because of syntactically invalid code that has never been tested.
Sometimes this is unavoidable because of unanticipated error behavior. Having database code that is
not validated at compile time can certainly lead to this problem.

A second problem is the nuisance caused by the differing data types utilized by a particular data
domain, such as database or XML data types versus the native language in which the program is written.
In particular, dates and times can be quite a hassle.

XML parsing, iterating, and manipulation can be quite tedious. Often an XML fragment is all that is
desired, but because of the W3C DOM XML API, an XmlDocument must be created just to perform
various operations on the XML fragment.

Rather than just add more classes and methods to address these deficiencies in a piecemeal fashion,
the development team at Microsoft decided to go one step further by abstracting the fundamentals of
data query from these particular data domains. The result was LINQ. LINQ is Microsoft’s technology to
provide a language-level support mechanism for querying data of all types. These types include in-
memory arrays and collections, databases, XML documents, and more.

LINQ Is About Data Queries
For the most part, LINQ is all about queries, whether they are queries returning a set of matching
objects, a single object, or a subset of fields from an object or set of objects. In LINQ, this returned set of
objects is called a sequence. Most LINQ sequences are of type IEnumerable<T>, where T is the data
type of the objects stored in the sequence. For example, if you have a sequence of integers, they would
be stored in a variable of type IEnumerable<int>. You will see that IEnumerable<T> runs rampant in
LINQ. Many of the LINQ methods return an IEnumerable<T>.

In the previous examples, all the queries actually return an IEnumerable<T> or a type that inherits
from IEnumerable<T>. However, we use the var keyword for the sake of simplicity at this point, which
is a new shorthand technique that we cover in Chapter 2. You will see that the examples will begin
demonstrating that sequences are truly stored in variables implementing the IEnumerable<T>
interface.

LINQ to Objects
LINQ to Objects is the name given to the IEnumerable<T> API for the Standard Query Operators. It is
LINQ to Objects that allows you to perform queries against arrays and in-memory data collections.
Standard Query Operators are the static methods of the static System.Linq.Enumerable class that you
use to create LINQ to Objects queries.

CHAPTER 1 ■ HELLO LINQ

8

LINQ to XML
LINQ to XML is the name given to the LINQ API dedicated to working with XML. Not only has Microsoft
added the necessary XML libraries to work with LINQ, it has addressed other deficiencies in the standard
XML DOM, thereby making it easier to work with XML. Gone are the days of having to create an
XmlDocument just to work with a small piece of XML. To take advantage of LINQ to XML, you must have
a reference to the System.Xml.Linq.dll assembly in your project and have a using directive such as
the following:

using System.Xml.Linq;

LINQ to DataSet
LINQ to DataSet is the name given to the LINQ API for DataSets. Many developers have a lot of existing
code relying on DataSets. Those who do will not be left behind, nor will they need to rewrite their code to
take advantage of the power of LINQ.

LINQ to SQL
LINQ to SQL is the name given to the IQueryable<T> API that allows LINQ queries to work with
Microsoft’s SQL Server database. To take advantage of LINQ to SQL, you must have a reference to the
System.Data.Linq.dll assembly in your project and have a using directive such as the following:

using System.Data.Linq;

LINQ to Entities
LINQ to Entities is an alternative LINQ API that is used to interface with a database. It decouples the
entity object model from the physical database by injecting a logical mapping between the two. With
this decoupling comes increased power and flexibility, as well as complexity. Because LINQ to Entities
appears to be outside the core LINQ framework, it is not covered in this book. However, if you find that
you need more flexibility than LINQ to SQL permits, it would be worth considering as an alternative.
Specifically, if you need looser coupling between your entity object model and database, entity objects
comprised of data coming from multiple tables, or more flexibility in modeling your entity objects, LINQ
to Entities may be your answer.

How to Obtain LINQ
Technically, there is no LINQ product to obtain. LINQ has been fully integrated in the .NET Framework
since version 3.5 and Visual Studio 2008. And .NET 4 and Visual Studio 2010 added support for the
Parallel LINQ features that we cover in Chapters 22 to 24.

LINQ Is Not Just for Queries
You might think that LINQ is just for queries because it stands for Language Integrated Query. But please
don’t think of it only in that context. Its power transcends mere data queries. We prefer to think of LINQ
as a data iteration engine—but perhaps Microsoft didn’t want a technology named DIE.

CHAPTER 1 ■ HELLO LINQ

9

Have you ever called a method and it returned data in some data structure that you then needed to
convert to yet another data structure before you could pass it to another method? Let’s say, for example,
you call method A, and method A returns an array of type string that contains numeric values stored as
strings. You then need to call method B, but method B requires an array of integers. You normally end
up writing a loop to iterate through the array of strings and populate a newly constructed array of
integers. What a nuisance. Allow us to give a quick example of the power of LINQ.

Let’s pretend we have an array of strings that we received from some method A, as shown in Listing
1-4.

Listing 1-4. Converting an Array of Strings to Integers

string[] numbers = { "0042", "010", "9", "27" };

For this example, we’ll just statically declare an array of strings. Now before we call method B, we

need to convert the array of strings to an array of integers:

int[] nums = numbers.Select(s => Int32.Parse(s)).ToArray();

That’s it. How much easier could it get? Even just saying “abracadabra” only saves you 48

characters. Here is some code to display the resulting array of integers:

foreach(int num in nums)
 Console.WriteLine(num);

Here is the output showing the integers:

42
10
9
27

We know what you are thinking: maybe we just trimmed off the leading zeros. If we sort it, will you
then be convinced? If they were still strings, 9 would be at the end, and 10 would be first. Listing 1-5
contains some code to do the conversion and sort the output.

Listing 1-5. Converting an Array of Strings to Integers and Sorting It

string[] numbers = { "0042", "010", "9", "27" };

int[] nums = numbers.Select(s => Int32.Parse(s)).OrderBy(s => s).ToArray();

foreach(int num in nums)
 Console.WriteLine(num);

CHAPTER 1 ■ HELLO LINQ

10

Here are the results:

9
10
27
42

How slick is that? OK, you say, that is nice, but it sure is a simple example. Now we’ll give you a more
complex example.

Let’s say you have some common code that contains an Employee class. In that Employee class is a
method to return all the employees. Also assume you have another code base of common code that
contains a Contact class, and in that class is a method to publish contacts. Let’s assume you have the
assignment to publish all employees as contacts.

The task seems simple enough, but there is a catch. The common Employee method that retrieves
the employees returns the employees in an ArrayList of Employee objects, and the Contact method
that publishes contacts requires an array of type Contact. Here is that common code:

namespace LINQDev.HR
{
 public class Employee
 {
 public int id;
 public string firstName;
 public string lastName;

 public static ArrayList GetEmployees()
 {
 // Of course the real code would probably be making a database query
 // right about here.
 ArrayList al = new ArrayList();

 // Man, do the C# object initialization features make this a snap.
 al.Add(new Employee { id = 1, firstName = "Joe", lastName = "Rattz"});
 al.Add(new Employee { id = 2, firstName = "William", lastName = "Gates"});
 al.Add(new Employee { id = 3, firstName = "Anders", lastName = "Hejlsberg"}
);
 return(al);
 }
 }
}

namespace LINQDev.Common
{
 public class Contact
 {
 public int Id;

CHAPTER 1 ■ HELLO LINQ

11

 public string Name;

 public static void PublishContacts(Contact[] contacts)
 {
 // This publish method just writes them to the console window.
 foreach(Contact c in contacts)
 Console.WriteLine("Contact Id: {0} Contact: {1}", c.Id, c.Name);
 }
 }
}

As you can see, the Employee class and GetEmployees method are in one namespace, LINQDev.HR,

and the GetEmployees method returns an ArrayList. The PublishContacts method is in another
namespace, LINQDev.Common, and requires an array of Contact objects to be passed.

Previously, this always meant iterating through the ArrayList returned by the GetEmployees
method and creating a new array of type Contact to be passed to the PublishContacts method. LINQ
makes it easy, as shown in Listing 1-6.

Listing 1-6. Calling the Common Code

ArrayList alEmployees = LINQDev.HR.Employee.GetEmployees();

LINQDev.Common.Contact[] contacts = alEmployees
 .Cast<LINQDev.HR.Employee>()
 .Select(e => new LINQDev.Common.Contact {
 Id = e.id,
 Name = string.Format("{0} {1}", e.firstName, e.lastName)
 })
 .ToArray<LINQDev.Common.Contact>();

LINQDev.Common.Contact.PublishContacts(contacts);

To convert the ArrayList of Employee objects to an array of Contact objects, we first cast the

ArrayList of Employee objects to an IEnumerable<Employee> sequence using the Cast Standard
Query Operator. This is necessary because the legacy ArrayList collection class was used. Syntactically
speaking, objects of the System.Object class type are stored in an ArrayList, not objects of the
Employee class type. So, we must cast them to Employee objects. Had the GetEmployees method
returned a generic List collection, this would not have been necessary. However, that collection type
was not available when this legacy code was written.

Next, we call the Select operator on the returned sequence of Employee objects, and in the lambda
expression, the code passed inside the call to the Select method, we instantiate and initialize a Contact
object using the C# object initialization features to assign the values from the input Employee element
into a newly constructed output Contact element. A lambda expression is a C# feature that allows a
shorthand for specifying anonymous methods that we explain in Chapter 2. Lastly, we convert the
sequence of newly constructed Contact objects to an array of Contact objects using the ToArray
operator because that is what the PublishContacts method requires. Isn’t that slick? Here are the
results:

CHAPTER 1 ■ HELLO LINQ

12

Contact Id: 1 Contact: Joe Rattz
Contact Id: 2 Contact: William Gates
Contact Id: 3 Contact: Anders Hejlsberg

As you can see, LINQ can do a lot besides just querying data. As you read through the chapters of
this book, try to think of additional uses for the features LINQ provides.

Tips to Get You Started
While working with LINQ to write this book, we often found ourselves confused, befuddled, and stuck.
Although many very useful resources are available to the developer wanting to learn to use LINQ to its
fullest potential, we want to offer a few tips to get you started. In some ways, these tips feel like they
should come at the end of the book. After all, we haven’t even explained what some of these concepts are
at this point. But it would seem a bit sadistic to make you read the full text of the book first, only to offer
the tips at the end. So with that said, this section contains some tips we think you might find useful, even
if you do not fully understand them or the context.

Use the var Keyword When Confused
Although it is necessary to use the var keyword when capturing a sequence of anonymous classes to a
variable, sometimes it is a convenient way to get code to compile if you are confused. We are very much
in favor of developers knowing exactly what type of data is contained in a sequence—meaning that for
IEnumerable<T> you should know what data type T is—but sometimes, especially when just starting
with LINQ, it can get confusing. If you find yourself stuck, where code will not compile because of a data
type mismatch, consider changing explicitly stated types so that they use the var keyword instead.

For example, let’s say you have the following code:

// This code will not compile.
Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<?> orders = db.Customers
 .Where(c => c.Country == "USA" && c.Region == "WA")
 .SelectMany(c => c.Orders);

It may be a little unclear what data type you have an IEnumerable sequence of. You know it is an

IEnumerable of some type T, but what is T? A handy trick would be to assign the query results to a
variable whose type is specified with the var keyword and then to get the type of the current value of
that variable so you know what type T is. Listing 1-7 shows what the code would look like.

CHAPTER 1 ■ HELLO LINQ

13

Listing 1-7. Code Sample Using the var Keyword

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var orders = db.Customers
 .Where(c => c.Country == "USA" && c.Region == "WA")
 .SelectMany(c => c.Orders);

Console.WriteLine(orders.GetType());

In this example, notice that the orders variable type is now specified using the var keyword.

Running this code produces the following:

System.Data.Linq.DataQuery`1[nwind.Order]

There is a lot of compiler gobbledygook there, but the important part is the nwind.Order portion.
You now know that the data type you are getting a sequence of is nwind.Order.

If the gobbledygook is throwing you, running the example in the debugger and examining the
orders variable in the Locals window reveals that the data type of orders is this:
System.Linq.IQueryable<nwind.Order> {System.Data.Linq.DataQuery<nwind.Order>}

This makes it clearer that you have a sequence of nwind.Order. Technically, you have an
IQueryable<nwind.Order> here, but that can be assigned to an IEnumerable<nwind.Order> if you
like, since IQueryable<T> inherits from IEnumerable<T>.

So, you could rewrite the previous code, plus enumerate through the results, as shown in Listing 1-8.

Listing 1-8. Sample Code from Listing 1-7 Except with Explicit Types

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Order> orders = db.Customers
 .Where(c => c.Country == "USA" && c.Region == "WA")
 .SelectMany(c => c.Orders);

foreach(Order item in orders)
 Console.WriteLine("{0} - {1} - {2}", item.OrderDate, item.OrderID,
item.ShipName);

■ NNote For the previous code to work, you will need to have a using directive for the
System.Collections.Generic namespace, in addition to the System.Linq namespace you should always

expect to have when LINQ code is present.

CHAPTER 1 ■ HELLO LINQ

14

This code would produce the following abbreviated results:

3/21/1997 12:00:00 AM - 10482 - Lazy K Kountry Store
5/22/1997 12:00:00 AM - 10545 - Lazy K Kountry Store
…
4/17/1998 12:00:00 AM - 11032 - White Clover Markets
5/1/1998 12:00:00 AM - 11066 - White Clover Markets

Use the Cast or OfType Operators for Legacy Collections
You will find that the majority of LINQ’s Standard Query Operators can be called only on collections
implementing the IEnumerable<T> interface. None of the legacy C# collections—those in the
System.Collections namespace—implement IEnumerable<T>. So, the question becomes, how do
you use LINQ with legacy collections?

There are two Standard Query Operators specifically for this purpose, Cast and OfType. Both of
these operators can be used to convert legacy collections to IEnumerable<T> sequences. Listing 1-9
shows an example.

Listing 1-9. Converting a Legacy Collection to an IEnumerable<T> Using the Cast Operator

// We'll build a legacy collection.
ArrayList arrayList = new ArrayList();
arrayList.Add("Adams");
arrayList.Add("Arthur");
arrayList.Add("Buchanan");

IEnumerable<string> names = arrayList.Cast<string>().Where(n => n.Length < 7);
foreach(string name in names)
 Console.WriteLine(name);

Listing 1-10 shows the same example using the OfType operator.

Listing 1-10. Using the OfType Operator

// We'll build a legacy collection.
ArrayList arrayList = new ArrayList();
arrayList.Add("Adams");
arrayList.Add("Arthur");
arrayList.Add("Buchanan");

IEnumerable<string> names = arrayList.OfType<string>().Where(n => n.Length < 7);
foreach(string name in names)
 Console.WriteLine(name);

Both examples provide the same results. Here they are:

CHAPTER 1 ■ HELLO LINQ

15

Adams
Arthur

The difference between the two operators is that the Cast operator will attempt to cast every
element in the collection to the specified type to be put into the output sequence. If there is a type in the
collection that cannot be cast to the specified type, an exception will be thrown. The OfType operator
will only attempt to put those elements that can be cast to the type specified into the output sequence.

The OfType Operator versus the Cast Operator
One of the most important reasons why generics were added to C# was to give the language the ability to
have data collections with static type checking. Prior to generics—barring creating your own specific
collection type for every type of data for which you wanted a collection—there was no way to ensure that
every element in a legacy collection, such as an ArrayList, Hashtable, and so on, was of the same and
correct type. Nothing in the language prevented code from adding a Textbox object to an ArrayList
meant to contain only Label objects.

Since the introduction of generics in version 2.0, C# developers have had a way to explicitly state
that a collection can contain only those elements of a specified type. Although either the OfType or Cast
operator may work for a legacy collection, Cast requires that every object in the collection be of the
correct type, which is the fundamental original flaw in the legacy collections for which generics were
created. When using the Cast operator, if any object is unable to be cast to the specified data type, an
exception is thrown. By contrast, with the OfType operator only objects of the specified type will be
stored in the output IEnumerable<T> sequence, and no exception will be thrown. The best-case
scenario is that every object will be of the correct type and be in the output sequence. The worst case is
that some elements will get skipped, but they would have thrown an exception had the Cast operator
been used instead.

Don’t Assume a Query Is Bug-Free
In Chapter 3, we explain that LINQ queries are often deferred and not executed when it appears you are
calling them. For example, consider this code fragment from Listing 1-1:

var items =
 from s in greetings
 where s.EndsWith("LINQ")
 select s;

foreach (var item in items)
 Console.WriteLine(item);

Although it might appear that the query is occurring when the items variable is being initialized,

that is not the case. Because the Where and Select operators are deferred, the query is not actually
being performed at that point. The query is merely being called, declared, or defined, but not performed.
The query will actually take place the first time a result from it is needed. This is typically when the query
results variable is enumerated. In this example, a result from the query is not needed until the foreach
statement is executed. In this way, we say that the query is deferred.

CHAPTER 1 ■ HELLO LINQ

16

It is easy to forget that many of the query operators are deferred and will not execute until a result is
enumerated. This means you could have an improperly written query that will throw an exception when
the resulting sequence is enumerated. That enumeration could take place far enough downstream that it
is easily forgotten that a query may be the culprit.

Let’s examine the code in Listing 1-11.

Listing 1-11. Query with Intentional Exception Deferred Until Enumeration

string[] strings = { "one", "two", null, "three" };

Console.WriteLine("Before Where() is called.");
IEnumerable<string> ieStrings = strings.Where(s => s.Length == 3);
Console.WriteLine("After Where() is called.");

foreach(string s in ieStrings)
{
 Console.WriteLine("Processing " + s);
}

We know that the third element in the array of strings is a null, and we cannot call null.Length

without throwing an exception. The execution steps over the line of code calling the query just fine. It is
not until we enumerate the sequence ieStrings, and specifically the third element, that the exception
occurs. Here are the results of this code:

Before Where() is called.
After Where() is called.
Processing one
Processing two

Unhandled Exception: System.NullReferenceException: Object reference not set to an
instance of an object.
…

As you can see, we called the Where operator without exception. It’s not until we try to enumerate
the third element of the sequence that an exception is thrown. Now imagine if that sequence,
ieStrings, is passed to a function that downstream enumerates the sequence, perhaps to populate a
drop-down list or some other control. It would be easy to think the exception is caused by a fault in that
function, not the LINQ query itself.

Take Advantage of Deferred Queries
In Chapter 3, we go into deferred queries in more depth. However, we want to point out that a deferred
query that ultimately returns an IEnumerable<T> can be enumerated over, time and time again,
obtaining the latest data from the data source. You don’t need to actually call or, as we earlier pointed
out, declare the query again.

CHAPTER 1 ■ HELLO LINQ

17

In most of the code samples in this book, you will see a query called and an IEnumerable<T> for
some type T being returned and stored in a variable. Then we typically call foreach on the
IEnumerable<T> sequence. This is for demonstration purposes. If that code is executed multiple times,
calling the actual query each time is needless work. It might make more sense to have a query
initialization method that gets called once for the lifetime of the scope and to construct all the queries
there. Then you could enumerate over a particular sequence to get the latest version of the query results
at will.

Use the DataContext Log
When working with LINQ to SQL, don’t forget that the database class that is generated by SQLMetal
inherits from System.Data.Linq.DataContext. This means that your generated DataContext class has
some useful built-in functionality, such as a TextWriter property named Log.

One of the niceties of the Log object is that it will output the equivalent SQL statement of an
IQueryable<T> query prior to the parameter substitution. Have you ever had code break in production
that you think might be data related? Wouldn’t it be nice if there was a way to get the query executed
against the database so that you could enter it in SQL Server Enterprise Manager or Query Analyzer and
see the exact data coming back? The DataContext’s Log object will output the SQL query for you. Listing
1-12 shows an example.

Listing 1-12. An Example Using the DataContext.Log Object

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

IQueryable<Order> orders = from c in db.Customers
 from o in c.Orders
 where c.Country == "USA" && c.Region == "WA"
 select o;

foreach(Order item in orders)
 Console.WriteLine("{0} - {1} - {2}", item.OrderDate, item.OrderID,
item.ShipName);

This code produces the following output:

SELECT [t1].[OrderID], [t1].[CustomerID], [t1].[EmployeeID], [t1].[OrderDate],
 [t1].[RequiredDate], [t1].[ShippedDate], [t1].[ShipVia], [t1].[Freight],
 [t1].[ShipName], [t1].[ShipAddress], [t1].[ShipCity], [t1].[ShipRegion],
 [t1].[ShipPostalCode], [t1].[ShipCountry]
FROM [dbo].[Customers] AS [t0], [dbo].[Orders] AS [t1]
WHERE ([t0].[Country] = @p0) AND ([t0].[Region] = @p1) AND ([t1].[CustomerID] =
 [t0].[CustomerID])
-- @p0: Input String (Size = 3; Prec = 0; Scale = 0) [USA]

CHAPTER 1 ■ HELLO LINQ

18

-- @p1: Input String (Size = 2; Prec = 0; Scale = 0) [WA]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

3/21/1997 12:00:00 AM - 10482 - Lazy K Kountry Store
5/22/1997 12:00:00 AM - 10545 - Lazy K Kountry Store
6/19/1997 12:00:00 AM - 10574 - Trail's Head Gourmet Provisioners
6/23/1997 12:00:00 AM - 10577 - Trail's Head Gourmet Provisioners
1/8/1998 12:00:00 AM - 10822 - Trail's Head Gourmet Provisioners
7/31/1996 12:00:00 AM - 10269 - White Clover Markets
11/1/1996 12:00:00 AM - 10344 - White Clover Markets
3/10/1997 12:00:00 AM - 10469 - White Clover Markets
3/24/1997 12:00:00 AM - 10483 - White Clover Markets
4/11/1997 12:00:00 AM - 10504 - White Clover Markets
7/11/1997 12:00:00 AM - 10596 - White Clover Markets
10/6/1997 12:00:00 AM - 10693 - White Clover Markets
10/8/1997 12:00:00 AM - 10696 - White Clover Markets
10/30/1997 12:00:00 AM - 10723 - White Clover Markets
11/13/1997 12:00:00 AM - 10740 - White Clover Markets
1/30/1998 12:00:00 AM - 10861 - White Clover Markets
2/24/1998 12:00:00 AM - 10904 - White Clover Markets
4/17/1998 12:00:00 AM - 11032 - White Clover Markets
5/1/1998 12:00:00 AM - 11066 - White Clover Markets

Use the LINQ Forum
Despite providing the best tips we can think of, there will more than likely be times when you get stuck.
Don’t forget that there is a forum dedicated to LINQ at MSDN.com (http://www.linqdev.com). This
forum is monitored by Microsoft developers, and you will find a wealth of knowledgeable resources
there.

Summary
We sense that by now you are chomping at the bit to move on to the next chapter, but before you do, we
want to remind you of a few things.

First, LINQ changes the way .NET developers can query data. Bear in mind that LINQ is not just a
library to be added to your project. It is a total approach to querying data that comprises several
components depending on the data store being queried. Currently, you can use LINQ to query the
following data sources: in-memory data collections using LINQ to Objects, XML using LINQ to XML,
DataSets using LINQ to DataSet, and SQL Server databases using LINQ to SQL.

Also, please remember what we said about LINQ not being just for queries. We have found LINQ
very useful not only for querying data but for formatting, validating, and even getting data into the
necessary format for use in WinForm and WPF controls.

Last but not least, we hope you didn’t skip over the tips we provided in this chapter. If you don’t
understand some of them, that is no problem. They will make more sense as you progress through the
book. Just keep them in mind if you find yourself stalled.

http://www.linqdev.com

CHAPTER 1 ■ HELLO LINQ

19

No doubt that after seeing some of the LINQ examples and tips in this chapter, you may find yourself
puzzled by some of the syntax shown. If so, don’t worry because in the next chapter, we cover the
enhancements Microsoft has made to C# that make all of this possible.

CHAPTER 1 ■ HELLO LINQ

20

C H A P T E R 2

■ ■ ■

21

C# Language Enhancements for
LINQ

Inn the previous chapter, we introduced you to LINQ. We provided some examples to whet your appetite
and shared some premature tips. You may be perplexed, though, by some of the syntax. If so, it is
probably because C# has been enhanced with new features that are specific to LINQ. These features
were added in C# 3.0 and further supplemented in .NET 4.0. In this chapter, we introduce you to the
powerful C# additions.

C# Language Additions
To make LINQ seamlessly integrate with C#, significant enhancements were needed for the C#

language. Although all these features have merit on their own, it is really the sum of the parts
contributing to LINQ that makes the C# enhancements so noteworthy.

To truly understand much of the syntax of LINQ, it is necessary for us to cover some of the relevant
C# language features before proceeding with the workings of the components of LINQ. This chapter will
cover the following language additions:

• Lambda expressions

• Expression trees

• The keyword var, object and collection initialization, and anonymous types

• Extension methods

• Partial methods

• Query expressions

In the examples in this chapter, we do not explicitly show which assemblies should be added and
which namespaces you should specify in your using directives for the assemblies and namespaces we
cover in Chapter 1. We do point out any new ones, though, but only in the first example introducing
them.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

22

Lambda Expressions
Since version 3, C# has supported lambda expressions. Lambda expressions have been used in computer
languages as far back as LISP; they were conceptualized in 1936 by Alonzo Church, an American
mathematician. These expressions provide shorthand syntax for specifying an algorithm.

But before jumping immediately into lambda expressions, let’s take a look at the evolution of
specifying an algorithm as an argument to a method since that is the primary purpose of lambda
expressions.

Using Named Methods
Previously, when a method or variable was typed to require a delegate, a developer would have to
create a named method and pass that name where the delegate was required.

As an example, consider the following situation. Let’s pretend we have two developers; one is a
common-code developer, and the other is an application developer. It isn’t necessary that there be two
different developers; we just need labels to delineate the two different roles. The common-code
developer wants to create general-purpose code that can be reused throughout the project. The
application developer will consume that general-purpose code to create an application. In this example
scenario, the common-code developer wants to create a generic method for filtering arrays of integers,
but with the ability to specify the algorithm used to filter the array. First, he must declare the delegate.
It will be prototyped to receive an int and return true if the int should be included in the filtered array.

So, he creates a utility class and adds the delegate and filtering method. Here is the common code:

public class Common
{
 public delegate bool IntFilter(int i);

 public static int[] FilterArrayOfInts(int[] ints, IntFilter filter)
 {
 ArrayList aList = new ArrayList();
 foreach (int i in ints)
 {
 if (filter(i))
 {
 aList.Add(i);
 }
 }
 return ((int[])aList.ToArray(typeof(int)));
 }
}

The common-code developer will put both the delegate declaration and the FilterArrayOfInts

into a common library assembly, a dynamic link library (DLL), so that it can be used in multiple
applications.

The FilterArrayOfInts method listed previously allows the application developer to pass in an
array of integers and a delegate to the filter method and get back a filtered array.

Now let’s assume the application developer wants to filter (in) just the odd integers. Here is his filter
method, which is declared in his application code:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

23

The appli cati on dev eloper’s filt er meth od

public class Application
{
 public static bool IsOdd(int i)
 {
 return ((i & 1) == 1);
 }
}

Based on the code in the FilterArrayOfInts method, this method will get called for every int in

the array that gets passed in. This filter will return true only if the int passed in is odd. Listing 2-1 shows
an example using the FilterArrayOfInts method, followed by the results.

Listing 2-1. Calling the Common Library Filter Method

using System.Collections;

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int[] oddNums = Common.FilterArrayOfInts(nums, Application.IsOdd);

foreach (int i in oddNums)
 Console.WriteLine(i);

Here are the results:

1
3
5
7
9

Notice that to pass the delegate as the second parameter of FilterArrayOfInts, the application
developer just passes the name of the method. By simply creating another filter, he can filter differently.
He could have a filter for even numbers, prime numbers, or whatever criteria he wants. Delegates lend
themselves to highly reusable code.

Using Anonymous Methods
That’s all well and good, but it can get tedious writing all these filter methods and whatever other

delegate methods you may need. Many of these methods will get used in a single call only, and it’s a
bother to create named methods for them all. Since C# 2.0, developers have had the ability to create
delegate instances by providing inline-code as anonymous methods. Anonymous methods allow the
developer to specify the code right where the delegate would normally get passed. Instead of creating the

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

24

IsOdd method, he may specify the filtering code right where the delegate would normally be passed.
Listing 2-2 shows the same code from Listing 2-1 but uses an anonymous method instead.

Listing 2-2. Calling the Filter Method with an Anonymous Method

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int[] oddNums =
 Common.FilterArrayOfInts(nums, delegate(int i) { return ((i & 1) == 1); });

foreach (int i in oddNums)
 Console.WriteLine(i);

This is pretty cool. The application developer no longer has to declare a method anywhere. This is

great for filtering logic code that isn’t likely to get reused. As required, the output is the same as the
previous example:

1
3
5
7
9

Using anonymous methods does have one drawback. They’re kind of verbose and hard to read. If
only there was a more concise way to write the method |code.

Using Lambda Expressions
Lambda expressions are specified as a comma-delimited list of parameters followed by the lambda
operator, followed by an expression or statement block. If there is more than one input parameter,
enclose the input parameters in parentheses. In C#, the lambda operator is =>. Therefore, a lambda
expression in C# looks like this:

(param1, param2, …paramN) => expr

Or when needing more complexity, a statement block can be used:

(param1, param2, …paramN) =>
{
 statement1;
 statement2;
 …
 statementN;
 return(lambda_expression_return_type);
}

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

25

In this example, the data type returned at the end of the statement block must match the return type
specified by the delegate. Here is an example lambda expression:

x => x

This lambda expression could be read as “x goes to x,” or perhaps “input x returns x.” It means that

for input variable x, return x. This expression merely returns what is passed in. Since there is only a
single input parameter, x, it does not need to be enclosed in parentheses. It is important to know that it
is the delegate that is dictating what the type of x being input is and what type must be returned. For
example, if the delegate is defined as passing a string in but returning a bool, then x => x could not
be used because if x going in is a string, then x being returned would be a string as well, but the
delegate specified it must be bool. So with a delegate defined like that, the portion of the expression
to the right of the lambda operator (=>) must evaluate to or return a bool, such as this:

x => x.Length > 0

This lambda expression could be read as “x goes to x.Length > 0” or “input x returns x.Length >

0.” Since the right-hand portion of this expression does evaluate to a bool, the delegate had better
specify that the method returns a bool; otherwise, a compiler error will result.

The following lambda expression will attempt to return the length of the input argument. So, the
delegate had better specify a return type of int:

s => s.Length

If multiple parameters are passed into the lambda expression, separate them with commas, and

enclose them in parentheses like this:

(x, y) => x == y

Complex lambda expressions may even be specified with a statement block like this:

(x, y) =>
{
 if (x > y)
 return (x);
 else
 return (y);
}

What is important to remember is that the delegate is defining what the input types are and what

the return type must be. So, make sure your lambda expression matches the delegate definition.

■ CCaution Make sure your lambda expressions are written to accept the input types specified by the delegate

definition and return the type the delegate defines to be returned.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

26

To refresh your memory, here is the delegate declaration that the common code developer defined:

delegate bool IntFilter(int i);

The application developer’s lambda expression must support an int passed in and a bool being

returned. This can be inferred from the method he is calling and the purpose of the filter method, but it
is important to remember the delegate is dictating this.

So, the previous example shown using a lambda expression this time would look like Listing 2-3.

Listing 2-3. Calling the Filter Method with a Lambda Expression

int[] nums = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int[] oddNums = Common.FilterArrayOfInts(nums, i => ((i & 1) == 1));

foreach (int i in oddNums)
 Console.WriteLine(i);

Wow, that’s concise code. We know it may look a little funny because it is so new, but once you get

used to it, it sure is readable and maintainable. As is required, the results are the same as the previous
examples:

1
3
5
7
9

For a recap, here are the significant lines from the sample code for each approach:

int[] oddNums = // using named method
 Common.FilterArrayOfInts(nums, Application.IsOdd);

int[] oddNums = // using anonymous method
 Common.FilterArrayOfInts(nums, delegate(int i){return((i & 1) == 1);});

int[] oddNums = // using lambda expression
 Common.FilterArrayOfInts(nums, i => ((i & 1) == 1));

We know that first line is actually shorter, but don’t forget that there is a named method declared

somewhere else defining what the method does. Of course, if that filtering logic is going to be reused in
several places or perhaps if the algorithm is complex and should be trusted only to a specialized
developer, it may make more sense to create a named method to be consumed by other developers.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

27

■ TTip Complex or reused algorithms may be better served by named methods so they can be reused by any

developer without that developer necessarily understanding the algorithm.

Whether named methods, anonymous methods, or lambda expressions are used is up to the
developer. Use whatever makes the most sense for the situation at hand.

You will often take advantage of lambda expressions by passing them as arguments to your LINQ
query operator calls. Since every LINQ query is likely to have unique or scarcely reused operator lambda
expressions, this provides the flexibility of specifying your operator logic without having to create named
methods for virtually every query.

Expression Trees
An expression tree is an efficient data representation, in tree form, of a query operator’s lambda
expression. These expression tree data representations can be evaluated, all simultaneously, so that a
single query can be built and executed against a data source, such as a database.

In the majority of the examples we have discussed so far, the query’s operators have been
performed in a linear fashion. Let’s examine the following code:

int[] nums = new int[] { 6, 2, 7, 1, 9, 3 };
IEnumerable<int> numsLessThanFour = nums
 .Where(i => i < 4)
 .OrderBy(i => i);

This query contains two operators, Where and OrderBy, that are expecting delegates as their

arguments. When this code is compiled, .NET intermediate language (IL) code is emitted that is identical
to an anonymous method for each of the query operator’s lambda expressions.

When this query is executed, the Where operator is called first, followed by the OrderBy operator.
This linear execution of the operators seems reasonable for this example, but you should consider a

query against a very large data source, such as a database. Would it make sense for a SQL query to first
call the database with the Where statement only to turn around and order it in a subsequent call? Of
course, this just isn’t feasible for database queries, as well as potentially other types of queries. This is
where expression trees become necessary. Since an expression tree allows the simultaneous evaluation
and execution of all operators in a query, a single query can be made instead of a separate query for each
operator.

So, there now are two different things the compiler can generate for an operator’s lambda
expression: IL code or an expression tree. What determines whether an operator’s lambda expression
gets compiled into IL code or an expression tree? The operator’s prototype will define which of these
actions the compiler will take. If the operator is declared to accept a delegate, IL code will be emitted. If
the operator is declared to accept an expression of a delegate, an expression tree is emitted.

As an example, let’s look at two different implementations of the Where operator. The first is the
Standard Query Operator that exists in the LINQ to Objects API, which is defined in the
System.Linq.Enumerable class:

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

28

The second Where operator implementation exists in the LINQ to SQL API and is in the
System.Linq.Queryable class:

public static IQueryable<T> Where<T>(
 this IQueryable<T> source,
 System.Linq.Expressions.Expression<Func<int, bool>> predicate);

As you can see, the first Where operator is declared to accept a delegate, as specified by the Func

delegate, and the compiler will generate IL code for this operator’s lambda expression. We will cover the
Func delegate in Chapter 3. For now just be aware that it is defining the signature of the delegate
passed as the predicate argument. The second Where operator is declared to accept an expression tree
(Expression), so the compiler will generate an expression tree data representation of the lambda
expression.

The operators that accept an IEnumerable<T> sequence as their first argument are declared to
accept a delegate for their lambda expressions. The operators that accept an IQueryable<T> sequence
as their first argument are declared to accept an expression tree.

■ NNote Extension methods on IEnumerable<T> sequences have IL code emitted by the compiler. Extension

methods on IQueryable<T> sequences have expression trees emitted by the compiler.

Merely being a consumer of LINQ does not require the developer to be very cognizant of expression
trees. It is the vendor’s developer who adds LINQ capability to a data storage product who needs to fully
understand expression trees. Because of this, we don’t cover them in any detail in this book.

Keyword var, Object Initialization, and Anonymous Types
Be forewarned: it is nearly impossible to discuss the var keyword and implicit type inference without
demonstrating object initialization or anonymous types. Likewise, it is nearly impossible to discuss
object initialization or anonymous types without discussing the var keyword. All three of these C#
language enhancements are tightly coupled.

Before describing each of these three language features in detail—because each will describe itself
in terms of the other—allow us to introduce all three simultaneously. Let’s examine the following
statement:

var1 mySpouse = new {2 FirstName = "Vickey"3, LastName = "Rattz"3 };

In this example, we declare a variable named mySpouse using the var keyword. It is assigned the

value of an anonymous type that is initialized using the new object initialization features. That one line
of code is taking advantage of the var keyword, anonymous types, and object initialization.

1You can detect the line of code is using the var keyword because it is explicitly stated. 2You are able
to detect there is an anonymous type because we use the new operator without specifying a named class.
3And you can see the anonymous object is being explicitly initialized using the new object initialization
feature.

In a nutshell, the var keyword allows the data type of a local variable to be inferred based on the
data type with which it has been initialized. Anonymous types allow new class data types to be created at

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

29

compile time. True to the word anonymous, these new data types have no name. You can’t very well
create an anonymous data type if you don’t know what member variables it contains, and you can’t
know what members it contains unless you know what types those members are. Lastly, you won’t know
what data type those new members are unless they are initialized. The object initialization feature
handles all that.

From that line of code, the compiler will create a new anonymous class type containing two public
string members; the first is named FirstName, and the second is named LastName.

The Implicitly Typed Local Variable Keyword var
With anonymous types in C#, a new problem becomes apparent. If a variable is being instantiated that is
an unnamed type, as in an anonymous type, what type of variable would you assign it to? Consider the
following code as an example:

// This code will not compile.

??? unnamedTypeVar = new {firstArg = 1, secondArg = "Joe" };

What variable type would you declare unnamedTypeVar to be? This is a problem. The folks at

Microsoft chose to remedy this by creating a keyword, var. This keyword informs the compiler that it
should implicitly infer the variable type from the variable’s initializer. This means that a variable
declared with the var keyword must have an initializer.

If you leave off an initializer, you will get a compiler error. Listing 2-4 shows some code that declares
a variable with the keyword var but fails to initialize it.

Listing 2-4. An Invalid Variable Declaration Using the var Keyword

var name;

And here is the compiler error it produces:

Implicitly-typed local variables must be initialized

Because these variables are statically type checked at compile time, an initializer is required so the
compiler can implicitly infer the type from it. Attempting to assign a value of a different data type
elsewhere in the code will result in a compiler error. For example, let’s examine the code in Listing 2-5.

Listing 2-5. An Invalid Assignment to a Variable Declared Using the var Keyword

var name = "Joe"; // So far so good.
name = 1; // Uh oh.
Console.WriteLine(name);

This code is going to fail to compile because the name variable is going to be implicitly inferred to be

of type string; yet we attempt to assign an integer value of 1 to the variable. Here is the compiler error
this code generates:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

30

Cannot implicitly convert type 'int' to 'string'

As you can see, the compiler is enforcing the variable’s type. Back to that original code example of
an anonymous type assignment, using the var keyword, my code with an additional line to display the
variable would look like Listing 2-6.

Listing 2-6. An Anonymous Type Assigned to a Variable Declared with the var Keyword

var unnamedTypeVar = new {firstArg = 1, secondArg = "Joe" };
Console.WriteLine(unnamedTypeVar.firstArg + ". " + unnamedTypeVar.secondArg);

Here are the results of this code:

1. Joe

As you can see, using the var keyword, you get static type checking plus the flexibility to support
anonymous types. This will become very important when we discuss projection type operators in the
remainder of this book.

In these examples so far, usage of the var keyword has been mandatory because there is no
alternative. If you are assigning an object of an anonymous class type to a variable, you have no choice
but to assign it to a variable declared with the var keyword. However, it is possible to use var any time
you declare a variable, as long as it is getting initialized properly. We recommend refraining from that
indulgence, though, for the sake of maintainability. We feel like developers should always know the type
of data they are working with, and, although the actual data type may be known to you now, will it be
when you revisit this code in six months? What about when another developer is responsible once you
leave?

■ TTip For the sake of maintainable code, refrain from using the var keyword just because it is convenient. Use it

when necessary, such as when assigning an object of anonymous type to a variable.

Object and Collection Initialization Expressions
Because of the need for the dynamic data types that anonymous types allow, there needed to be a
change in the way objects and collections could be initialized. Since expressions are provided in a
lambda expression or an expression tree, object and collection initialization was simplified for
initialization.

Object Initialization

Object initialization allows you to specify the initialization values for publicly accessible fields and
properties of a class during instantiation. As an example, consider this class:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

31

public class Address
{
 public string address;
 public string city;
 public string state;
 public string postalCode;
}

Prior to the object initialization feature added to C#, without a specialized constructor you would

have to initialize an object of type Address, as shown in Listing 2-7.

Listing 2-7. Instantiating and Initializing the Class the Old Way

Address address = new Address();
address.address = "105 Elm Street";
address.city = "Atlanta";
address.state = "GA";
address.postalCode = "30339";

This will become very cumbersome in a lambda expression. Imagine you have queried the values

from a data source and are projecting specific members into an Address object with the Select
operator:

// This code will not compile.
IEnumerable<Address> addresses = somedatasource
 .Where(a => a.State = "GA")
 .Select(a => new Address(???)???);

You just won’t have a convenient way to get the members initialized in the newly constructed

Address object. Have no fear: object initialization to the rescue. Now you may be saying that you could
create a constructor that would allow you to pass all those initialization values in when the object is
instantiated. Yes, you could, some of the time. But what a hassle that would be, wouldn’t it? And how are
you going to do that with an anonymous type? Wouldn’t it be much easier to just instantiate the object
as shown in Listing 2-8?

Listing 2-8. Instantiating and Initializing the Class the New Fancy-Pants Way

Address address = new Address {
 address = "105 Elm Street",
 city = "Atlanta",
 state = "GA",
 postalCode = "30339"
 };

You can get away with that in a lambda expression. Also, remember these object initialization

capabilities can be used anywhere, not just with LINQ queries.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

32

When using object initialization, the compiler instantiates the object using the class’s parameterless
constructor, and then it initializes the named members with the specified values. Any members that are
not specified will have the default value for their data type.

Collection Initialization

As if the object initialization enhancements were not enough, someone at Microsoft must have said,
“What about collections?” Collection initialization allows you to specify the initialization values for a
collection, just like you would for an object. As an example of collection initialization, consider the code
in Listing 2-9.

Listing 2-9. An Example of Collection Initialization

using System.Collections.Generic;

List<string> presidents = new List<string> { "Adams", "Arthur", "Buchanan" };
foreach(string president in presidents)
{
 Console.WriteLine(president);
}

When running the example by pressing Ctrl+F5, you get the following results:

Adams
Arthur
Buchanan

In addition to using collection initialization with LINQ, it can be very handy for creating initialized
collections in code where LINQ queries are not even present.

Anonymous Types
Creating a language-level API for generic data query is made more difficult by the C# language’s lack of
ability to dynamically create new data types at compile time. If we want data queries to retrieve first-
class language-level elements, the language must have the ability to create first-class language-level data
elements, which for C# are classes. So, the C# language specification now includes the ability to
dynamically create new unnamed classes and objects from those classes. This type of class is known as
an anonymous type.

An anonymous type has no name and is generated by the compiler based on the initialization of the
object being instantiated. Since the class has no type name, any variable assigned to an object of an
anonymous type must have some way to declare it. This is the purpose of the C# var keyword.

The anonymous type is invaluable when projecting new data types using the Select or SelectMany
operators. Without anonymous types, predefined named classes would always have to exist for the
purpose of projecting data into the predefined named classes when calling the Select or SelectMany
operators. It would be very inconvenient to have to create named classes for every query.

In the “Object Initialization” section of this chapter, we discussed the following object instantiation
and initialization code:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

33

Address address = new Address {
 address = "105 Elm Street",
 city = "Atlanta",
 state = "GA",
 postalCode = "30339"
 };

If instead of using the named Address class we want to use an anonymous type, we would just omit

the class name. However, you can’t store the newly instantiated object in a variable of Address type
because it is no longer a variable of type Address. It now has a generated type name known only to the
compiler. So, we have to change the data type of the address variable too. This again is what the var
keyword is for, as demonstrated by Listing 2-10.

Listing 2-10. Instantiating and Initializing an Anonymous Type Using Object Initialization

var address = new {
 address = "105 Elm Street",
 city = "Atlanta",
 state = "GA",
 postalCode = "30339"
 };

Console.WriteLine("address = {0} : city = {1} : state = {2} : zip = {3}",
 address.address, address.city, address.state, address.postalCode);

Console.WriteLine("{0}", address.GetType().ToString());

We added that last call to the Console.WriteLine method just so you can see the internal

compiler-generated name for the anonymous class. Here are the results:

address = 105 Elm Street : city = Atlanta : state = GA : zip = 30339
<>f__AnonymousType5`4[System.String,System.String,System.String,System.String]

That anonymous class type certainly looks compiler-generated to us. Of course, your compiler-
generated anonymous class name could be different.

Extension Methods
An extension method is a static method of a static class that you can call as though it were an instance
method of a different class. For example, you could create an extension method named ToDouble that is
a static method in a static class you create named StringConversions, but that is called as though it
were a method of an object of type string.

Before we explain extension methods in detail, let’s first review the problem that led to their
creation by discussing static (class) versus instance (object) methods. Instance methods can be called
only on instances of a class, otherwise known as objects. You cannot call an instance method on the
class itself. Likewise, static methods must be called on the class, as opposed to an instance of a class.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

34

Instance (Object) vs. Static (Class) Methods Recap
The string class ToUpper method is an example of an instance-level method. You cannot call ToUpper
on the string class itself; you must call it on a string object.

In the code in Listing 2-11, we demonstrate this by calling the ToUpper method on the object named
name.

Listing 2-11. Calling an Instance Method on an Object

// This code will compile.
string name = "Joe";
Console.WriteLine(name.ToUpper());

The previous code compiles and, when run, produces the following output:

JOE

However, if we try to call the ToUpper method on the string class itself, we will get a compiler error
because the ToUpper method is an instance-level method, and we are attempting to call it on the class,
rather than the object. Listing 2-12 shows an example of an attempt to do this and the compiler error
generated by it.

Listing 2-12. Trying to Call an Instance Method on a Class

// This code will not even compile.
string.ToUpper();

Just trying to compile this code produces the following compiler error:

An object reference is required for the nonstatic field, method, or property
'string.ToUpper()'

This example seems a little hokey, though, since it couldn’t possibly work because we never gave it
any string value to convert to uppercase. Any attempt to do so, though, would result in trying to call
some variation of the ToUpper method that does not exist because there is no prototype for the ToUpper
method whose signature includes a string.

Contrast the ToUpper method with the string class Format method. This method is defined to be
static. This requires the Format method to be called on the string class itself, rather than on an object
of type string. First we will try to call it on an object with the code in Listing 2-13.

Listing 2-13. Trying to Call a Class Method on an Object

string firstName = "Joe";
string lastName = "Rattz";

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

35

string name = firstName.Format("{0} {1}", firstName, lastName);
Console.WriteLine(name);

This code produces the following compiler error:

Member 'string.Format(string, object, object)' cannot be accessed with an instance
reference; qualify it with a type name instead

However, if instead we call the Format method on the string class itself, it compiles and works as
desired, as demonstrated in Listing 2-14.

Listing 2-14. Calling a Class Method on a Class

string firstName = "Joe";
string lastName = "Rattz";
string name = string.Format("{0} {1}", firstName, lastName);
Console.WriteLine(name);

The code produces the following results:

Joe Rattz

It is sometimes obvious from parts of the signature other than the static keyword itself that the
method must be an instance-level method. For example, consider the ToUpper method. It doesn’t have
any arguments other than one overloaded version taking a CultureInfo object reference. So if it isn’t
relying on a string instance’s internal data, what string would it convert to uppercase?

The Problem Solved by Extension Methods
So, what is the problem, you ask? For this discussion, assume you are the developer responsible for
designing a new way to query multitudes of objects. Let’s say you decide to create a Where method to
help with the where clauses. How would you do it?

Would you make the Where operator an instance method? If so, to what class would you add that
Where method? You want the Where method to work for querying any collection of objects. There just
isn’t a logical class to add the Where method to. Taking this approach, you would have to modify a zillion
different classes if you want universal data querying capability.

So, now that you realize the method must be static, what is the problem? Think of your typical (SQL)
query and how many where clauses you often have. Also consider the joins, grouping, and ordering.

Let’s imagine that you have created the concept of a new data type, a sequence of generic data
objects that we will call an Enumerable. It makes sense that the Where method would need to operate on
an Enumerable (of data) and return another filtered Enumerable. In addition, the Where method will
need to accept an argument allowing the developer to specify the exact logic used to filter data records
from or into the Enumerable. This argument, which we will call the predicate, could be specified as a
named method, an anonymous method, or a lambda expression.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

36

■ CCaution The following three code examples in this section are hypothetical and will not compile.

Since the Where method requires an input Enumerable to filter and the method is static, that input
Enumerable must be specified as an argument to the Where method. It would appear something like the
following:

static Enumerable Enumerable.Where(Enumerable input, LambdaExpression predicate) {
…
}

Ignoring for the moment the semantics of a lambda expression, calling the Where method would
look something like the following:

Enumerable enumerable = {"one", "two", "three"};
Enumerable filteredEnumerable = Enumerable.Where(enumerable, lambdaExpression);

That doesn’t look too ornery. But what happens when we need several where clauses? Since the

Enumerable that the Where method is operating on must be an argument to the method, the result is
that chaining methods together requires embedding them inside each other. Three where clauses
suddenly change the code to the following:

Enumerable enumerable = {"one", "two", "three"};
Enumerable finalEnumerable =
 Enumerable.Where(Enumerable.Where(Enumerable.Where(enumerable, lX1), lX2), lX3);

You have to read the statement from the inside out. That gets hard to read in a hurry. Can you

imagine what a complex query would look like? If only there was a better way.

The Solution
A nice solution would be if you could call the static Where method on each Enumerable object, rather
than on the class. Then it would no longer be necessary to pass each Enumerable into the Where method
because the Enumerable object would have access to its own internal Enumerable. That would change
the syntax of the query proposed previously to something more like this:

Enumerable enumerable = {"one", "two", "three"};
Enumerable finalEnumerable = enumerable.Where(lX1).Where(lX2).Where(lX3);

■ CCaution The previous code and the following code example are hypothetical and will not compile.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

37

This could even be rewritten as the following:

Enumerable enumerable = {"one", "two", "three"};
Enumerable finalEnumerable = enumerable
 .Where(lX1)
 .Where(lX2)
 .Where(lX3);

Wow, that’s much easier to read. You can now read the statement from left to right, top to bottom.

As you can see, this syntax is very easy to follow once you understand what it is doing. Because of this,
you will often see LINQ queries written in this format in much of the LINQ documentation and in this
book.

Ultimately what you need is the ability to have a static method that you can call on a class
instance. This is exactly what extension methods are and what they allow. They were added to C# to
provide a syntactically elegant way to call a static method without having to pass the method’s first
argument. This allows the extension method to be called as though it were a method of the first
argument, which makes chaining extension method calls far more readable than if the first argument
was passed. Extension methods assist LINQ by allowing the Standard Query Operators to be called on
the IEnumerable<T> interface.

■ NNote Extension methods are methods that, although static, can be called on an instance (object) of a class

rather than on the class itself.

Extension Method Declarations and Invocations
Specifying a method’s first argument with the this keyword modifier will make that method an
extension method.

The extension method will appear as an instance method of any object with the same type as the
extension method’s first argument’s data type. For example, if the extension method’s first argument is
of type string, the extension method will appear as a string instance method and can be called on any
string object.

Also keep in mind that extension methods can be declared only in static classes.
Here are two examples of an extension method:

namespace Netsplore.Utilities
{
 public static class StringConversions
 {
 public static double ToDouble(this string s) {
 return Double.Parse(s);
 }

 public static bool ToBool(this string s) {
 return Boolean.Parse(s);
 }

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

38

 }
}

Notice that both the class and every method it contains are static. Now you can take advantage of

those extension methods by calling the static methods on the object instances, as shown in Listing 2-
15. Because the ToDouble method is static and its first argument specifies the this keyword, ToDouble
is an extension method.

Listing 2-15. Calling an Extension Method

using Netsplore.Utilities;

double pi = "3.1415926535".ToDouble();
Console.WriteLine(pi);

This produces the following results:

3.1415926535

It is important that you specify the using directive for the Netsplore.Utilities namespace;
otherwise, the compiler will not find the extension methods, and you will get compiler errors such as the
following:

'string' does not contain a definition for 'ToDouble' and no extension method
'ToDouble' accepting a first argument of type 'string' could be found (are you
missing a using directive or an assembly reference?)

As mentioned previously, attempting to declare an extension method inside a nonstatic class is not
allowed. If you do so, you will see a compiler error like the following:

Extension methods must be defined in a non-generic static class

Extension Method Precedence
Normal object instance methods take precedence over extension methods when their signature matches
the calling signature.

Extension methods seem like a really useful concept, especially when you want to be able to extend
a class you cannot, such as a sealed class or one for which you do not have source code. The previous
extension method examples all effectively add methods to the string class. Without extension methods,
you couldn’t do that because the string class is s is sealed.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

39

Partial Methods
Included since C# version 3.0, partial methods add a lightweight event-handling mechanism to C#.
Forget the conclusions you are more than likely drawing about partial methods based on their name.
About the only thing partial methods have in common with partial classes is that a partial method can
exist only in a partial class. In fact, that is rule 1 for partial methods.

Before we get to all the rules concerning partial methods, we’ll tell you what they are. Partial
methods are methods where the prototype or definition of the method is specified in the declaration of a
partial class, but an implementation for the method is not provided in that same declaration of the
partial class. In fact, there may not be any implementation for the method in any declaration of that
same partial class. And if there is no implementation of the method in any other declaration for the same
partial class, no IL code is emitted by the compiler for the declaration of the method, the call to the
method, or the evaluation of the arguments passed to the method. It’s as if the method never existed.

Some people do not like the term partial methods because it is somewhat of a misnomer due to
their behavior when compared to that of a partial class. Perhaps the method modifier should have been
ghost instead of partial.

A Partial Method Example
Let’s take a look at a partial class containing the definition of a partial method in the following class file
named MyWidget.cs:

The MyWi dget Class File

public partial class MyWidget
{
 partial void MyWidgetStart(int count);
 partial void MyWidgetEnd(int count);

 public MyWidget()
 {
 int count = 0;
 MyWidgetStart(++count);
 Console.WriteLine("In the constructor of MyWidget.");
 MyWidgetEnd(++count);
 Console.WriteLine("count = " + count);
 }
}

In the MyWidget class declaration, we have a partial class named MyWidget. The first two lines of

code are partial method definitions. We have defined partial methods named MyWidgetStart and
MyWidgetEnd that each accept an int input parameter and return void. It is another rule that partial
methods must return void.

The next piece of code in the MyWidget class is the constructor. As you can see, we declare an int
named count and initialize it to 0. We then call the MyWidgetStart method, write a message to the
console, call the MyWidgetEnd method, and finally output the value of count to the console. Notice we
are incrementing the value of count each time it is passed into a partial method. We are doing this to
prove that if no implementation of a partial method exists, even its arguments are not evaluated.

In Listing 2-16 we instantiate a MyWidget object.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

40

Listing 2-16. Instantiating a MyWidget

MyWidget myWidget = new MyWidget();

Let’s take a look at the output of this example by pressing Ctrl+F5:

In the constructor of MyWidget.
count = 0

As you can see, even after the MyWidget constructor has incremented its count variable twice, when
it displays the value of count at the end of the constructor, it is still 0. This is because the code for the
evaluation of the arguments to the unimplemented partial methods is never emitted by the compiler. No
IL code was emitted for either of those two partial method calls.

Now let’s add an implementation for the two partial methods:

Another Declaration f or MyWi dget but Contai ning Implement ati ons f or the Parti al

Meth ods

public partial class MyWidget
{
 partial void MyWidgetStart(int count)
 {
 Console.WriteLine("In MyWidgetStart(count is {0})", count);
 }

 partial void MyWidgetEnd(int count)
 {
 Console.WriteLine("In MyWidgetEnd(count is {0})", count);
 }
}

Now that you have added this declaration, run Listing 2-16 again and look at the results:

In MyWidgetStart(count is 1)
In the constructor of MyWidget.
In MyWidgetEnd(count is 2)
count = 2

As you can see, not only are the partial method implementations getting called, but the arguments
passed are evaluated as well. You can see this because of the value of the count variable at the end of the
output.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

41

What Is the Point of Partial Methods?
So, you may be wondering, what is the point? Others have said, “This is similar to using inheritance and
virtual methods. Why corrupt the language with something similar?” To them we say, “Take a chill-pill,
Jill.” Partial methods are more efficient if you plan on allowing many potentially unimplemented hooks
in the code. They allow code to be written with the intention of someone else extending it via the partial
class paradigm but without the degradation in performance if they choose not to do so.

The case in point for which partial methods were probably added is the code generated for LINQ to
SQL entity classes by the entity class generator tools. To make the generated entity classes more usable,
partial methods have been added to them. For example, each mapped property of a generated entity
class has a partial method that is called before the property is changed and another partial method that
is called after the property is changed. This allows you to add another module that declares the same
entity class, implement these partial methods, and be notified every time a property is about to be
changed and after it is changed. How cool is that? And if you don’t do it, the code is no bigger and no
slower. Who wouldn’t want that?

The Rules
It has been all fun and games up to here, but unfortunately, there are some rules that apply to partial
methods:

• Partial methods must be defined and implemented only in partial classes.

• Partial methods must specify the partial modifier.

• Partial methods are private but must not specify the private modifier, or a compiler error

will result.

• Partial methods must return void.

• Partial methods may be unimplemented.

• Partial methods may be static.

• Partial methods may have arguments.

These rules are not too bad. For what we gain in terms of flexibility in the generated entity classes
plus what we can do with them ourselves, we think C# has gained a nice feature.

Query Expressions
One of the conveniences that the C# language provides is the foreach statement. When you use
foreach, the compiler translates it into a loop with calls to methods such as GetEnumerator and
MoveNext. The simplicity the foreach statement provides for enumerating through arrays and
collections has made it very popular and often used.

One of the features of LINQ that seems to attract developers is the SQL-like syntax available for
LINQ queries. The first few LINQ examples in the first chapter of this book use this syntax. This syntax is
provided via the C# language enhancement known as query expressions. Query expressions allow LINQ
queries to be expressed in nearly SQL form, with just a few minor deviations.

To perform a LINQ query, it is not required to use query expressions. The alternative is to use
standard C# dot notation, calling methods on objects and classes. In many cases, we find using the

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

42

standard dot notation favorable for instructional purposes because we think it is more demonstrative of
what is actually happening and when. There is no compiler translating what we write into the standard
dot notation equivalent. Therefore, many examples in this book do not use query expression syntax but
instead opt for the standard dot notation syntax. However, there is no disputing the allure of query
expression syntax. The familiarity it provides in formulating your first queries can be very enticing
indeed.

To get an idea of what the two different syntaxes look like, Listing 2-17 shows a query using the
standard dot notation syntax.

Listing 2-17. A Query Using the Standard Dot Notation Syntax

string[] names = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", “Obama”, "Pierce", "Polk", "Reagan", "Roosevelt", "Taft",
 "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> sequence = names
 .Where(n => n.Length < 6)
 .Select(n => n);

foreach (string name in sequence)
{
 Console.WriteLine("{0}", name);
}

Listing 2-18 is the equivalent query using the query expression syntax.

Listing 2-18. The Equivalent Query Using the Query Expression Syntax

string[] names = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", “Obama”, "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> sequence = from n in names
 where n.Length < 6
 select n;

foreach (string name in sequence)
{
 Console.WriteLine("{0}", name);
}

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

43

The first thing you may notice about the query expression example is that unlike SQL, the from

statement precedes the select statement. One of the compelling reasons for this change is to narrow
the scope for IntelliSense. Without this inversion of the statements, if in the Visual Studio text editor you
typed select followed by a space, IntelliSense would have no idea what variables to display in its drop-
down list. The scope of possible variables at this point is not restricted in any way. By specifying where
the data is coming from first, IntelliSense has the scope of what variables to offer you for selection. Both
of these examples provide the same results:

Adams
Bush
Ford
Grant
Hayes
Nixon
Obama
Polk
Taft
Tyler

It is important to note that the query expression syntax translates only the most common query
operators: Where, Select, SelectMany, Join, GroupJoin, GroupBy, OrderBy, ThenBy,
OrderByDescending, and ThenByDescending.

Query Expression Grammar
Your query expressions must adhere to the following rules:

1. A query expression must begin with a from clause.

2. The remainder of the query expression may then contain zero or more from, let, or where
clauses. A from clause is a generator that declares one or more range variables enumerating
over a sequence or a join of multiple sequences. A let clause introduces a range variable and
assigns a value to it. A where clause filters elements from an input sequence or join of multiple
input sequences into the output sequence.

3. The remainder of the query expression may then be followed by an orderby clause that
contains one or more ordering fields with optional ordering direction. Direction is either
ascending or descending.

4. The remainder of the query expression must then be followed by a select or group clause.

5. The remainder of the query expression may then be followed by an optional continuation
clause. A continuation clause is either the into clause, zero or more join clauses, or another
repeating sequence of these numbered elements beginning with the clauses in #2. An into
clause directs the query results into an imaginary output sequence, which functions as a from
clause for a subsequent query expression beginning with the clauses in #2.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

44

Query Expression Translation
Now assuming you have created a syntactically correct query expression, the next issue becomes how
the compiler translates the query expression into C# code. It must translate your query expression into
the standard C# dot notation that we discuss in the query expression section. But how does it do this?

To translate a query expression, the compiler is looking for code patterns in the query expression
that need to be translated. The compiler will perform several translation steps in a specific order to
translate the query expression into standard C# dot notation. Each translation step is looking for one or
more related code patterns. The compiler must repeatedly translate all occurrences of the code patterns
for that translation step in the query expression before moving on to the next translation step. Likewise,
each step operates on the assumption that the query has had the code patterns for all previous
translation steps translated.

Transparent Identifiers

Some translations insert enumeration variables with transparent identifiers. In the translation step
descriptions in the next section, a transparent identifier is identified with an asterisk (*). This should not
be confused with the SQL-selected field wildcard character, *. When translating query expressions,
sometimes additional enumerations are generated by the compiler, and transparent identifiers are used
to enumerate through them. The transparent identifiers exist only during the translation process, and
once the query expression is fully translated, no transparent identifiers will remain in the query.

Translation Steps

Next we discuss the translation steps. In doing so, we use the variable letters shown in Table 2-1 to
represent specific portions of the query.

Table 2-1. Translation Step Variables

Variable Description Example

c A compiler-generated temporary variable N/A

e A range variable from e in s

f Selected field element or new anonymous
type

from e in s select f

g A grouped element from e in s group g by k

i An imaginary into sequence from e in s select f into i

k Grouped or joined key element from e in s group g by k

l A variable introduced by let from e in s let l = v

o An ordering element from e in s orderby o

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

45

s Input sequence from e in s

v A value assigned to a let variable from e in s let l = v

w A where clause from e in s where w

Allow us to provide a word of warning. The soon to be described translation steps are quite
complicated. Do not allow this to discourage you. You no more need to fully understand the translation
steps to write LINQ queries than you need to know how the compiler translates the foreach statement
to use it. They are here to provide additional translation information should you need it, which should
be rarely, or never.

The translation steps are documented as code pattern ➤ translation. Oddly, even though we
present the translation steps in the order the compiler performs them, we think the translation process
is simpler to understand if you learn them in the reverse order. The reason is that when you look at the
first translation step, it handles only the first code pattern translation, and you are left with a lot of
untranslated code patterns that you have yet to be introduced to. To our minds, this leaves a lot of
unaccounted for gobbledygook. Since each translation step requires the previous translation step’s code
patterns to already be translated, by the time you get to the final translation step, there is no
gobbledygook left. We think this makes the final translation step easier to understand than the first. And
in our opinion, traversing backward through the translation steps is the easiest way to understand what
is going on.

That said, here are the translation steps presented in the order in which the compiler performs
them.

Select and Group Clauses with an into Continuation Clause

If your query expression contains an into continuation clause, the following translation is made:

Here is an example:

Explicit Enumeration Variable Types

If your query expression contains a from clause that explicitly specifies an enumeration variable type,
the following translation will be made:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

46

Here is an example:

If your query expression contains a join clause that explicitly specifies an enumeration variable

type, the following translation will be made:

Here is an example:

■ TTip Explicitly typing enumeration variables is necessary when the enumerated data collection is one of the C#

legacy data collections, such as ArrayList. The casting that is done when explicitly typing the enumeration
variable converts the legacy collection into a sequence implementing IEnumerable<T> so that other query

operators can be performed.

Join Clauses

If the query expression contains a from clause followed by a join clause without an into continuation
clause followed by a select clause, the following translation takes place (t is a temporary compiler-
generated variable):

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

47

Here is an example:

If the query expression contains a from clause followed by a join clause with an into continuation

clause followed by a select clause, the following translation takes place (t is a temporary compiler-
generated variable):

Here is an example:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

48

If the query expression contains a from clause followed by a join clause without an into

continuation clause followed by something other than a select clause, the following translation takes
place (* is a transparent identifier):

Notice that you now have a code pattern that matches the first code pattern in this translation step.

Specifically, you have a query expression that contains a from clause followed by a join clause without
an into continuation clause followed by a select clause. So, the compiler will repeat this translation
step.

If the query expression contains a from clause followed by a join clause with an into continuation
clause followed by something other than a select clause, the following translation takes place (* is a
transparent identifier):

This time notice that there is now a code pattern that matches the second code pattern in this

translation step. Specifically, there is a query expression that contains a from clause followed by a join
clause with an into continuation clause followed by a select clause. So, the compiler will repeat this
translation step.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

49

Let and Where Clauses

If the query expression contains a from clause followed immediately by a let clause, the following
translation takes place (* is a transparent identifier):

Here is an example (t is a compiler-generated identifier that is invisible and inaccessible to any

code you write):

If the query expression contains a from clause followed immediately by a where clause, the

following translation takes place:

Here is an example:

Multiple Generator (From) Clauses

If the query expression contains two from clauses followed by a select clause, the following translation
takes place:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

50

Here is an example (t is a temporary compiler-generated variable):

If the query expression contains two from clauses followed by something other than a select
clause, the following translation takes place (* is a transparent identifier):

Here is an example (* is a transparent identifier):

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

51

Orderby Clauses

If the direction of the ordering is ascending, the following translations take place:

Here is an example:

If the direction of any of the orderings is descending, the translations will be to the

OrderByDescending or ThenByDescending operators. Here is the same example as the previous, except
this time the names are requested in descending order:

Select Clauses

In the query expression, if the selected element is the same identifier as the sequence enumerator
variable, meaning you are selecting the entire element that is stored in the sequence, the following
translation takes place:

Here is an example:

If the selected element is not the same identifier as the sequence enumerator variable, meaning you
are selecting something other than the entire element stored in the sequence such as a member of the
element or an anonymous type constructed of several members of the element, the following translation
takes place:

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

52

Here is an example:

Group Clauses

In the query expression, if the grouped element is the same identifier as the sequence enumerator,
meaning you are grouping the entire element stored in the sequence, the following translation takes
place:

Here is an example:

If the grouped element is not the same identifier as the sequence enumerator, meaning you are
grouping something other than the entire element stored in the sequence, the following translation
takes place:

Here is an example:

At this point, all translation steps are completed, and the query expression should be fully translated

to standard dot notation syntax.

Summary
As you can see, Microsoft’s C# team has added many enhancements to C#. All of the C# enhancements
discussed in this chapter have been made specifically for LINQ. But even without LINQ, there is a lot to
be gained from the new C# features.

The new object and collection initialization expressions are a godsend. Stubbing in static, sample, or
test data is much easier than before, significantly reducing the lines of code needed to create the data.
This feature, combined with the new var keyword and anonymous types, makes it much easier to create
data and data types on the fly.

Extension methods now make it possible to add functionality to objects, such as sealed classes or
perhaps classes for which you don’t even have the source code, which just wasn’t possible before.

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

53

Lambda expressions allow for concise specification of functionality. While not eliminating the need
for anonymous methods, they add to the arsenal of ways to specify simple functionality, and we like the
brevity of the syntax. Although you may initially be put off by them, we think with time and experience
you will grow to appreciate them, too.

Expression trees provide third-party vendors wanting to make their proprietary data stores support
LINQ with the ability to provide first-class performance.

Partial methods offer a very lightweight event-handling mechanism. Microsoft leverage this in its
LINQ to SQL entity class generation tools so that you can hook into the entity classes at key points in
time.

Finally, query expressions provide that warm fuzzy feeling when first seeing a LINQ query that
makes you want to get on board with LINQ. Nothing makes a developer analyzing a new technology feel
comfortable quicker than technology resembling a familiar and proven technology. By giving LINQ
queries the ability to resemble SQL queries, Microsoft has made LINQ compelling to learn.
Although all these language enhancements by themselves are nice features, together they form the
foundation for LINQ. Now that we have covered what LINQ is and what C# features and syntax it
requires, it’s time to get to the nitty-gritty. Please don’t let our technical jargon—nitty-gritty—intimidate
you. The next stop is learning about performing LINQ queries on in-memory data collections such as
arrays, ArrayLists, and all of the .NET generic collection classes. In Part 2 you will find a bevy of
functions to supplement your queries. This portion of LINQ is known as LINQ to Object

CHAPTER 2 ■ C# LANGUAGE ENHANCEMENTS FOR LINQ

22

P A R T 2

■ ■ ■

55

LINQ to Objects

C H A P T E R 3

■ ■ ■

57

LINQ to Objects Introduction

Listing 3-1. A Simple LINQ to Objects Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", “Obama”, "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string president = presidents.Where(p => p.StartsWith("Lin")).First();

Console.WriteLine(president);

■ NNote This code has been added to a Visual Studio 2010 console application.

Listing 3-1 shows what LINQ to Objects is all about—performing SQL-like queries on in-memory
data collections and arrays. We will run the example by pressing Ctrl+F5. Here are the results:

Lincoln

LINQ to Objects Overview
Part of what makes LINQ so cool and easy to use is the way it seamlessly integrates with the C# language.
Instead of having an entirely new cast of characters in the form of classes that must be used to get the

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

58

benefits of LINQ, you can use all of the same collections1 and arrays that you are accustomed to with
your existing classes. This means you can gain the advantages of LINQ queries with little or no
modification to existing code. The functionality of LINQ to Objects is accomplished with the
IEnumerable<T> interface, sequences, and the Standard Query Operators.

For example, if you have an array of integers and need it to be sorted, you can perform a LINQ query
to order the results, much as if it were a SQL query. Maybe you have an ArrayList of Customer objects
and need to find a specific Customer object. If so, LINQ to Objects is your answer.

We know there will be a tendency by many to use the LINQ to Objects chapters as a reference.
Although we have made significant effort to make them useful for this purpose, you will gain more by
reading them from beginning to end. Many of the concepts that apply to one operator apply to another
operator. Although we have tried to make each operator’s section independently stand on its own merit,
there is a context created when reading from beginning to end that will be missed when just reading
about a single operator or skipping around.

IEnumerable<T>, Sequences, and the Standard Query
Operators
IEnumerable<T>, pronounced “I enumerable of T,” is an interface that all the C# generic collection
classes implement, as do arrays. This interface permits the enumeration of a collection’s elements.

A sequence is a term for a collection implementing the IEnumerable<T> interface. If you have a
variable of type IEnumerable<T>, then you might say you have a sequence of Ts. For example, if you
have an IEnumerable of string, written as IEnumerable<string>, you could say you have a sequence
of strings.

■ NNote Any variable declared as IEnumerable<T> for type T is considered a sequence of type T.

Most of the Standard Query Operators are extension methods in the System.Linq.Enumerable
static class and are prototyped with an IEnumerable<T> as their first argument. Because they are
extension methods, it is preferable to call them on a variable of type IEnumerable<T> as the extension
method syntax permits instead of passing a variable of type IEnumerable<T> as the first argument.

The Standard Query Operator methods of the System.Linq.Enumerable class that are not
extension methods are static methods and must be called on the System.Linq.Enumerable class. The
combination of these Standard Query Operator methods gives you the ability to perform complex data
queries on an IEnumerable<T> sequence.

The legacy collections, those nongeneric collections existing prior to C# 2.0, support the
IEnumerable interface, not the IEnumerable<T> interface. This means you cannot directly call those
extension methods whose first argument is an IEnumerable<T> on a legacy collection. However, you
can still perform LINQ queries on legacy collections by calling the Cast or OfType Standard Query
Operator on the legacy collection to produce a sequence that implements IEnumerable<T>, thereby
allowing you access to the full arsenal of the Standard Query Operators.

1 A collection must implement IEnumerable<T> or IEnumerable to be queryable with the Standard Query

Operators.

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

59

■ NNote Use the Cast or OfType operators to perform LINQ queries on legacy, nongeneric C# collections.

To gain access to the Standard Query Operators, add a using System.Linq; directive to your code,
if one is not already present. You do not need to add an assembly reference because the code is
contained in the System.Core.dll assembly, which is automatically added to your project by Visual
Studio 2010.

Returning IEnumerable<T>, Yielding, and Deferred Queries
It is important to remember that, although many of the Standard Query Operators are prototyped to
return an IEnumerable<T> and we think of IEnumerable<T> as a sequence, the operators are not
actually returning the sequence at the time the operators are called. Instead, the operators return an
object that when enumerated will yield an element from the sequence. It is during enumeration of the
returned object that the query is actually performed and an element is yielded to the output sequence.
In this way, the query is deferred.

In case you are unaware, when we use the term yield, we are referring to the yield keyword that
was added to the C# language to make writing enumerators easier.

For example, examine the code in Listing 3-2.

Listing 3-2. A Trivial Sample Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};
IEnumerable<string> items = presidents.Where(p => p.StartsWith("A"));

foreach(string item in items)
 Console.WriteLine(item);

The query using the Where operator is not actually performed when the line containing the query is

executed. Instead, an object is returned. It is during the enumeration of the returned object that the
Where query is actually performed. This means it is possible that an error that occurs in the query itself
may not get detected until the time the enumeration takes place.

■ NNote Query errors may not be detected until the output sequence is enumerated.

The results of the previous query are the following:

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

60

Adams
Arthur

That query performed as expected. However, we’ll intentionally introduce an error. The following
code will attempt to index into the fifth character of each president’s name. When the enumeration
reaches an element whose length is less than five characters, an exception will occur. Remember,
though, that the exception will not happen until the output sequence is enumerated. Listing 3-3 shows
the sample code.

Listing 3-3. A Trivial Sample Query with an Intentionally Introduced Exception

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Pierce", "Polk", "Reagan", "Roosevelt", "Taft",
 "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.Where(s => Char.IsLower(s[4]));

Console.WriteLine("After the query.");

foreach (string item in items)
 Console.WriteLine(item);

This code compiles just fine, but when run, here are the results:

After the query.
Adams
Arthur
Buchanan

Unhandled Exception: System.IndexOutOfRangeException: Index was outside the bounds
of the array.
…

Notice the output of After the query. It isn’t until the fourth element, Bush, was enumerated that
the exception occurred. The lesson to be learned is that just because a query compiles and seems to have
no problem executing, don’t assume the query is bug-free.

Additionally, because these types of queries, those returning IEnumerable<T>, are deferred, you can
call the code to define the query once but use it multiple times by enumerating it multiple times. If you
do this, each time you enumerate the results, you will get different results if the data changes. Listing 3-4
shows an example of a deferred query where the query results are not cached and can change from one
enumeration to the next.

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

61

Listing 3-4. An Example Demonstrating the Query Results Changing Between Enumerations

// Create an array of ints.
int[] intArray = new int[] { 1,2,3 };

IEnumerable<int> ints = intArray.Select(i => i);

// Display the results.
foreach(int i in ints)
 Console.WriteLine(i);

// Change an element in the source data.
intArray[0] = 5;

Console.WriteLine("---------");

// Display the results again.
foreach(int i in ints)
 Console.WriteLine(i);

To make what is happening crystal clear, we will get more technical in our description. When we call

the Select operator, an object is returned that is stored in the variable named ints of a type that
implements IEnumerable<int>. At this point, the query has not actually taken place yet, but the query
is stored in the object named ints. Technically speaking, since the query has not been performed, a
sequence of integers doesn’t exist yet, but the object named ints knows how to obtain the sequence by
performing the query that was assigned to it, which in this case is the Select operator.

When we call the foreach statement on ints the first time, ints performs the query and obtains
the sequence one element at a time.

Next we change an element in the original array of integers. Then we call the foreach statement
again. This causes ints to perform the query again. Since we changed an element in the original array
and the query is being performed again because ints is being enumerated again, the changed element
is returned.

Technically speaking, the query we called returned an object that implemented IEnumerable<int>.
However, in most LINQ discussions in this book, as well as other discussions outside of this book, it
would be said that the query returned a sequence of integers. Logically speaking, this is true and
ultimately what we are after. But it is important for you to understand what is really happening.

Here are the results of this code:

1
2
3

5
2
3

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

62

Notice that even though we called the query only once, the results of the enumeration are different
for each of the enumerations. This is further evidence that the query is deferred. If it were not, the results
of both enumerations would be the same. This could be a benefit or detriment. If you do not want this to
happen, use one of the conversion operators that do not return an IEnumerable<T> so that the query is
not deferred, such as ToArray, ToList, ToDictionary, or ToLookup, to create a different data structure
with cached results that will not change if the data source changes.

Listing 3-5 is the same as the previous code example except instead of having the query return an
IEnumerable<int>, it will return a List<int> by calling the ToList operator.

Listing 3-5. Returning a List So the Query Is Executed Immediately and the Results Are Cached

// Create an array of ints.
int[] intArray = new int[] { 1, 2, 3 };

List<int> ints = intArray.Select(i => i).ToList();

// Display the results.
foreach(int i in ints)
 Console.WriteLine(i);

// Change an element in the source data.
intArray[0] = 5;

Console.WriteLine("---------");

// Display the results again.
foreach(int i in ints)
 Console.WriteLine(i);

Here are the results:

1
2
3

1
2
3

Notice the results do not change from one enumeration to the next. This is because the ToList
method is not deferred, and the query is actually performed at the time the query is called.

To return to a technical discussion of what is different between this example and Listing 3-4, while
the Select operator is still deferred in Listing 3-5, the ToList operator is not. When the ToList operator
is called in the query statement, it enumerates the object returned from the Select operator
immediately, making the entire query not deferred.

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

63

Func Delegates
Several of the Standard Query Operators are prototyped to take a Func delegate as an argument. This
prevents you from having to explicitly declare delegate types. Here are the Func delegate declarations:

public delegate TR Func<TR>();
public delegate TR Func<T0, TR>(T0 a0);
public delegate TR Func<T0, T1, TR>(T0 a0, T1 a1);
public delegate TR Func<T0, T1, T2, TR>(T0 a0, T1 a1, T2 a2);
public delegate TR Func<T0, T1, T2, T3, TR>(T0 a0, T1 a1, T2 a2, T3 a3);

In each declaration, TR refers to the data type returned. Notice that the return type argument, TR, is

at the end of the parameter type template for every overload of the Func delegate. The other type
parameters, T0, T1, T2, and T3, refer to the input parameters passed to the method. The multiple
declarations exist because some Standard Query Operators have delegate arguments that require more
parameters than others. By looking at the declarations, you can see that no Standard Query Operator has
a delegate argument that will require more than four input parameters.

Let’s take a look at one of the prototypes of the Where operator:

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

The predicate argument is specified as a Func<T, bool>. From this, you can see the predicate

method or lambda expression had better accept a single argument, the T parameter, and return a bool.
You know this because you know the return type is specified at the end of the parameter template list.

Of course, you can use the Func declaration, as shown in Listing 3-6.

Listing 3-6. An Example Using One of the Func Delegate Declarations

// Create an array of ints.
int[] ints = new int[] { 1,2,3,4,5,6 };

// Declare our delegate.
Func<int, bool> GreaterThanTwo = i => i > 2;

// Perform the query ... not really. Don't forget about deferred queries!!!
IEnumerable<int> intsGreaterThanTwo = ints.Where(GreaterThanTwo);

// Display the results.
foreach(int i in intsGreaterThanTwo)
 Console.WriteLine(i);

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

64

This code provides the following results:

3
4
5
6

The Standard Query Operators Alphabetical Cross-Reference
Table 3-1 shows the Standard Query Operators listed alphabetically. Since these operators will be
separated into chapters based upon whether they are deferred, this table will help you locate each
operator in the remaining LINQ to Objects chapters.

Table 3-1. Standard Query Operators Alphabetical Cross-Reference

Operator Purpose Deferred?

Aggregate Aggregate

All Quantifiers

Any Quantifiers

AsEnumerable Conversion ✓

Average Aggregate

Cast Conversion ✓

Concat Concatenation ✓

Contains Quantifiers

Count Aggregate

DefaultIfEmpty Element ✓

Distinct Set ✓

ElementAt Element

ElementAtOrDefault Element

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

65

Empty Generation ✓

Except Set ✓

First Element

FirstOrDefault Element

GroupBy Grouping ✓

GroupJoin Join ✓

Intersect Set ✓

Join Join ✓

Last Element

LastOrDefault Element

LongCount Aggregate

Max Aggregate

Min Aggregate

OfType Conversion ✓

OrderBy Ordering ✓

OrderByDescending Ordering ✓

Range Generation ✓

Repeat Generation ✓

Reverse Ordering ✓

Select Projection ✓

SelectMany Projection ✓

SequenceEqual Equality

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

66

Single Element

SingleOrDefault Element

Skip Partitioning ✓

SkipWhile Partitioning ✓

Sum Aggregate

Take Partitioning ✓

TakeWhile Partitioning ✓

ThenBy Ordering ✓

ThenByDescending Ordering ✓

ToArray Conversion

ToDictionary Conversion

ToList Conversion

ToLookup Conversion

Union Set ✓

Where Restriction ✓

A Tale of Two Syntaxes
Since you may write LINQ queries using either query expression syntax or standard dot notation syntax,
you may wonder which syntax you should use. In many cases, this is largely a matter of preference as
long as the standard query operators you are using in your query are supported by query expression
syntax. Not all of the operators are supported by query expression syntax, so when using any of the
unsupported operators, you must defer to standard dot notation syntax.

However, you should be aware that you can use a mixture of both syntaxes by enclosing a query
expression inside parentheses and appending a call to an unsupported operator like this:

IEnumerable<int> oddNumbers = (from n in nums
 where n % 2 == 1
 select n).Reverse();

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

67

Summary
In this chapter, we introduced you to the term sequence and its technical data type, IEnumerable<T>. If
you feel uncomfortable with some of this terminology, we are sure that with time it will become second
nature for you. Just think of IEnumerable<T> as a sequence of objects you are going to call methods on
to do things with those objects.

However, if there is one thing we want you to take with you from this chapter, it is the importance of
deferred query execution. It can work for you or against you. Understanding it is key, and being
conscious of it is important. It is so important that we have divided the Standard Query Operators into
separate chapters based upon this characteristic. The deferred operators are covered in Chapter 4, and
the nondeferred operators are covered in Chapter 5.
Since we have deferred queries in your thoughts right now, we will begin an in-depth examination of the
deferred operators in the next chapter.

CHAPTER 3 ■ LINQ TO OBJECTS INTRODUCTION

68

C H A P T E R 4

■ ■ ■

69

Deferred Operators

In the previous chapter, we covered what sequences are, the data type that represents them, and the
impact of deferred query execution. Because of the importance of deferred query operator awareness,
we have separated deferred and nondeferred operators into separate chapters to highlight whether a
Standard Query Operator’s action is deferred.

In this chapter, we will be covering the deferred query operators. A deferred operator is easy to spot
because it has a return type of IEnumerable<T> or IOrderedEnumerable<T>. Each of these deferred
operators will be categorized by its purpose.

To code and execute the examples in this chapter, you will need to make sure you have using
directives for all the necessary namespaces, references for all the necessary assemblies, and the common
code that the examples will share.

Referenced Namespaces
The examples in this chapter will use the System.Linq, System.Collections,
System.Collections.Generic, and System.Data.Linq namespaces. Therefore, you should add the
following using directives to your code if they are not present:

using System.Linq;
using System.Collections;
using System.Collections.Generic;
using System.Data.Linq;

In addition to these namespaces, if you download the companion code, you will see that we have

also added a using directive for the System.Diagnostics namespace. This will not be necessary if you
are typing in the examples from this chapter. It is necessary in the companion code because of some
housekeeping code we have added.

Referenced Assemblies
In addition to the typical assemblies, you will need references for the System.Data.Linq.dll assembly.

CHAPTER 4 ■ DEFERRED OPERATORS

70

Common Classes
Several of the examples in this chapter will require classes to fully demonstrate an operator’s behavior. A
list of classes that will be shared by more than one example follows.

The Employee class is meant to represent an employee. For convenience, it contains static methods
to return an ArrayList or array of employees.

The Shared E mploy ee Class

public class Employee
{
 public int id;
 public string firstName;
 public string lastName;

 public static ArrayList GetEmployeesArrayList()
 {
 ArrayList al = new ArrayList();

 al.Add(new Employee { id = 1, firstName = "Joe", lastName = "Rattz" });
 al.Add(new Employee { id = 2, firstName = "William", lastName = "Gates" });
 al.Add(new Employee { id = 3, firstName = "Anders", lastName = "Hejlsberg" });
 al.Add(new Employee { id = 4, firstName = "David", lastName = "Lightman" });
 al.Add(new Employee { id = 101, firstName = "Kevin", lastName = "Flynn" });
 return (al);
 }

 public static Employee[] GetEmployeesArray()
 {
 return ((Employee[])GetEmployeesArrayList().ToArray());
 }
}

The EmployeeOptionEntry class represents an award of stock options to a specific employee. For

convenience, it contains a static method to return an array of awarded option entries.

The Shared E mploy eeOptionEnt ry Class

public class EmployeeOptionEntry
{
 public int id;
 public long optionsCount;
 public DateTime dateAwarded;

 public static EmployeeOptionEntry[] GetEmployeeOptionEntries()
 {
 EmployeeOptionEntry[] empOptions = new EmployeeOptionEntry[] {

CHAPTER 4 ■ DEFERRED OPERATORS

71

 new EmployeeOptionEntry {
 id = 1,
 optionsCount = 2,
 dateAwarded = DateTime.Parse("1999/12/31") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,
 dateAwarded = DateTime.Parse("1992/06/30") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,
 dateAwarded = DateTime.Parse("1994/01/01") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 5000,
 dateAwarded = DateTime.Parse("1997/09/30") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,
 dateAwarded = DateTime.Parse("2003/04/01") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 7500,
 dateAwarded = DateTime.Parse("1998/09/30") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 7500,
 dateAwarded = DateTime.Parse("1998/09/30") },
 new EmployeeOptionEntry {
 id = 4,
 optionsCount = 1500,
 dateAwarded = DateTime.Parse("1997/12/31") },
 new EmployeeOptionEntry {
 id = 101,
 optionsCount = 2,
 dateAwarded = DateTime.Parse("1998/12/31") }
 };

 return (empOptions);
 }
}

The Deferred Operators by Purpose
The deferred Standard Query Operators are organized by their purpose in this section.

CHAPTER 4 ■ DEFERRED OPERATORS

72

Restriction
Restriction operators are used for including or excluding elements of an input sequence.

Where
The Where operator is used to filter elements into a sequence.

Prototypes

The Where operator has two prototypes we will cover.

The Fi rst Where Prot otype

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

This prototype of Where takes an input source sequence and a predicate method delegate and

returns an object that, when enumerated, enumerates through the input source sequence yielding
elements for which the predicate method delegate returns true.

Because this is an extension method, we do not actually pass the input sequence, as long as we call
the Where operator using the instance method syntax.

■ NNote Thanks to extension methods, it is not necessary to pass the first argument to the Standard Query
Operators whose first argument has the this keyword modifier, as long as we call the operator on an object of

the same type as the first argument.

When calling Where, you pass a delegate to a predicate method. Your predicate method must accept
a type T as input, where T is the type of elements contained in the input sequence, and return a bool.
The Where operator will call your predicate method for each element in the input sequence and pass it
the element. If your predicate method returns true, Where will yield that element into Where’s output
sequence. If your predicate method returns false, it will not.

The Second Where Prot otype

public static IEnumerable<T> Where<T>(
 this IEnumerable<T> source,
 Func<T, int, bool> predicate);

CHAPTER 4 ■ DEFERRED OPERATORS

73

The second Where prototype is identical to the first one, except it specifies that your predicate
method delegate receives an additional integer input argument. That argument will be the index
number for the element from the input sequence.

The index is zero-based, so the index passed for the first element will be zero. The last element will
be passed the total number of elements in the sequence minus one.

■ NNote Remember, the index that gets passed will be zero-based.

Exceptions

ArgumentNullException is thrown if any of the arguments are null.

Examples

Listing 4-1 is an example of calling the first prototype.

Listing 4-1. An Example of the First Where Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> sequence = presidents.Where(p => p.StartsWith("J"));

foreach (string s in sequence)
 Console.WriteLine("{0}", s);

In the preceding example, restricting a sequence using the first prototype of the Where operator is as

simple as calling the Where method on the sequence and passing a lambda expression that returns a
bool indicating whether an element should be included in the output sequence. In this example, we are
returning only those elements that start with the string "J". This code will produce the following
results when Ctrl+F5 is pressed:

Jackson
Jefferson
Johnson

Notice we are passing our predicate method using a lambda expression.

CHAPTER 4 ■ DEFERRED OPERATORS

74

Listing 4-2 shows code calling the second prototype of the Where operator. Notice that this version
doesn’t even use the actual element itself, p; it uses only the index, i. This code will cause every other
element, the ones with an odd index number, to be yielded into the output sequence.

Listing 4-2. An Example of the Second Where Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> sequence = presidents.Where((p, i) => (i & 1) == 1);

foreach (string s in sequence)
 Console.WriteLine("{0}", s);

Pressing Ctrl+F5 produces the following results:

Arthur
Bush
Cleveland
Coolidge
Fillmore
Garfield
Harding
Hayes
Jackson
Johnson
Lincoln
McKinley
Nixon
Pierce
Reagan
Taft
Truman
Van Buren
Wilson

Projection
Projection operators return an output sequence of elements that are generated by selecting elements or
instantiating altogether new elements containing portions of elements from an input sequence. The

CHAPTER 4 ■ DEFERRED OPERATORS

75

data type of elements in the output sequence may be different from the type of elements in the input
sequence.

Select
The Select operator is used to create an output sequence of one type of element from an input
sequence of another type of element. It is not necessary that the input element type and the output
element type be the same.

Prototypes

There are two prototypes for this operator we will cover.

The Fi rst Select Prot otype

public static IEnumerable<S> Select<T, S>(
 this IEnumerable<T> source,
 Func<T, S> selector);

This prototype of Select takes an input source sequence and a selector method delegate as input

arguments, and it returns an object that, when enumerated, enumerates the input source sequence
yielding a sequence of elements of type S. As mentioned earlier, T and S could be the same type or
different types.

When calling Select, you pass a delegate to a selector method via the selector argument. Your
selector method must accept a type T as input, where T is the type of elements contained in the input
sequence, and it returns a type S element. Select will call your selector method for each element in the
input sequence, passing it the element. Your selector method will select the portions of the input
element it is interested in, creating a new, possibly different typed element, which may be of an
anonymous type, and return it.

The Second Select Prot otype

public static IEnumerable<S> Select<T, S>(
 this IEnumerable<T> source,
 Func<T, int, S> selector);

In this prototype of the Select operator, an additional integer is passed to the selector method

delegate. This will be the zero-based index of the input element in the input sequence.

Exceptions

ArgumentNullException is thrown if any of the arguments are null.

Examples

Listing 4-3 shows an example calling the first prototype.

CHAPTER 4 ■ DEFERRED OPERATORS

76

Listing 4-3. An Example of the First Select Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<int> nameLengths = presidents.Select(p => p.Length);

foreach (int item in nameLengths)
 Console.WriteLine(item);

Notice we are passing our selector method using a lambda expression. In this case, our lambda

expression will return the length of each element in the input sequence. Also notice that, although our
input types are strings, our output types are ints.

This code will produce the following results when you press Ctrl+F5:

5
6
8
4
6
9
7
8
10
8
4
8
5
7
8
5
6
7
9
7
7
7
7
8
6
5

CHAPTER 4 ■ DEFERRED OPERATORS

77

5
6
4
6
9
4
6
6
5
9
10
6

This is a simple example because we are not generating any classes. To provide an even better
demonstration of the first prototype, consider the code in Listing 4-4.

Listing 4-4. Another Example of the First Select Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

var nameObjs = presidents.Select(p => new { p, p.Length });

foreach (var item in nameObjs)
 Console.WriteLine(item);

Notice that our lambda expression is instantiating a new, anonymous type. The compiler will

dynamically generate an anonymous type for us that will contain a string p and an int Length, and our
selector method will return that newly instantiated object. Because the type of the returned element is
anonymous, we have no type name to reference it by. So, we cannot assign the output sequence from
Select to an IEnumerable of some known type, as we did in the first example where we assigned a
variable of type IEnumerable<int> to the output sequence. Therefore, we assign the output sequence to
a variable specified with the var keyword.

■ NNote Projection operators whose selector methods instantiate anonymous types to return must have their

output sequence assigned to a variable whose type is specified with the var keyword.

CHAPTER 4 ■ DEFERRED OPERATORS

78

When run by pressing Ctrl+F5, this code produces the following output:

{ p = Adams, Length = 5 }
{ p = Arthur, Length = 6 }
{ p = Buchanan, Length = 8 }
{ p = Bush, Length = 4 }
{ p = Carter, Length = 6 }
{ p = Cleveland, Length = 9 }
{ p = Clinton, Length = 7 }
{ p = Coolidge, Length = 8 }
{ p = Eisenhower, Length = 10 }
{ p = Fillmore, Length = 8 }
{ p = Ford, Length = 4 }
{ p = Garfield, Length = 8 }
{ p = Grant, Length = 5 }
{ p = Harding, Length = 7 }
{ p = Harrison, Length = 8 }
{ p = Hayes, Length = 5 }
{ p = Hoover, Length = 6 }
{ p = Jackson, Length = 7 }
{ p = Jefferson, Length = 9 }
{ p = Johnson, Length = 7 }
{ p = Kennedy, Length = 7 }
{ p = Lincoln, Length = 7 }
{ p = Madison, Length = 7 }
{ p = McKinley, Length = 8 }
{ p = Monroe, Length = 6 }
{ p = Nixon, Length = 5 }
{ p = Obama, Length = 5 }
{ p = Pierce, Length = 6 }
{ p = Polk, Length = 4 }
{ p = Reagan, Length = 6 }
{ p = Roosevelt, Length = 9 }
{ p = Taft, Length = 4 }
{ p = Taylor, Length = 6 }
{ p = Truman, Length = 6 }
{ p = Tyler, Length = 5 }
{ p = Van Buren, Length = 9 }
{ p = Washington, Length = 10 }
{ p = Wilson, Length = 6 }

There is one problem with this code as it is; we can’t control the names of the members of the
dynamically generated anonymous class. However, thanks to the object initialization features of C# , we
could write the lambda expression and specify the anonymous class member names as shown in Listing
4-5.

CHAPTER 4 ■ DEFERRED OPERATORS

79

Listing 4-5. A Third Example of the First Select Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

var nameObjs = presidents.Select(p => new { LastName = p, Length = p.Length });

foreach (var item in nameObjs)
 Console.WriteLine("{0} is {1} characters long.", item.LastName, item.Length);

Notice that we specified a name for each member in the lambda expression and then accessed each

member by name in the Console.WriteLine method call. Here are the results of this code:

Adams is 5 characters long.
Arthur is 6 characters long.
Buchanan is 8 characters long.
Bush is 4 characters long.
Carter is 6 characters long.
Cleveland is 9 characters long.
Clinton is 7 characters long.
Coolidge is 8 characters long.
Eisenhower is 10 characters long.
Fillmore is 8 characters long.
Ford is 4 characters long.
Garfield is 8 characters long.
Grant is 5 characters long.
Harding is 7 characters long.
Harrison is 8 characters long.
Hayes is 5 characters long.
Hoover is 6 characters long.
Jackson is 7 characters long.
Jefferson is 9 characters long.
Johnson is 7 characters long.
Kennedy is 7 characters long.
Lincoln is 7 characters long.
Madison is 7 characters long.
McKinley is 8 characters long.
Monroe is 6 characters long.
Nixon is 5 characters long.
Obama is 5 characters long.
Pierce is 6 characters long.

CHAPTER 4 ■ DEFERRED OPERATORS

80

Polk is 4 characters long.
Reagan is 6 characters long.
Roosevelt is 9 characters long.
Taft is 4 characters long.
Taylor is 6 characters long.
Truman is 6 characters long.
Tyler is 5 characters long.
Van Buren is 9 characters long.
Washington is 10 characters long.
Wilson is 6 characters long.

For the second Select prototype’s example, we will embed the index that is passed to our selector
method into our output sequence’s element type, as shown in Listing 4-6.

Listing 4-6. An Example of the Second Select Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

var nameObjs = presidents.Select((p, i) => new { Index = i, LastName = p });

foreach (var item in nameObjs)
 Console.WriteLine("{0}. {1}", item.Index + 1, item.LastName);

This example will output the index number plus one, followed by the name. This code produces the

following abbreviated results:

1. Adams
2. Arthur
3. Buchanan
4. Bush
5. Carter
…
35. Tyler
36. Van Buren
37. Washington
38. Wilson

CHAPTER 4 ■ DEFERRED OPERATORS

81

SelectMany
The SelectMany operator is used to create a one-to-many output projection sequence over an input
sequence. Although the Select operator will return one output element for every input element,
SelectMany will return zero or more output elements for every input element.

Prototypes

This operator has two prototypes we will cover.

The Fi rst Select Many Prot otyp e

public static IEnumerable<S> SelectMany<T, S>(
 this IEnumerable<T> source,
 Func<T, IEnumerable<S>> selector);

This prototype of the operator is passed an input source sequence of elements of type T and a

selector method delegate, and it returns an object that, when enumerated, enumerates the input source
sequence, passing each element individually from the input sequence to the selector method. The
selector method then returns an object that, when enumerated, yields zero or more elements of type S in
an intermediate output sequence. The SelectMany operator will return the concatenated output
sequences from each call to your selector method.

The Second Select Many Prototyp e

public static IEnumerable<S> SelectMany<T, S>(
 this IEnumerable<T> source,
 Func<T, int, IEnumerable<S>> selector);

This prototype behaves just like the first prototype, except a zero-based index of the element in the

input sequence is passed to your selector method.

Exceptions

ArgumentNullException is thrown if any of the arguments are null.

Examples

Listing 4-7 shows an example calling the first prototype.

Listing 4-7. An Example of the First SelectMany Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",

CHAPTER 4 ■ DEFERRED OPERATORS

82

 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<char> chars = presidents.SelectMany(p => p.ToArray());

foreach (char ch in chars)
 Console.WriteLine(ch);

In the preceding example, our selector method receives a string as input, and by calling the ToArray

method on that string, it returns an array of chars, which becomes an output sequence of type char.
So, for a single input sequence element, which in this case is a string, our selector method returns a

sequence of characters. For each input string, a sequence of characters is output. The SelectMany
operator concatenates each of those character sequences into a single character sequence that is
returned.

The output of the previous code is as follows:

A
d
a
m
s
A
r
t
h
u
r
B
u
c
h
a
n
a
n
B
u
s
h
…
W
a
s
h
i
n

CHAPTER 4 ■ DEFERRED OPERATORS

83

g
t
o
n
W
i
l
s
o
n

That was a pretty simple query but not very demonstrative of a more typical usage. For the next
example, we will use the Employee and EmployeeOptionEntry common classes.

We will call the SelectMany operator on the array of Employee elements, and for each Employee
element in the array, our selector method delegate will return zero or more elements of the anonymous
class we create containing the id and the optionsCount from the array of EmployeeOptionEntry
elements for that Employee object. Let’s take a look at the code to accomplish this in Listing 4-8.

Listing 4-8. A More Complex Example of the First SelectMany Prototype

Employee[] employees = Employee.GetEmployeesArray();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();

var employeeOptions = employees
 .SelectMany(e => empOptions
 .Where(eo => eo.id == e.id)
 .Select(eo => new {
 id = eo.id,
 optionsCount = eo.optionsCount }));

foreach (var item in employeeOptions)
 Console.WriteLine(item);

In this example, every employee in the Employee array is passed into the lambda expression that is

passed into the SelectMany operator. That lambda expression will then retrieve every
EmployeeOptionEntry element whose id matches the id of the current employee passed into it by
using the Where operator. This is effectively joining the Employee array and the EmployeeOptionEntry
array on their id members. The lambda expression’s Select operator then creates an anonymous object
containing the id and optionsCount members for each matching record in the EmployeeOptionEntry
array. This means a sequence of zero or more anonymous objects for each passed employee is returned
by the lambda expression. This results in a sequence of sequences that the SelectMany operator then
concatenates together.

The previous code produces the following output:

CHAPTER 4 ■ DEFERRED OPERATORS

84

{ id = 1, optionsCount = 2 }
{ id = 2, optionsCount = 10000 }
{ id = 2, optionsCount = 10000 }
{ id = 2, optionsCount = 10000 }
{ id = 3, optionsCount = 5000 }
{ id = 3, optionsCount = 7500 }
{ id = 3, optionsCount = 7500 }
{ id = 4, optionsCount = 1500 }
{ id = 101, optionsCount = 2 }

Although a bit contrived, the example in Listing 4-9 shows the second SelectMany prototype being
called.

Listing 4-9. An Example of the Second SelectMany Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Pierce", "Polk", "Reagan", "Roosevelt", "Taft",
 "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<char> chars = presidents
 .SelectMany((p, i) => i < 5 ? p.ToArray() : new char[] { });

foreach (char ch in chars)
 Console.WriteLine(ch);

The lambda expression we provided checks the incoming index and outputs the array of characters

from the input string only if the index is less than five. This means we will get the characters for the first
five input strings only, as evidenced by the output results:

A
d
a
m
s
A
r
t
h
u
r
B

CHAPTER 4 ■ DEFERRED OPERATORS

85

u
c
h
a
n
a
n
B
u
s
h
C
a
r
t
e
r

Keep in mind that this lambda expression is not all that efficient, particularly if there are a lot of
input elements. The lambda expression is getting called for every input element. We are merely
returning an empty array after the first five input elements. For better performance, we prefer the Take
operator that we cover in the next section for this purpose.

The SelectMany operator is also useful for concatenating multiple sequences together. Read our
section on the Concat operator later in this chapter for an example.

Partitioning
The partitioning operators allow you to return an output sequence that is a subset of an input sequence.

Take
The Take operator returns a specified number of elements from the input sequence, starting from the
beginning of the sequence.

Prototypes

The Take operator has one prototype we will cover.

The Take Prot otype

public static IEnumerable<T> Take<T>(
 this IEnumerable<T> source,
 int count);

CHAPTER 4 ■ DEFERRED OPERATORS

86

This prototype specifies that Take will receive an input source sequence and an integer named
count that specifies how many input elements to return, and it will return an object that, when
enumerated, will yield the first count number of elements from the input sequence.

If the count value is greater than the number of elements in the input sequence, then every element
of the input sequence will be yielded into the output sequence.

Exceptions

ArgumentNullException is thrown if the input source sequence is null.

Examples

Listing 4-10 is an example calling Take.

Listing 4-10. An Example of the Only Take Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.Take(5);

foreach (string item in items)
 Console.WriteLine(item);

This code will return the first five input elements from the presidents array. The results are as

follows:

Adams
Arthur
Buchanan
Bush
Carter

In Listing 4-9, we showed some code that we stated would be more efficient if the Take operator
were used instead of relying on the index being passed into the lambda expression. Listing 4-11 provides
the equivalent code using the Take operator. We will have the exact same results that we had with our
code in Listing 4-9, but this code is much more efficient.

CHAPTER 4 ■ DEFERRED OPERATORS

87

Listing 4-11. Another Example of the Take Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<char> chars = presidents.Take(5).SelectMany(s => s.ToArray());

foreach (char ch in chars)
 Console.WriteLine(ch);

Just like in the SelectMany example using the second prototype, Listing 4-9, the preceding code

returns the following results:

A
d
a
m
s
A
r
t
h
u
r
B
u
c
h
a
n
a
n
B
u
s
h
C
a
r
t
e
r

CHAPTER 4 ■ DEFERRED OPERATORS

88

The differences between this code example and Listing 4-9 are that this one takes only the first five
elements from the input sequence and then only they are passed as the input sequence into
SelectMany. The other code example, Listing 4-9, passes all elements into SelectMany; it will just return
an empty array for all except the first five.

TakeWhile
The TakeWhile operator yields elements from an input sequence while some condition is true, starting
from the beginning of the sequence. The remaining input elements will be skipped.

Prototypes

There are two prototypes for the TakeWhile operator we will cover.

The Fi rst TakeWhi le Prot otype

public static IEnumerable<T> TakeWhile<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

The TakeWhile operator accepts an input source sequence and a predicate method delegate and

returns an object that, when enumerated, yields elements until the predicate method returns false. The
predicate method receives one element at a time from the input sequence and returns whether the
element should be included in the output sequence. If so, it continues processing input elements. Once
the predicate method returns false, no other input elements will be processed.

The Second TakeWhi le Prot otype

public static IEnumerable<T> TakeWhile<T>(
 this IEnumerable<T> source,
 Func<T, int, bool> predicate);

This prototype is just like the first except that the predicate method will also be passed a zero-based

index of the element in the input source sequence.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 4-12 shows an example calling the first TakeWhile prototype.

Listing 4-12. An Example of Calling the First TakeWhile Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",

CHAPTER 4 ■ DEFERRED OPERATORS

89

 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.TakeWhile(s => s.Length < 10);

foreach (string item in items)
 Console.WriteLine(item);

In the preceding code, we wanted to retrieve input elements until we hit one ten or more characters

long. Here are the results:

Adams
Arthur
Buchanan
Bush
Carter
Cleveland
Clinton
Coolidge

Eisenhower is the name that caused the TakeWhile operator to stop processing input elements.
Now, we will provide an example of the second prototype for the TakeWhile operator in Listing 4-13.

Listing 4-13. An Example of Calling the Second TakeWhile Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents
 .TakeWhile((s, i) => s.Length < 10 && i < 5);

foreach (string item in items)
 Console.WriteLine(item);

This example will stop when an input element exceeds nine characters in length or when the sixth

element is reached, whichever comes first. Here are the results:

CHAPTER 4 ■ DEFERRED OPERATORS

90

Adams
Arthur
Buchanan
Bush
Carter

In this case, it stopped because the sixth element was reached.

Skip
The Skip operator skips a specified number of elements from the input sequence starting from the
beginning of the sequence and yields the rest.

Prototypes

The Skip operator has one prototype we will cover.

The Skip Prot otype

public static IEnumerable<T> Skip<T>(
 this IEnumerable<T> source,
 int count);

The Skip operator is passed an input source sequence and an integer named count that specifies

how many input elements should be skipped and returns an object that, when enumerated, will skip the
first count elements and yield all subsequent elements.

If the value of count is greater than the number of elements in the input sequence, the input
sequence will not even be enumerated, and the output sequence will be empty.

Exceptions

ArgumentNullException is thrown if the input source sequence is null.

Examples

Listing 4-14 shows a simple example calling the Skip operator.

Listing 4-14. An Example of the Only Skip Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",

CHAPTER 4 ■ DEFERRED OPERATORS

91

 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.Skip(1);

foreach (string item in items)
 Console.WriteLine(item);

In this example, we wanted to skip the first element. Notice in the following output that we did

indeed skip the first input element, "Adams":

Arthur
Buchanan
Bush
…
Van Buren
Washington
Wilson

SkipWhile
The SkipWhile operator will process an input sequence, skipping elements while a condition is true,
and then yield the remaining elements into an output sequence.

Prototypes

There are two prototypes for the SkipWhile operator we will cover.

The Fi rst SkipWhi le Protot ype

public static IEnumerable<T> SkipWhile<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

The SkipWhile operator accepts an input source sequence and a predicate method delegate and

returns an object that, when enumerated, skips elements while the predicate method returns true. Once
the predicate method returns false, the SkipWhile operator yields all subsequent elements. The
predicate method receives one element at a time from the input sequence and returns whether the
element should be skipped in the output sequence.

SkipWhile has a second prototype that looks like this:

The Second SkipWhi le Protot ype

public static IEnumerable<T> SkipWhile<T>(
 this IEnumerable<T> source,
 Func<T, int, bool> predicate);

CHAPTER 4 ■ DEFERRED OPERATORS

92

This prototype is just like the first except that our predicate method will also be passed a zero-based

index of the element in the input source sequence.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 4-15 shows an example of the first SkipWhile prototype.

Listing 4-15. An Example Calling the First SkipWhile Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.SkipWhile(s => s.StartsWith("A"));

foreach (string item in items)
 Console.WriteLine(item);

In this example, we told the SkipWhile method to skip elements as long as they started with the

string "A". All the remaining elements will be yielded to the output sequence. Here are the results of the
previous query:

Buchanan
Bush
Carter
…
Van Buren
Washington
Wilson

Now, we will try the second SkipWhile prototype, which is shown in Listing 4-16.

Listing 4-16. An Example of Calling the Second SkipWhile Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",

CHAPTER 4 ■ DEFERRED OPERATORS

93

 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents
 .SkipWhile((s, i) => s.Length > 4 && i < 10);

foreach (string item in items)
 Console.WriteLine(item);

In this example, we are going to skip input elements until the length is no longer greater than four

characters or until the tenth element is reached. We will then yield the remaining elements. Here are the
results:

Bush
Carter
Cleveland
…
Van Buren
Washington
Wilson

In this case, we stopped skipping elements once we hit "Bush", since it was not greater than four
characters long, even though its index is only 3.

Concatenation
The concatenation operators allow multiple input sequences of the same type to be concatenated into a
single output sequence.

Concat
The Concat operator concatenates two input sequences and yields a single output sequence.

Prototypes

There is one prototype for the Concat operator we will cover.

The Concat Prot otype

public static IEnumerable<T> Concat<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second);

CHAPTER 4 ■ DEFERRED OPERATORS

94

In this prototype, two sequences of the same type T of elements are input, as first and second. An

object is returned that, when enumerated, enumerates the first input sequence, yielding each element to
the output sequence, followed by enumerating the second input sequence, yielding each element to the
output sequence.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 4-17 is an example using the Concat operator, as well as the Take and Skip operators.

Listing 4-17. An Example Calling the Only Concat Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.Take(5).Concat(presidents.Skip(5));

foreach (string item in items)
 Console.WriteLine(item);

This code takes the first five elements from the input sequence, presidents, and concatenates all

but the first five input elements from the presidents sequence. The results should be a sequence with
the identical contents of the presidents sequence, and they are as follows:

Adams
Arthur
Buchanan
Bush
Carter
Cleveland
Clinton
Coolidge
Eisenhower
Fillmore
Ford
Garfield
Grant
Harding

CHAPTER 4 ■ DEFERRED OPERATORS

95

Harrison
Hayes
Hoover
Jackson
Jefferson
Johnson
Kennedy
Lincoln
Madison
McKinley
Monroe
Nixon
Obama
Pierce
Polk
Reagan
Roosevelt
Taft
Taylor
Truman
Tyler
Van Buren
Washington
Wilson

An alternative technique for concatenating is to call the SelectMany operator on an array of
sequences, as shown in Listing 4-18.

Listing 4-18. An Example Performing Concatenation with an Alternative to Using the Concat Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = new[] {
 presidents.Take(5),
 presidents.Skip(5)
 }
 .SelectMany(s => s);

foreach (string item in items)

CHAPTER 4 ■ DEFERRED OPERATORS

96

 Console.WriteLine(item);

In this example, we instantiated an array consisting of two sequences: one created by calling the

Take operator on the input sequence and another created by calling the Skip operator on the input
sequence. Notice that this is similar to the previous example except that we are calling the SelectMany
operator on the array of sequences. Also, although the Concat operator allows only two sequences to be
concatenated together, since this technique allows an array of sequences, it may be more useful when
needing to concatenate more than two sequences together.

■ TTip When needing to concatenate more than two sequences together, consider using the SelectMany

approach.

Of course, none of this would matter if you did not get the same results as calling the Concat
operator. Of course, this isn’t a problem, since the results are the same:

Adams
Arthur
Buchanan
Bush
Carter
Cleveland
Clinton
Coolidge
Eisenhower
Fillmore
Ford
Garfield
Grant
Harding
Harrison
Hayes
Hoover
Jackson
Jefferson
Johnson
Kennedy
Lincoln
Madison
McKinley
Monroe
Nixon
Obama
Pierce
Polk

CHAPTER 4 ■ DEFERRED OPERATORS

97

Reagan
Roosevelt
Taft
Taylor
Truman
Tyler
Van Buren
Washington
Wilson

Ordering
The ordering operators allow input sequences to be ordered. It is important to notice that both the
OrderBy and OrderByDescending operators require an input sequence of type IEnumerable<T> and
return a sequence of type IOrderedEnumerable<T>. You cannot pass an IOrderedEnumerable<T> as
the input sequence into the OrderBy or OrderByDescending operator. You should not pass an
IOrderedEnumerable<T> as the input sequence into the OrderBy or OrderByDescending operators
because subsequent calls to the OrderBy or OrderByDescending operators will not honor the order
created by previous calls to the OrderBy or OrderByDescending operators. This means that you should
not pass the returned sequence from either the OrderBy or OrderByDescending operators into a
subsequent OrderBy or OrderByDescending operator call.

If you need more ordering than is possible with a single call to the OrderBy or OrderByDescending
operators, you should subsequently call the ThenBy or ThenByDescending operators. You may chain
calls to the ThenBy and ThenByDescending operators to subsequent calls to the ThenBy and
ThenByDescending operators, because they accept an IOrderedEnumerable<T> as their input sequence
and return an IOrderedEnumerable<T> as their output sequence.

For example, this calling sequence is not allowed:

inputSequence.OrderBy(s => s.LastName).OrderBy(s => s.FirstName)…

Instead, you would use this calling sequence:

inputSequence.OrderBy(s => s.LastName).ThenBy(s => s.FirstName)…

OrderBy
The OrderBy operator allows an input sequence to be ordered based on a keySelector method that will
return a key value for each input element, and an ordered output sequence, IOrderedEnumerable<T>,
will be yielded in ascending order based on the values of the returned keys.

The sort performed by the OrderBy operator is specified to be unstable. This means it will not
preserve the input order of the elements. If two input elements come into the OrderBy operator in a
particular order and the key value for both elements is the same, the order of the output elements could
be reversed or maintained; there is no guarantee of either. Even though it appears to be stable, since it is
specified as unstable, you must always assume it to be unstable. This means you can never depend on
the order of the elements coming out of the call to the OrderBy or OrderByDescending operators for any

CHAPTER 4 ■ DEFERRED OPERATORS

98

field except the field specified in the method call. Any order that exists in the sequence passed to either
of those operators cannot be assumed to be maintained.

Prototypes

The OrderBy operator has two prototypes we will cover.

The Fi rst OrderBy Prot otype

public static IOrderedEnumerable<T> OrderBy<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector)
where
 K : IComparable<K>;

In this prototype of OrderBy, an input source sequence is passed into the OrderBy operator along

with a keySelector method delegate, and an object is returned that, when enumerated, enumerates the
source input sequence collecting all the elements, passes each element to the keySelector method
thereby retrieving each key, and orders the sequence using the keys.

The keySelector method is passed an input element of type T and will return the field within the
element that is to be used as the key value, of type K, for the input element. Types T and K may be the
same or different types. The type of the value returned by the keySelector method must implement the
IComparable interface.

OrderBy has a second prototype that looks like the following:

The Second OrderBy Prot otype

public static IOrderedEnumerable<T> OrderBy<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 IComparer<K> comparer);

This prototype is the same as the first except it allows for a comparer object to be passed. If this

version of the OrderBy operator is used, then it is not necessary that type K implement the IComparable
interface.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 4-19 shows an example of the first prototype.

CHAPTER 4 ■ DEFERRED OPERATORS

99

Listing 4-19. An Example Calling the First OrderBy Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.OrderBy(s => s.Length);

foreach (string item in items)
 Console.WriteLine(item);

This example orders the presidents by the length of their names. Here are the results:

Bush
Ford
Polk
Taft
Adams
Grant
Hayes
Nixon
Obama
Tyler
Arthur
Carter
Hoover
Monroe
Pierce
Reagan
Taylor
Truman
Wilson
Clinton
Harding
Jackson
Johnson
Kennedy
Lincoln
Madison
Buchanan
Coolidge
Fillmore
Garfield
Harrison
McKinley
Cleveland

CHAPTER 4 ■ DEFERRED OPERATORS

100

Jefferson
Roosevelt
Van Buren
Eisenhower
Washington

Now, we will try an example of the second prototype by using our own comparer. Before we explain
the code, it might be helpful to examine the IComparer interface.

The IComparer<T> Int erface

interface IComparer<T> {
 int Compare(T x, T y);
}

The IComparer interface requires us to implement a single method named Compare. This method

will receive two arguments of the same type T and will return an int that is less than zero if the first
argument is less than the second, zero if the two arguments are equal, and greater than zero if the
second argument is greater than the first. Notice how the C# generics support comes to our aid in this
interface and prototype.

For this example, to make it clear we are not using any default comparer, we have created a class
that implements the IComparer interface, which will order the elements based on their vowel-to-
consonant ratios.

My Imp lement ati on of the IComp arer Interf ace f or an Examp le Calli ng the Second

OrderBy Prot otype

public class MyVowelToConsonantRatioComparer : IComparer<string>
{
 public int Compare(string s1, string s2)
 {
 int vCount1 = 0;
 int cCount1 = 0;
 int vCount2 = 0;
 int cCount2 = 0;

 GetVowelConsonantCount(s1, ref vCount1, ref cCount1);
 GetVowelConsonantCount(s2, ref vCount2, ref cCount2);

 double dRatio1 = (double)vCount1/(double)cCount1;
 double dRatio2 = (double)vCount2/(double)cCount2;

 if(dRatio1 < dRatio2)
 return(-1);
 else if (dRatio1 > dRatio2)
 return(1);
 else

CHAPTER 4 ■ DEFERRED OPERATORS

101

 return(0);
 }

 // This method is public so our code using this comparer can get the values
 // if it wants.
 public void GetVowelConsonantCount(string s,
 ref int vowelCount,
 ref int consonantCount)
 {
 // DISCLAIMER: This code is for demonstration purposes only.
 // This code treats the letter 'y' or 'Y' as a vowel always,
 // which linguistically speaking, is probably invalid.

 string vowels = "AEIOUY";

 // Initialize the counts.
 vowelCount = 0;
 consonantCount = 0;

 // Convert to uppercase so we are case insensitive.
 string sUpper = s.ToUpper();

 foreach(char ch in sUpper)
 {
 if(vowels.IndexOf(ch) < 0)
 consonantCount++;
 else
 vowelCount++;
 }

 return;
 }
}

That class contains two methods, Compare and GetVowelConsonantCount. The Compare method is

required by the IComparer interface. The GetVowelConsonantCount method exists because we needed
it internally in the Compare method so that the number of vowels and consonants for a given input string
could be obtained. We also wanted the ability to call that same logic from outside the Compare method
so that we could obtain the values for display when we looped through our ordered sequence.

The logic of what our comparer is doing isn’t that significant. It is highly unlikely that you will ever
need to determine the vowel-to-consonant ratio for a string, much less compare two strings based on
that ratio. What is important is how we created a class implementing the IComparer interface by
implementing a Compare method. You can see the nitty-gritty implementation of the Compare method
by examining the if/else block at the bottom of the Compare method. As you can see, in that block of
code, we return -1, 1, or 0, thereby adhering to the contract of the IComparer interface.

Now, we will call the code, which is shown in Listing 4-20.

CHAPTER 4 ■ DEFERRED OPERATORS

102

Listing 4-20. An Example Calling the Second OrderBy Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

MyVowelToConsonantRatioComparer myComp = new MyVowelToConsonantRatioComparer();

IEnumerable<string> namesByVToCRatio = presidents
 .OrderBy((s => s), myComp);

foreach (string item in namesByVToCRatio)
{
 int vCount = 0;
 int cCount = 0;

 myComp.GetVowelConsonantCount(item, ref vCount, ref cCount);
 double dRatio = (double)vCount / (double)cCount;

 Console.WriteLine(item + " - " + dRatio + " - " + vCount + ":" + cCount);
}

In the preceding example, you can see that we instantiate our comparer before calling the OrderBy

operator. We could instantiate it in the OrderBy method call, but then we would not have a reference to
it when we want to call it in the foreach loop. Here are the results of this code:

Grant - 0.25 - 1:4
Bush - 0.333333333333333 - 1:3
Ford - 0.333333333333333 - 1:3
Polk - 0.333333333333333 - 1:3
Taft - 0.333333333333333 - 1:3
Clinton - 0.4 - 2:5
Harding - 0.4 - 2:5
Jackson - 0.4 - 2:5
Johnson - 0.4 - 2:5
Lincoln - 0.4 - 2:5
Washington - 0.428571428571429 - 3:7
Arthur - 0.5 - 2:4
Carter - 0.5 - 2:4
Cleveland - 0.5 - 3:6
Jefferson - 0.5 - 3:6
Truman - 0.5 - 2:4
Van Buren - 0.5 - 3:6

CHAPTER 4 ■ DEFERRED OPERATORS

103

Wilson - 0.5 - 2:4
Buchanan - 0.6 - 3:5
Fillmore - 0.6 - 3:5
Garfield - 0.6 - 3:5
Harrison - 0.6 - 3:5
McKinley - 0.6 - 3:5
Adams - 0.666666666666667 - 2:3
Nixon - 0.666666666666667 - 2:3
Tyler - 0.666666666666667 - 2:3
Kennedy - 0.75 - 3:4
Madison - 0.75 - 3:4
Roosevelt - 0.8 - 4:5
Coolidge - 1 - 4:4
Eisenhower - 1 - 5:5
Hoover - 1 - 3:3
Monroe - 1 - 3:3
Pierce - 1 - 3:3
Reagan - 1 - 3:3
Taylor - 1 - 3:3
Hayes - 1.5 - 3:2
Obama - 1.5 - 3:2

As you can see, the presidents with the lower vowel-to-consonant ratios come first.

OrderByDescending
This operator is prototyped and behaves just like the OrderBy operator, except that it orders in
descending order.

Prototypes

This operator has two prototypes we will cover.

The Fi rst OrderBy Descendi ng Prot otype

public static IOrderedEnumerable<T> OrderByDescending<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector)
where
 K : IComparable<K>;

This prototype of the OrderByDescending operator behaves just like its equivalent OrderBy

prototype except the order will be descending.

CHAPTER 4 ■ DEFERRED OPERATORS

104

■ CCaution The sorting performed by OrderBy and OrderByDescending is unstable.

OrderByDescending has a second prototype that looks like the following:

The Second OrderBy Descendi ng Prot otype

public static IOrderedEnumerable<T> OrderByDescending<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 IComparer<K> comparer);

This prototype is the same as the first except it allows for a comparer object to be passed. If this

version of the OrderByDescending operator is used, then it is not necessary that type K implement the
IComparable interface.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

In the example of the first prototype shown in Listing 4-21, we will order the presidents in descending
order by their names.

Listing 4-21. An Example Calling the First OrderByDescending Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.OrderByDescending(s => s);

foreach (string item in items)
 Console.WriteLine(item);

As you can see, the president names are in descending order:

Wilson
Washington
Van Buren

CHAPTER 4 ■ DEFERRED OPERATORS

105

Tyler
Truman
Taylor
Taft
Roosevelt
Reagan
Polk
Pierce
Obama
Nixon
Monroe
McKinley
Madison
Lincoln
Kennedy
Johnson
Jefferson
Jackson
Hoover
Hayes
Harrison
Harding
Grant
Garfield
Ford
Fillmore
Eisenhower
Coolidge
Clinton
Cleveland
Carter
Bush
Buchanan
Arthur
Adams

Now, we will try an example of the second OrderByDescending prototype. We will use the same
example that we used for the second prototype of the OrderBy operator, except instead of calling the
OrderBy operator, we will call the OrderByDescending operator. We will be using the same comparer,
MyVowelToConsonantRatioComparer, that we used in that example. Listing 4-22 shows the code.

Listing 4-22. An Example Calling the Second OrderByDescending Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",

CHAPTER 4 ■ DEFERRED OPERATORS

106

 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

MyVowelToConsonantRatioComparer myComp = new MyVowelToConsonantRatioComparer();

IEnumerable<string> namesByVToCRatio = presidents
 .OrderByDescending((s => s), myComp);

foreach (string item in namesByVToCRatio)
{
 int vCount = 0;
 int cCount = 0;

 myComp.GetVowelConsonantCount(item, ref vCount, ref cCount);
 double dRatio = (double)vCount / (double)cCount;

 Console.WriteLine(item + " - " + dRatio + " - " + vCount + ":" + cCount);
}

This example works just like the equivalent OrderBy example. Here are the results:

Hayes - 1.5 - 3:2
Obama - 1.5 - 3:2
Coolidge - 1 - 4:4
Eisenhower - 1 - 5:5
Hoover - 1 - 3:3
Monroe - 1 - 3:3
Pierce - 1 - 3:3
Reagan - 1 - 3:3
Taylor - 1 - 3:3
Roosevelt - 0.8 - 4:5
Kennedy - 0.75 - 3:4
Madison - 0.75 - 3:4
Adams - 0.666666666666667 - 2:3
Nixon - 0.666666666666667 - 2:3
Tyler - 0.666666666666667 - 2:3
Buchanan - 0.6 - 3:5
Fillmore - 0.6 - 3:5
Garfield - 0.6 - 3:5
Harrison - 0.6 - 3:5
McKinley - 0.6 - 3:5
Arthur - 0.5 - 2:4
Carter - 0.5 - 2:4
Cleveland - 0.5 - 3:6

CHAPTER 4 ■ DEFERRED OPERATORS

107

Jefferson - 0.5 - 3:6
Truman - 0.5 - 2:4
Van Buren - 0.5 - 3:6
Wilson - 0.5 - 2:4
Washington - 0.428571428571429 - 3:7
Clinton - 0.4 - 2:5
Harding - 0.4 - 2:5
Jackson - 0.4 - 2:5
Johnson - 0.4 - 2:5
Lincoln - 0.4 - 2:5
Bush - 0.333333333333333 - 1:3
Ford - 0.333333333333333 - 1:3
Polk - 0.333333333333333 - 1:3
Taft - 0.333333333333333 - 1:3
Grant - 0.25 - 1:4

These results are the same as the equivalent OrderBy example, except the order is reversed. Now,
the presidents are listed by their vowel-to-consonant ratio in descending order.

ThenBy
The ThenBy operator allows an input ordered sequence of type IOrderedEnumerable<T> to be ordered
based on a keySelector method that will return a key value, and an ordered output sequence of type
IOrderedEnumerable<T> will be yielded.

■ NNote Both the ThenBy and ThenByDescending operators accept a different type of input sequence than
most LINQ to Objects deferred query operators. They take an IOrderedEnumerable<T> as the input sequence.
This means either the OrderBy or OrderByDescending operator must be called first to create an

IOrderedEnumerable, on which you can then call the ThenBy or ThenByDescending operators.

The sort performed by the ThenBy operator is stable. This means it will preserve the input order of
the elements for equal keys. So, if two input elements come into the ThenBy operator in a particular
order and the key value for both elements is the same, the order of the output elements is guaranteed to
be maintained.

■ NNote Unlike OrderBy and OrderByDescending, ThenBy and ThenByDescending are stable sorts.

CHAPTER 4 ■ DEFERRED OPERATORS

108

Prototypes

The ThenBy operator has two prototypes we will cover.

The Fi rst ThenBy Prot otype

public static IOrderedEnumerable<T> ThenBy<T, K>(
 this IOrderedEnumerable<T> source,
 Func<T, K> keySelector)
where
 K : IComparable<K>;

In this prototype of the ThenBy operator, an ordered input sequence of type

IOrderedEnumerable<T> is passed into the ThenBy operator along with a keySelector method
delegate. The keySelector method is passed an input element of type T and will return the field within
the element that is to be used as the key value, of type K, for the input element. Types T and K may be the
same or different types. The value returned by the keySelector method must implement the
IComparable interface. The ThenBy operator will order the input sequence in ascending order based on
those returned keys.

There is a second prototype like this:

The Second ThenBy Prot otype

public static IOrderedEnumerable<T> ThenBy<T, K>(
 this IOrderedEnumerable<T> source,
 Func<T, K> keySelector,
 IComparer<K> comparer);

This prototype is the same as the first except it allows for a comparer object to be passed. If this

version of the ThenBy operator is used, then it is not necessary that type K implement the IComparable
interface.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 4-23 shows an example of the first prototype.

Listing 4-23. An Example Calling the First ThenBy Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",

CHAPTER 4 ■ DEFERRED OPERATORS

109

 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.OrderBy(s => s.Length).ThenBy(s => s);

foreach (string item in items)
 Console.WriteLine(item);

This example first orders by the input element length, which in this case is the length of the

president’s name. It then orders by the element itself. The result is that the names are presented in
length order, smallest to largest (ascending), and then alphabetically by name, ascending. Here is the
proof:

Bush
Ford
Polk
Taft
Adams
Grant
Hayes
Nixon
Obama
Tyler
Arthur
Carter
Hoover
Monroe
Pierce
Reagan
Taylor
Truman
Wilson
Clinton
Harding
Jackson
Johnson
Kennedy
Lincoln
Madison
Buchanan
Coolidge
Fillmore
Garfield
Harrison
McKinley
Cleveland
Jefferson
Roosevelt

CHAPTER 4 ■ DEFERRED OPERATORS

110

Van Buren
Eisenhower
Washington

For an example of the second ThenBy operator prototype, we will again use our
MyVowelToConsonantRatioComparer comparer object that we introduced in the example of the second
OrderBy prototype. However, to call ThenBy, we first must call either OrderBy or OrderByDescending.
For this example, we will call OrderBy and order by the number of characters in the name. This way, the
names will be ordered ascending by the number of characters, and then within each grouping of names
by length, they will be ordered by their vowel to consonant ratio. Listing 4-24 shows the example.

Listing 4-24. An Example of the Second ThenBy Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

MyVowelToConsonantRatioComparer myComp = new MyVowelToConsonantRatioComparer();

IEnumerable<string> namesByVToCRatio = presidents
 .OrderBy(n => n.Length)
 .ThenBy((s => s), myComp);

foreach (string item in namesByVToCRatio)
{
 int vCount = 0;
 int cCount = 0;

 myComp.GetVowelConsonantCount(item, ref vCount, ref cCount);
 double dRatio = (double)vCount / (double)cCount;

 Console.WriteLine(item + " - " + dRatio + " - " + vCount + ":" + cCount);
}

This code gives the following results:

Bush - 0.333333333333333 - 1:3
Ford - 0.333333333333333 - 1:3
Polk - 0.333333333333333 - 1:3
Taft - 0.333333333333333 - 1:3
Grant - 0.25 - 1:4
Adams - 0.666666666666667 - 2:3

CHAPTER 4 ■ DEFERRED OPERATORS

111

Nixon - 0.666666666666667 - 2:3
Tyler - 0.666666666666667 - 2:3
Hayes - 1.5 - 3:2
Obama - 1.5 - 3:2
Arthur - 0.5 - 2:4
Carter - 0.5 - 2:4
Truman - 0.5 - 2:4
Wilson - 0.5 - 2:4
Hoover - 1 - 3:3
Monroe - 1 - 3:3
Pierce - 1 - 3:3
Reagan - 1 - 3:3
Taylor - 1 - 3:3
Clinton - 0.4 - 2:5
Harding - 0.4 - 2:5
Jackson - 0.4 - 2:5
Johnson - 0.4 - 2:5
Lincoln - 0.4 - 2:5
Kennedy - 0.75 - 3:4
Madison - 0.75 - 3:4
Buchanan - 0.6 - 3:5
Fillmore - 0.6 - 3:5
Garfield - 0.6 - 3:5
Harrison - 0.6 - 3:5
McKinley - 0.6 - 3:5
Coolidge - 1 - 4:4
Cleveland - 0.5 - 3:6
Jefferson - 0.5 - 3:6
Van Buren - 0.5 - 3:6
Roosevelt - 0.8 - 4:5
Washington - 0.428571428571429 - 3:7
Eisenhower - 1 - 5:5

As we intended, the names are first ordered by their length, then by their vowel to consonant ratio.

ThenByDescending
This operator is prototyped and behaves just like the ThenBy operator, except that it orders in
descending order.

Prototypes

This operator has two prototypes we will cover.

CHAPTER 4 ■ DEFERRED OPERATORS

112

The Fi rst ThenByD escendi ng Prot otype

public static IOrderedEnumerable<T> ThenByDescending<T, K>(
 this IOrderedEnumerable<T> source,
 Func<T, K> keySelector)
where
 K : IComparable<K>;

This prototype of the operator behaves the same as the first prototype of the ThenBy operator,

except it orders in descending order.
ThenByDescending has a second prototype that looks like the following:

The Second ThenBy Descendi ng Prot otype

public static IOrderedEnumerable<T> ThenByDescending<T, K>(
 this IOrderedEnumerable<T> source,
 Func<T, K> keySelector,
 IComparer<K> comparer);

This prototype is the same as the first except it allows for a comparer object to be passed. If this

version of the ThenByDescending operator is used, then it is not necessary that K implement the
IComparable interface.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

For our example of the first prototype for the ThenByDescending operator, we will use the same basic
example we used in the example of the first prototype of the ThenBy operator, except we will call
ThenByDescending instead of ThenBy. Listing 4-25 shows this example.

Listing 4-25. An Example Calling the First ThenByDescending Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items =
 presidents.OrderBy(s => s.Length).ThenByDescending(s => s);

foreach (string item in items)

CHAPTER 4 ■ DEFERRED OPERATORS

113

 Console.WriteLine(item);

This produces output where the names within each name length are sorted alphabetically in

descending order, which is the reverse order that the ThenBy operator provided:

Taft
Polk
Ford
Bush
Tyler
Obama
Nixon
Hayes
Grant
Adams
Wilson
Truman
Taylor
Reagan
Pierce
Monroe
Hoover
Carter
Arthur
Madison
Lincoln
Kennedy
Johnson
Jackson
Harding
Clinton
McKinley
Harrison
Garfield
Fillmore
Coolidge
Buchanan
Van Buren
Roosevelt
Jefferson
Cleveland
Washington
Eisenhower

For our example of the second prototype of the ThenByDescending operator, which is shown in
Listing 4-26, we will use the same example that we did for the second prototype of the ThenBy operator,
except we will call ThenByDescending instead of ThenBy.

CHAPTER 4 ■ DEFERRED OPERATORS

114

Listing 4-26. An Example of the Second ThenByDescending Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

MyVowelToConsonantRatioComparer myComp = new MyVowelToConsonantRatioComparer();

IEnumerable<string> namesByVToCRatio = presidents
 .OrderBy(n => n.Length)
 .ThenByDescending((s => s), myComp);

foreach (string item in namesByVToCRatio)
{
 int vCount = 0;
 int cCount = 0;

 myComp.GetVowelConsonantCount(item, ref vCount, ref cCount);
 double dRatio = (double)vCount / (double)cCount;

 Console.WriteLine(item + " - " + dRatio + " - " + vCount + ":" + cCount);
}

This code provides the following results:

Bush - 0.333333333333333 - 1:3
Ford - 0.333333333333333 - 1:3
Polk - 0.333333333333333 - 1:3
Taft - 0.333333333333333 - 1:3
Hayes - 1.5 - 3:2
Obama - 1.5 - 3:2
Adams - 0.666666666666667 - 2:3
Nixon - 0.666666666666667 - 2:3
Tyler - 0.666666666666667 - 2:3
Grant - 0.25 - 1:4
Hoover - 1 - 3:3
Monroe - 1 - 3:3
Pierce - 1 - 3:3
Reagan - 1 - 3:3
Taylor - 1 - 3:3
Arthur - 0.5 - 2:4
Carter - 0.5 - 2:4

CHAPTER 4 ■ DEFERRED OPERATORS

115

Truman - 0.5 - 2:4
Wilson - 0.5 - 2:4
Kennedy - 0.75 - 3:4
Madison - 0.75 - 3:4
Clinton - 0.4 - 2:5
Harding - 0.4 - 2:5
Jackson - 0.4 - 2:5
Johnson - 0.4 - 2:5
Lincoln - 0.4 - 2:5
Coolidge - 1 - 4:4
Buchanan - 0.6 - 3:5
Fillmore - 0.6 - 3:5
Garfield - 0.6 - 3:5
Harrison - 0.6 - 3:5
McKinley - 0.6 - 3:5
Roosevelt - 0.8 - 4:5
Cleveland - 0.5 - 3:6
Jefferson - 0.5 - 3:6
Van Buren - 0.5 - 3:6
Eisenhower - 1 - 5:5
Washington - 0.428571428571429 - 3:7

Just as we anticipated, the names are ordered first by ascending length and then by the ratio of their
vowels to consonants, descending.

Reverse
The reverse operator outputs a sequence of the same type as the input sequence but in the reverse order.

Prototypes

There is one prototype for this operator we will cover.

The R everse Prot otyp e

public static IEnumerable<T> Reverse<T>(
 this IEnumerable<T> source);

This operator returns an object that, when enumerated, enumerates the elements of the input

sequence named source and yields elements for the output sequence in reverse order.

Exceptions

ArgumentNullException is thrown if the source argument is null.

CHAPTER 4 ■ DEFERRED OPERATORS

116

Examples

Listing 4-27 is an example of the prototype of the Reverse operator.

Listing 4-27. An Example Calling the Reverse Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> items = presidents.Reverse();

foreach (string item in items)
 Console.WriteLine(item);

If this works properly, we should see the presidents in the reverse order of the order in the

presidents array. Here are the results of the previous code:

Wilson
Washington
Van Buren
…
Bush
Buchanan
Arthur
Adams

Join
The join operators perform joins across multiple sequences.

Join
The Join operator performs an inner equijoin on two sequences based on keys extracted from each
element in the sequences.

Prototypes

The Join operator has one prototype we will cover.

CHAPTER 4 ■ DEFERRED OPERATORS

117

The Joi n Prot otype

public static IEnumerable<V> Join<T, U, K, V>(
 this IEnumerable<T> outer,
 IEnumerable<U> inner,
 Func<T, K> outerKeySelector,
 Func<U, K> innerKeySelector,
 Func<T, U, V> resultSelector);

Notice that the first argument of the method is named outer. Since this is an extension method, the

sequence we call the Join operator on will be referred to as the outer sequence.
The Join operator will return an object that, when enumerated, will first enumerate the inner

sequence of type U elements, calling the innerKeySelector method once for each element and storing
the element, referenced by its key, in a hash table. Next, the returned object will enumerate the outer
sequence of type T elements. As the returned object enumerates each outer sequence element, it will
call the outerKeySelector method to obtain its key and retrieve the matching inner sequence elements
from the hash table using that key. For each outer sequence element and matching inner sequence
element pair, the returned object will call the resultSelector method passing both the outer element
and the matching inner element. The resultSelector method will return an instantiated object of
type V, which the returned object will place in the output sequence of type V.

The order of the outer sequence elements will be preserved, as will the order of the inner elements
within each outer element.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

For this operator’s example, instead of using the presidents array that most examples use, we will use
the two common classes defined at the beginning of this chapter, Employee and EmployeeOptionEntry.

Here is an example calling the Join operator using those classes. We have formatted the code in
Listing 4-28 a little differently than is typical to make each Join argument more easily readable.

Listing 4-28. Example Code Calling the Join Operator

Employee[] employees = Employee.GetEmployeesArray();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();

var employeeOptions = employees
 .Join(
 empOptions, // inner sequence
 e => e.id, // outerKeySelector
 o => o.id, // innerKeySelector
 (e, o) => new // resultSelector
 {

CHAPTER 4 ■ DEFERRED OPERATORS

118

 id = e.id,
 name = string.Format("{0} {1}", e.firstName, e.lastName),
 options = o.optionsCount
 });

foreach (var item in employeeOptions)
 Console.WriteLine(item);

In the preceding code, we first obtain a couple arrays of data to join using the two common classes.

Because we are calling the Join operator on the employees array, it becomes the outer sequence, and
empOptions becomes the inner sequence. Here are the results of the Join operator:

{ id = 1, name = Joe Rattz, options = 2 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 3, name = Anders Hejlsberg, options = 5000 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 4, name = David Lightman, options = 1500 }
{ id = 101, name = Kevin Flynn, options = 2 }

Notice that resultSelector is creating an anonymous class as the element type for the resulting
output sequence. You can detect it is an anonymous class because there is no class name specified in the
call to new. Because the type is anonymous, it is a necessity that the resulting output sequence be stored
in a variable whose type is specified using the var keyword. You cannot specify it is an IEnumerable<>
of some type, because there is no named type of which to declare it as an IEnumerable.

■ TTip When the last operator called is returning a sequence of an anonymous type, you must use the var

keyword to store the sequence.

GroupJoin
The GroupJoin operator performs a grouped join on two sequences based on keys extracted from each
element in the sequences.

The GroupJoin operator works very similarly to the Join operator with the exception that the Join
operator passes a single outer sequence element with a single matching inner sequence element to the
resultSelector method. This means that multiple matching inner sequence elements for a single
outer sequence element result in multiple calls to resultSelector for the outer sequence element.
With the GroupJoin operator, all matching inner sequence elements for a specific outer sequence
element are passed to resultSelector as a sequence of that type of element, resulting in the
resultSelector method being called only once for each outer sequence element.

CHAPTER 4 ■ DEFERRED OPERATORS

119

Prototypes

This operator has one prototype we will cover.

The GroupJoin Prot otype

public static IEnumerable<V> GroupJoin<T, U, K, V>(
 this IEnumerable<T> outer,
 IEnumerable<U> inner,
 Func<T, K> outerKeySelector,
 Func<U, K> innerKeySelector,
 Func<T, IEnumerable<U>, V> resultSelector);

Notice that the first argument of the method is named outer. Since this is an extension method, the

sequence the GroupJoin operator is called on will be referred to as the outer sequence.
The GroupJoin operator will return an object that, when enumerated, will first enumerate the

inner sequence of type U elements, calling the innerKeySelector method once for each element and
storing the element, referenced by its key, in a hash table. Next, the returned object will enumerate the
outer sequence of type T elements. As the returned object enumerates each outer sequence element, it
will call the outerKeySelector method to obtain its key and retrieve the matching inner sequence
elements from the hash table using that key. For each outer sequence element, the returned object will
call the resultSelector method, passing both the outer element and a sequence of the matching
inner elements so that resultSelector can return an instantiated object of type V, which the returned
object will place in the output sequence of type V.

The order of the outer sequence elements will be preserved, as will the order of the inner elements
within each outer element.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

For the GroupJoin example, we will use the same Employee and EmployeeOptionEntry classes that we
used in the Join example. Our sample code, which appears in Listing 4-29, will join the employees to the
options and calculate a sum of the options for each employee using the GroupJoin operator.

Listing 4-29. An Example of the GroupJoin Operator

Employee[] employees = Employee.GetEmployeesArray();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();

var employeeOptions = employees
 .GroupJoin(
 empOptions,
 e => e.id,

CHAPTER 4 ■ DEFERRED OPERATORS

120

 o => o.id,
 (e, os) => new
 {
 id = e.id,
 name = string.Format("{0} {1}", e.firstName, e.lastName),
 options = os.Sum(o => o.optionsCount)
 });

foreach (var item in employeeOptions)
 Console.WriteLine(item);

The preceding code is almost identical to the example for the Join operator. However, if you

examine the second input argument of the lambda expression passed as the resultSelector method,
you will notice that we called the input argument o in the Join example, but we are calling it os in this
example. This is because, in the Join example, a single employee option object, o, is passed in this
argument, but in the GroupJoin example, a sequence of employee option objects, os, is being passed.
Then, the last member of our instantiated anonymous object is being set to the sum of the sequence of
employee option objects’ optionsCount members using the Sum operator that we will be covering in the
next chapter (since it is not a deferred query operator). For now, you just need to understand that the
Sum operator has the ability to calculate the sum of each element or a member of each element in an
input sequence.

This code will provide the following results:

{ id = 1, name = Joe Rattz, options = 2 }
{ id = 2, name = William Gates, options = 30000 }
{ id = 3, name = Anders Hejlsberg, options = 20000 }
{ id = 4, name = David Lightman, options = 1500 }
{ id = 101, name = Kevin Flynn, options = 2 }

Notice that, in these results, there is one record for each employee containing the sum of all of that
employee’s option records. Contrast this with the Join operator’s example where there was a separate
record for each of the employee’s option records.

Grouping
The grouping operators assist with grouping elements of a sequence together by a common key.

GroupBy
The GroupBy operator is used to group elements of an input sequence.

CHAPTER 4 ■ DEFERRED OPERATORS

121

Prototypes

All prototypes of the GroupBy operator return a sequence of IGrouping<K, T> elements. IGrouping<K,
T> is an interface defined as follows:

The IGroupi ng<K, T> Interf ace

public interface IGrouping<K, T> : IEnumerable<T>
{
 K Key { get; }
}

So, an IGrouping is a sequence of type T with a key of type K.
There are four prototypes we will cover.

The Fi rst GroupBy Prototyp e

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector);

This prototype of the GroupBy operator returns an object that when enumerated, enumerates the

input source sequence, calls the keySelector method, collects each element with its key, and yields a
sequence of IGrouping<K, E> instances, where each IGrouping<K, E> element is a sequence of
elements with the same key value. Key values are compared using the default equality comparer,
EqualityComparerDefault. Said another way, the return value of the GroupBy method is a sequence of
IGrouping objects, each containing a key and a sequence of the elements from the input sequence
having that same key.

The order of the IGrouping instances will be in the same order that the keys occurred in the source
sequence, and each element in the IGrouping sequence will be in the order that element was found in
the source sequence.

The Second GroupBy Protot ype

public static IEnumerable<IGrouping<K, T>> GroupBy<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 IEqualityComparer<K> comparer);

This prototype of the GroupBy operator is just like the first except instead of using the default

equality comparer, EqualityComparerDefault, you provide one.

The Third GroupBy Prot otype

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(
 this IEnumerable<T> source,

CHAPTER 4 ■ DEFERRED OPERATORS

122

 Func<T, K> keySelector,
 Func<T, E> elementSelector);

This prototype of the GroupBy operator is just like the first except instead of the entire source

element being the element in the output IGrouping sequence for its key, you may specify which part of
the input element is output with the elementSelector.

The F ourth GroupBy Prototyp e

public static IEnumerable<IGrouping<K, E>> GroupBy<T, K, E>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

This prototype of the GroupBy operator is a combination of the second and third so that you may

specify a comparer with the comparer argument, and you may output elements of a different type than
the input element type using the elementSelector argument.

Exceptions

ArgumentNullException is thrown if any argument other than the comparer argument is null.

Examples

For our example of the first GroupBy prototype, we will use the common EmployeeOptionEntry class. In
this example, in Listing 4-30, we are going to group our EmployeeOptionEntry records by id and display
them.

Listing 4-30. An Example of the First GroupBy Prototype

EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();
IEnumerable<IGrouping<int, EmployeeOptionEntry>> outerSequence =
 empOptions.GroupBy(o => o.id);

// First enumerate through the outer sequence of IGroupings.
foreach (IGrouping<int, EmployeeOptionEntry> keyGroupSequence in outerSequence)
{
 Console.WriteLine("Option records for employee: " + keyGroupSequence.Key);

 // Now enumerate through the grouping's sequence of EmployeeOptionEntry
elements.
 foreach (EmployeeOptionEntry element in keyGroupSequence)
 Console.WriteLine("id={0} : optionsCount={1} : dateAwarded={2:d}",
 element.id, element.optionsCount, element.dateAwarded);
}

CHAPTER 4 ■ DEFERRED OPERATORS

123

In the preceding code, notice we are enumerating through an outer sequence named
outerSequence, where each element is an object implementing IGrouping containing the key and a
sequence of EmployeeOptionEntry elements having that same key.

Here are the results:

Option records for employee: 1
id=1 : optionsCount=2 : dateAwarded=12/31/1999
Option records for employee: 2
id=2 : optionsCount=10000 : dateAwarded=6/30/1992
id=2 : optionsCount=10000 : dateAwarded=1/1/1994
id=2 : optionsCount=10000 : dateAwarded=4/1/2003
Option records for employee: 3
id=3 : optionsCount=5000 : dateAwarded=9/30/1997
id=3 : optionsCount=7500 : dateAwarded=9/30/1998
id=3 : optionsCount=7500 : dateAwarded=9/30/1998
Option records for employee: 4
id=4 : optionsCount=1500 : dateAwarded=12/31/1997
Option records for employee: 101
id=101 : optionsCount=2 : dateAwarded=12/31/1998

For an example of the second GroupBy prototype, let’s assume we know that any employee whose
id is less than 100 is considered a founder of the company. Those with an id of 100 or greater are not
considered founders. Our task is to list all option records grouped by the option record’s employee
founder status. All founders’ option records will be grouped together, and all nonfounders’ option
records will be grouped together.

Now, we need an equality comparer that can handle this key comparison for us. Our equality
comparer must implement the IEqualityComparer interface. Before examining our comparer, let’s take
a look at the interface.

The iIE quality Comp arer<T> Interf ace

interface IEqualityComparer<T> {
 bool Equals(T x, T y);
 int GetHashCode(T x);
}

This interface requires us to implement two methods, Equals and GetHashCode. The Equals

method is passed two objects of the same type T and returns true if the two objects are considered to be
equal or false otherwise. The GetHashCode method is passed a single object and returns a hash code of
type int for that object.

A hash code is a numerical value, typically mathematically calculated based on some portion of the
data in an object, known as the key, for the purpose of uniquely identifying the object. That calculated
hash code functions as the index into some data structure to store that object and find it at a later time.
Since it is typical for multiple keys to produce the same hash code, thereby making the hash code truly
less than unique, it is also necessary to be able to determine whether two keys are equal. This is the
purpose of the Equals method.

Here is our class implementing the IEqualityComparer interface.

CHAPTER 4 ■ DEFERRED OPERATORS

124

A Class Implementi ng the IEquality Comp arer Interface for My Second GroupBy Example

public class MyFounderNumberComparer : IEqualityComparer<int>
{
 public bool Equals(int x, int y)
 {
 return(isFounder(x) == isFounder(y));
 }

 public int GetHashCode(int i)
 {
 int f = 1;
 int nf = 100;
 return (isFounder(i) ? f.GetHashCode() : nf.GetHashCode());
 }

 public bool isFounder(int id)
 {
 return(id < 100);
 }
}

In addition to the methods required by the interface, we have added a method, isFounder, to

determine whether an employee is a founder based on our definition. This just makes the code a little
easier to understand. We have made that method public so that we can call it from outside the interface,
which you will see us do in our example.

Our equality comparer is going to consider any integer less than 100 as representing a founder, and
if two integers signify either both founders or both nonfounders, they are considered equal. For the
purposes of producing a hash code, we return a hash code of 1 for a founder and 100 for a nonfounder so
that all founders end up in the same group and all nonfounders end up in another group.

Our GroupBy example code is in Listing 4-31.

Listing 4-31. An Example of the Second GroupBy Prototype

MyFounderNumberComparer comp = new MyFounderNumberComparer();

EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();
IEnumerable<IGrouping<int, EmployeeOptionEntry>> opts = empOptions
 .GroupBy(o => o.id, comp);

// First enumerate through the sequence of IGroupings.
foreach (IGrouping<int, EmployeeOptionEntry> keyGroup in opts)
{
 Console.WriteLine("Option records for: " +
 (comp.isFounder(keyGroup.Key) ? "founder" : "non-founder"));

CHAPTER 4 ■ DEFERRED OPERATORS

125

 // Now enumerate through the grouping's sequence of EmployeeOptionEntry
elements.
 foreach (EmployeeOptionEntry element in keyGroup)
 Console.WriteLine("id={0} : optionsCount={1} : dateAwarded={2:d}",
 element.id, element.optionsCount, element.dateAwarded);
}

In the example, we instantiate our equality comparer object ahead of time, as opposed to doing it in

the call to the GroupBy method, so that we can use it to call the isFounder method in the foreach loop.
Here are the results from this code:

Option records for: founder
id=1 : optionsCount=2 : dateAwarded=12/31/1999
id=2 : optionsCount=10000 : dateAwarded=6/30/1992
id=2 : optionsCount=10000 : dateAwarded=1/1/1994
id=3 : optionsCount=5000 : dateAwarded=9/30/1997
id=2 : optionsCount=10000 : dateAwarded=4/1/2003
id=3 : optionsCount=7500 : dateAwarded=9/30/1998
id=3 : optionsCount=7500 : dateAwarded=9/30/1998
id=4 : optionsCount=1500 : dateAwarded=12/31/1997
Option records for: non-founder
id=101 : optionsCount=2 : dateAwarded=12/31/1998

As you can see, all employee options records for an employee whose id is less than 100 are grouped
with the founders. Otherwise, they are grouped with the nonfounders.

For an example of the third GroupBy prototype, we’ll assume we are interested only in getting the
dates that the options were awarded for each employee. This code will be very similar to the example for
the first prototype.

So in Listing 4-32, instead of returning a sequence of groupings of EmployeeOptionEntry objects,
we will have groupings of dates.

Listing 4-32. An Example of the Third GroupBy Prototype

EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();
IEnumerable<IGrouping<int, DateTime>> opts = empOptions
 .GroupBy(o => o.id, e => e.dateAwarded);

// First enumerate through the sequence of IGroupings.
foreach (IGrouping<int, DateTime> keyGroup in opts)
{
 Console.WriteLine("Option records for employee: " + keyGroup.Key);

 // Now enumerate through the grouping's sequence of DateTime elements.
 foreach (DateTime date in keyGroup)
 Console.WriteLine(date.ToShortDateString());
}

CHAPTER 4 ■ DEFERRED OPERATORS

126

Notice that in the call to the GroupBy operator, elementSelector, the second argument, is just

returning the dateAwarded member. Because we are returning a DateTime, our IGrouping is now for a
type of DateTime, instead of EmployeeOptionEntry.

Just as you would expect, we now have the award dates of the options grouped by employee:

Option records for employee: 1
12/31/1999
Option records for employee: 2
6/30/1992
1/1/1994
4/1/2003
Option records for employee: 3
9/30/1997
9/30/1998
9/30/1998
Option records for employee: 4
12/31/1997
Option records for employee: 101
12/31/1998

For the fourth and final prototype, we need to use an elementSelector method and a comparer
object, so we will use a combination of the examples for prototypes two and three. We want to group the
dates of awarded options by whether they were awarded to a founding employee, where a founding
employee is one whose id is less than 100. That code is in Listing 4-33.

Listing 4-33. An Example of the Fourth GroupBy Prototype

MyFounderNumberComparer comp = new MyFounderNumberComparer();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();
IEnumerable<IGrouping<int, DateTime>> opts = empOptions
 .GroupBy(o => o.id, o => o.dateAwarded, comp);

// First enumerate through the sequence of IGroupings.
foreach (IGrouping<int, DateTime> keyGroup in opts)
{
 Console.WriteLine("Option records for: " +
 (comp.isFounder(keyGroup.Key) ? "founder" : "non-founder"));

 // Now enumerate through the grouping's sequence of EmployeeOptionEntry
elements.
 foreach (DateTime date in keyGroup)
 Console.WriteLine(date.ToShortDateString());
}

CHAPTER 4 ■ DEFERRED OPERATORS

127

In the output, we should see just dates grouped by founders and nonfounders:

Option records for: founder
12/31/1999
6/30/1992
1/1/1994
9/30/1997
4/1/2003
9/30/1998
9/30/1998
12/31/1997
Option records for: non-founder
12/31/1998

Set
The set operators are used to perform mathematical set-type operations on sequences.

■ TTip The prototypes of the set operators that are covered in this chapter do not work properly for DataSets. For

use with DataSets, use the prototypes that are covered in Chapter 10.

Distinct
The Distinct operator removes duplicate elements from an input sequence.

Prototypes

The Distinct operator has one prototype we will cover.

The Distinct Protot ype

public static IEnumerable<T> Distinct<T>(
 this IEnumerable<T> source);

This operator returns an object that, when enumerated, enumerates the elements of the input

sequence named source and yields any element that is not equal to a previously yielded element. An
element is determined to be equal to another element using their GetHashCode and Equals methods.

Isn’t it fortuitous that we just covered how and why the GetHashCode and Equals methods are
used?

CHAPTER 4 ■ DEFERRED OPERATORS

128

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

For this example, we are going to first display the count of the presidents array, and next we will
concatenate the presidents array with itself, display the count of the resulting concatenated sequence,
then call the Distinct operator on that concatenated sequence, and finally display the count of the
distinct sequence, which should be the same as the initial presidents array.

To determine the count of the two generated sequences, we will use the Count Standard Query
Operator. Since it is a nondeferred operator, we will not cover it in this chapter. We will cover it in the
next chapter, though. For now, just be aware that it returns the count of the sequence on which it is
called.

The code is in Listing 4-34.

Listing 4-34. An Example of the Distinct Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Display the count of the presidents array.
Console.WriteLine("presidents count: " + presidents.Count());

// Concatenate presidents with itself. Now each element should
// be in the sequence twice.
IEnumerable<string> presidentsWithDupes = presidents.Concat(presidents);
// Display the count of the concatenated sequence.
Console.WriteLine("presidentsWithDupes count: " + presidentsWithDupes.Count());

// Eliminate the duplicates and display the count.
IEnumerable<string> presidentsDistinct = presidentsWithDupes.Distinct();
Console.WriteLine("presidentsDistinct count: " + presidentsDistinct.Count());

If this works as we expect, the count of the elements in the presidentsDistinct sequence should

equal the count of the elements in the presidents sequence. Will our results indicate success?

presidents count: 38
presidentsWithDupes count: 76
presidentsDistinct count: 38

CHAPTER 4 ■ DEFERRED OPERATORS

129

Yes, they do!

Union
The Union operator returns a sequence of the set union of two source sequences.

Prototypes

This operator has one prototype we will cover.

The Uni on Prot otype

public static IEnumerable<T> Union<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second);

This operator returns an object that, when enumerated, first enumerates the elements of the input

sequence named first, yielding any element that is not equal to a previously yielded element, and then
enumerates the second input sequence, again yielding any element that is not equal to a previously
yielded element. An element is determined to be equal to another element using their GetHashCode and
Equals methods.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

To demonstrate the difference between the Union operator and the Concat operator we covered
previously, in the example in Listing 4-35, we will create a first and second sequence from our
presidents array that results in the fifth element being duplicated in both sequences. We will then
display the count of the presidents array and the first and second sequences, as well as the count of a
concatenated and union sequence.

Listing 4-35. An Example of the Union Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> first = presidents.Take(5);
IEnumerable<string> second = presidents.Skip(4);

CHAPTER 4 ■ DEFERRED OPERATORS

130

// Since we only skipped 4 elements, the fifth element
// should be in both sequences.

IEnumerable<string> concat = first.Concat<string>(second);
IEnumerable<string> union = first.Union<string>(second);

Console.WriteLine("The count of the presidents array is: " + presidents.Count());
Console.WriteLine("The count of the first sequence is: " + first.Count());
Console.WriteLine("The count of the second sequence is: " + second.Count());
Console.WriteLine("The count of the concat sequence is: " + concat.Count());
Console.WriteLine("The count of the union sequence is: " + union.Count());

If this works properly, the concat sequence should have one more element than the presidents

array. The union sequence should contain the same number of elements as the presidents array. The
proof, however, is in the pudding:

The count of the presidents array is: 38
The count of the first sequence is: 5
The count of the second sequence is: 34
The count of the concat sequence is: 39
The count of the union sequence is: 38

Success!

Intersect
The Intersect operator returns the set intersection of two source sequences.

Prototypes

The Intersect operator has one prototype we will cover.

The Intersect Prot otype

public static IEnumerable<T> Intersect<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second);

This operator returns an object that, when enumerated, first enumerates the elements of the input

sequence named second, collecting any element that is not equal to a previously collected element. It
then enumerates the first input sequence, yielding any element also existing in the collection of
elements from the second sequence. An element is determined to be equal to another element using
their GetHashCode and Equals methods.

CHAPTER 4 ■ DEFERRED OPERATORS

131

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

For our example of the Intersect operator in Listing 4-36, we will use the Take and Skip operators to
generate two sequences and get some overlap, just like we did in the Union operator example, where we
intentionally duplicated the fifth element. When we call the Intersect operator on those two generated
sequences, only the duplicated fifth element should be in the returned intersect sequence. We will
display the counts of the presidents array and all the sequences. Lastly, we will enumerate through the
intersect sequence displaying each element, which should only be the fifth element of the presidents
array.

Listing 4-36. An Example of the Intersect Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> first = presidents.Take(5);
IEnumerable<string> second = presidents.Skip(4);
// Since we only skipped 4 elements, the fifth element
// should be in both sequences.

IEnumerable<string> intersect = first.Intersect(second);

Console.WriteLine("The count of the presidents array is: " + presidents.Count());
Console.WriteLine("The count of the first sequence is: " + first.Count());
Console.WriteLine("The count of the second sequence is: " + second.Count());
Console.WriteLine("The count of the intersect sequence is: " + intersect.Count());

// Just for kicks, we will display the intersection sequence,
// which should be just the fifth element.
foreach (string name in intersect)
 Console.WriteLine(name);

If this works the way it should, we should have an Intersect sequence with just one element

containing the duplicated fifth element of the presidents array, "Carter":

The count of the presidents array is: 38
The count of the first sequence is: 5

CHAPTER 4 ■ DEFERRED OPERATORS

132

The count of the second sequence is: 34
The count of the intersect sequence is: 1
Carter

LINQ rocks! How many times have you needed to perform set-type operations on two collections?
Wasn’t it a pain? Thanks to LINQ, those days are gone.

Except
The Except operator returns a sequence that contains all the elements of a first sequence that do not
exist in a second sequence.

Prototypes

This operator has one prototype we will cover.

The Except Prot otype

public static IEnumerable<T> Except<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second);

This operator returns an object that, when enumerated, enumerates the elements of the input

sequence named second, collecting any element that is not equal to a previously collected element. It
then enumerates the first input sequence, yielding any element from the first sequence not existing in
the collection of elements from the second sequence. An element is determined to be equal to another
element using their GetHashCode and Equals methods.

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

For this example, we will use the presidents array that we use in most of the examples. Imagine a
scenario where you have a primary data source, the presidents array, with entries that you need to
perform some processing on. As you complete the processing of each entry, you want to add it to a
collection of processed entries so that if you need to start processing again, you can use the Except
operator to produce an exception sequence consisting of the primary data source elements, minus the
entries from the processed entry collection. You can then process this exception sequence again without
the concern of reprocessing an entry.

For this example in Listing 4-37, we will pretend that we have already processed the first four
entries. To obtain a sequence containing the first four elements of the presidents array, we will just call
the Take operator on it.

CHAPTER 4 ■ DEFERRED OPERATORS

133

Listing 4-37. An Example of the Except Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// First generate a processed sequence.
IEnumerable<string> processed = presidents.Take(4);

IEnumerable<string> exceptions = presidents.Except(processed);
foreach (string name in exceptions)
 Console.WriteLine(name);

In this example, our results should contain the names of the presidents array after the fourth

element, "Bush":

Carter
Cleveland
Clinton
Coolidge
Eisenhower
Fillmore
Ford
Garfield
Grant
Harding
Harrison
Hayes
Hoover
Jackson
Jefferson
Johnson
Kennedy
Lincoln
Madison
McKinley
Monroe
Nixon
Obama
Pierce
Polk
Reagan

CHAPTER 4 ■ DEFERRED OPERATORS

134

Roosevelt
Taft
Taylor
Truman
Tyler
Van Buren
Washington
Wilson

That worked just as we would have expected.

Conversion
The conversion operators provide a simple and convenient way of converting sequences to other
collection types.

Cast
The Cast operator is used to cast every element of an input sequence to an output sequence of the
specified type.

Prototypes

The Cast operator has one prototype we will cover.

The Cast Prototype

public static IEnumerable<T> Cast<T>(
 this IEnumerable source);

The first thing you should notice about the Cast operator is that its first argument, named source,

is of type IEnumerable, not IEnumerable<T>, while most of the deferred Standard Query Operators’ first
arguments are of type IEnumerable<T>. This is because the Cast operator is designed to be called on
classes that implement the IEnumerable interface, as opposed to the IEnumerable<T> interface. In
particular, we are talking about all the legacy collections prior to C# 2.0 and generics.

You can call the Cast operator on a legacy collection as long as it implements IEnumerable, and an
IEnumerable<T> output sequence will be created. Since most of the Standard Query Operators only
work on IEnumerable<T> type sequences, you must call some method like this one, or perhaps the
OfType operator that we will cover next, to get a legacy collection converted to a sequence the Standard
Query Operators can be called on. This is important when trying to use the Standard Query Operators on
legacy collections.

This operator will return an object that, when enumerated, enumerates the source data collection,
yielding each element cast to type T. If the element cannot be cast to type T, an exception will be thrown.
Because of this, this operator should be called only when it is known that every element in the sequence
can be cast to type T.

CHAPTER 4 ■ DEFERRED OPERATORS

135

■ TTip When trying to perform LINQ queries on legacy collections, don’t forget to call Cast or OfType on the

legacy collection to create an IEnumerable<T> sequence that the Standard Query Operators can be called on.

Exceptions

ArgumentNullException is thrown if the source argument is null, and InvalidCastException is
thrown if an element in the input source collection cannot be cast to type T.

Examples

For this example, we will use our common Employee class’s GetEmployeesArrayList method to return
a legacy, nongeneric ArrayList.

In Listing 4-38 is some code illustrating how the data type of the elements of an ArrayList get cast
to elements in a sequence, IEnumerable<T>.

Listing 4-38. Code Converting an ArrayList to an IEnumerable<T> That Can Be Used with the Typical

Standard Query Operators

ArrayList employees = Employee.GetEmployeesArrayList();
Console.WriteLine("The data type of employees is " + employees.GetType());

var seq = employees.Cast<Employee>();
Console.WriteLine("The data type of seq is " + seq.GetType());

var emps = seq.OrderBy(e => e.lastName);
foreach (Employee emp in emps)
 Console.WriteLine("{0} {1}", emp.firstName, emp.lastName);

First we call the GetEmployeesArrayList method to return an ArrayList of Employee objects, and

then we display the data type of the employees variable. Next we convert that ArrayList to an
IEnumerable<T> sequence by calling the Cast operator, and then we display the data type of the
returned sequence. Lastly, we enumerate through that returned sequence to prove that the ordering did
indeed work.

Here is the output from the code:

The data type of employees is System.Collections.ArrayList
The data type of seq is
System.Linq.Enumerable+<CastIterator>d__b0`1[LINQChapter4.Employee]
Kevin Flynn
William Gates
Anders Hejlsberg
David Lightman
Joe Rattz

CHAPTER 4 ■ DEFERRED OPERATORS

136

You can see the data type of the employees variable is an ArrayList. It is a little more difficult
determining what the data type of seq is. We can definitely see it is different, and it looks like a sequence.
We can also see the word CastIterator in its type. Have you noticed that when we discuss the deferred
operators that they don’t actually return the output sequence but really return an object that, when
enumerated, would yield the elements to the output sequence? The seq variable’s data type displayed in
the previous example is just this kind of object. However, this is an implementation detail and could
change.

■ CCaution The Cast operator will attempt to cast each element in the input sequence to the specified type. If
any of those elements cannot be cast to the specified type, an InvalidCastException exception will be

thrown. If it is at all possible that there may be elements of differing types, use the OfType operator instead.

OfType
The OfType operator is used to build an output sequence containing only the elements that can be
successfully cast to a specified type.

Prototypes

This operator has one prototype we will cover.

The OfTyp e Prot otype

public static IEnumerable<T> OfType<T>(
 this IEnumerable source);

The first thing you should notice about the OfType operator is that, just like the Cast operator, its

first argument, named source, is of type IEnumerable, not IEnumerable<T>. Most of the deferred
Standard Query Operators’ first arguments are of type IEnumerable<T>. This is because the OfType
operator is designed to be called on classes that implement the IEnumerable interface, as opposed to
the IEnumerable<T> interface. In particular, we are talking about all the legacy collections prior to C#
2.0 and generics.

So, you can call the OfType operator on a legacy collection as long as it implements IEnumerable,
and an IEnumerable<T> output sequence will be created. Since most of the Standard Query Operators
work on IEnumerable<T> type sequences only, you must call some method like this one, or perhaps the
Cast operator, to get the legacy collection converted to a sequence the Standard Query Operators can be
called on. This is important when trying to use the Standard Query Operators on legacy collections.

The OfType operator will return an object that, when enumerated, will enumerate the source
sequence, yielding only those elements whose type matches the type specified, T.

The OfType operator differs from the Cast operator in that the Cast operator will attempt to cast
every element of the input sequence to type T and yield it to the output sequence. If the cast fails, an
exception is thrown. The OfType operator will attempt to yield the input element only if it can be cast to
type T. Technically, the element must return true for element e is T for the element to be yielded to
the output sequence.

CHAPTER 4 ■ DEFERRED OPERATORS

137

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

For the example in Listing 4-39, we are going to create an ArrayList containing objects of our two
common classes, Employee and EmployeeOptionEntry. Once we have the ArrayList populated with
objects of both classes, we will first call the Cast operator to show how it fails in this circumstance. We
will follow that call with a call to the OfType operator showing its prowess in the same situation.

Listing 4-39. Sample Code Calling the Cast and OfType Operator

ArrayList al = new ArrayList();
al.Add(new Employee { id = 1, firstName = "Joe", lastName = "Rattz" });
al.Add(new Employee { id = 2, firstName = "William", lastName = "Gates" });
al.Add(new EmployeeOptionEntry { id = 1, optionsCount = 0 });
al.Add(new EmployeeOptionEntry { id = 2, optionsCount = 99999999999 });
al.Add(new Employee { id = 3, firstName = "Anders", lastName = "Hejlsberg" });
al.Add(new EmployeeOptionEntry { id = 3, optionsCount = 848475745 });

var items = al.Cast<Employee>();

Console.WriteLine("Attempting to use the Cast operator ...");
try
{
 foreach (Employee item in items)
 Console.WriteLine("{0} {1} {2}", item.id, item.firstName, item.lastName);
}
catch (Exception ex)
{
 Console.WriteLine("{0}{1}", ex.Message, System.Environment.NewLine);
}

Console.WriteLine("Attempting to use the OfType operator ...");
var items2 = al.OfType<Employee>();
foreach (Employee item in items2)
 Console.WriteLine("{0} {1} {2}", item.id, item.firstName, item.lastName);

Once we have the ArrayList created and populated, we call the Cast operator. The next step is to

try to enumerate it. This is a necessary step because the Cast operator is deferred. If we never enumerate
the results of that query, it will never be performed, and we would not detect a problem. Notice that we
wrapped the foreach loop that enumerates the query results with a try/catch block. This is necessary
in this case, because we know an exception will be thrown since there are objects of two completely
different types. Next, we call the OfType operator and enumerate and display its results. Notice our
pluck as we brazenly choose not to wrap our foreach loop in a try/catch block. Of course, in your real
production code, you may not want to ignore the protection a try/catch block offers.

Here are the results of this query:

CHAPTER 4 ■ DEFERRED OPERATORS

138

Attempting to use the Cast operator ...
1 Joe Rattz
2 William Gates
Unable to cast object of type 'LINQChapter4.EmployeeOptionEntry' to type
'LINQChapter4.Employee'.

Attempting to use the OfType operator ...
1 Joe Rattz
2 William Gates
3 Anders Hejlsberg

Notice that we were not able to completely enumerate the query results of the Cast operator
without an exception being thrown. But, we were able to enumerate the query results of the OfType
operator, and only elements of type Employee were included in the output sequence.

The moral of this story is that if it is feasible that the input sequence contains elements of more than
one data type, prefer the OfType operator to the Cast operator.

■ TTip If you are trying to convert a nongeneric collection, such as the legacy collection classes, to an
IEnumerable<T> type that can be used with the Standard Query Operators operating on that type, use the

OfType operator instead of the Cast operator if it is possible that the input collection could contain objects of

differing types.

AsEnumerable
The AsEnumerable operator simply causes its input sequence of type IEnumerable<T> to be returned as
type IEnumerable<T>.

Prototypes

The AsEnumerable operator has one prototype we will cover.

The A sEnumerable Prot otype

public static IEnumerable<T> AsEnumerable<T>(
 this IEnumerable<T> source);

The preceding prototype declares that the AsEnumerable operator operates on an IEnumerable<T>

named source and returns that same sequence typed as IEnumerable<T>. It serves no other purpose
than changing the output sequence type at compile time.

This may seem odd since it must be called on an IEnumerable<T>. You may ask, “Why would you
possibly need to convert a sequence of type IEnumerable<T> to a sequence of type IEnumerable<T>?”
That would be a good question.

CHAPTER 4 ■ DEFERRED OPERATORS

139

The Standard Query Operators are declared to operate on normal LINQ to Objects sequences, those
collections implementing the IEnumerable<T> interface. However, other domains’ collections, such as
those for accessing a database, could choose to implement their own sequence type and operators.
Ordinarily, when calling a query operator on a collection of one of those types, a collection-specific
operator would be called. The AsEnumerable operator allows the input sequence to be cast as a normal
IEnumerable<T> sequence, allowing a Standard Query Operator method to be called.

For example, when we cover LINQ to SQL in a later part of this book, you will see that LINQ to SQL
actually uses its own type of sequence, IQueryable<T>, and implements its own operators. The LINQ to
SQL operators will be called on sequences of type IQueryable<T>. When you call the Where method on
a sequence of type IQueryable<T>, it is the LINQ to SQL Where method that will get called, not the LINQ
to Objects Standard Query Operator Where method. In fact, without the AsEnumerable method, you
cannot call a Standard Query Operator on a sequence of type IQueryable<T>. If you try to call one of the
Standard Query Operators, you will get an exception unless a LINQ to SQL operator exists with the same
name, and the LINQ to SQL operator will be called. With the AsEnumerable operator, you can call it to
cast the IQueryable<T> sequence to an IEnumerable<T> sequence, thereby allowing Standard Query
Operators to be called. This becomes very handy when you need to control in which API an operator is
called.

Exceptions

There are no exceptions.

Examples

To better understand this operator, we need a situation where a domain-specific operator is
implemented. For that, we need a LINQ to SQL example. We will start with the first LINQ to SQL example
in this book from Chapter 1. For your perusal, here is that example.

Repri nted Here f or Convenience Is Listi ng 1-3

using System;
using System.Linq;
using System.Data.Linq;

using nwind;

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var custs =
 from c in db.Customers
 where c.City == "Rio de Janeiro"
 select c;

foreach (var cust in custs)
 Console.WriteLine("{0}", cust.CompanyName);

Here are the results of that example:

CHAPTER 4 ■ DEFERRED OPERATORS

140

Hanari Carnes
Que Delícia
Ricardo Adocicados

For that example to work, you must add the System.Data.Linq.dll assembly to your project, add
a using directive for the nwind namespace, and add the generated entity classes that we will cover in the
LINQ to SQL chapters to your project. Additionally, you may need to tweak the connection string.

Let’s assume that we need to reverse the order of the records coming from the database for some
reason. We are not concerned because we know there is a Reverse operator that we covered earlier in
this chapter. Listing 4-40 shows the previous example modified to call the Reverse operator.

Listing 4-40. Calling the Reverse Operator

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var custs =
 (from c in db.Customers
 where c.City == "Rio de Janeiro"
 select c)
 .Reverse();

foreach (var cust in custs)
 Console.WriteLine("{0}", cust.CompanyName);

It seems simple enough. As you can see, our only change is to add the call to the Reverse method.

The code compiles just fine. Here are the results of the example:

Unhandled Exception: System.NotSupportedException: The query operator 'Reverse' is
not supported.
…

Boy, that seemed like it should have been so simple; what happened? What happened is that there is
no Reverse method for the IQueryable<T> interface, so the exception was thrown. We need to use the
AsEnumerable method to convert the sequence of type IQueryable<T> to a sequence of type
IEnumerable<T> so that when we call the Reverse method, the IEnumerable<T> Reverse method gets
called. The code modified to do this is in Listing 4-41.

Listing 4-41. Calling the AsEnumerable Operator Before Calling the Reverse Operator

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var custs =
 (from c in db.Customers
 where c.City == "Rio de Janeiro"

CHAPTER 4 ■ DEFERRED OPERATORS

141

 select c)
 .AsEnumerable()
 .Reverse();

foreach (var cust in custs)
 Console.WriteLine("{0}", cust.CompanyName);

Now, we are calling the AsEnumerable method first, followed by the Reverse operator, so the LINQ

to Objects Reverse operator will be called. Here are the results:

Ricardo Adocicados
Que Delícia
Hanari Carnes

Those results are in the reverse order of the initial example, so it worked.

Element
The element operators allow you to retrieve single elements from an input sequence.

DefaultIfEmpty
The DefaultIfEmpty operator returns a sequence containing a default element if the input source
sequence is empty.

Prototypes

There are two prototypes for the DefaultIfEmpty operator we will cover.

The Fi rst Defau ltIfE mpty Prot otype

public static IEnumerable<T> DefaultIfEmpty<T>(
 this IEnumerable<T> source);

This prototype of the DefaultIfEmpty operator returns an object that, when enumerated,

enumerates the input source sequence, yielding each element unless the source sequence is empty, in
which case it returns a sequence yielding a single element of default(T). For reference and nullable
types, the default value is null.

Unlike all the other element type operators, notice that DefaultIfEmpty returns a sequence of type
IEnumerable<T> instead of a type T. There are additional element type operators, but they are not
included in this chapter, because they are not deferred operators.

The second prototype allows the default value to be specified.

The Second D efau ltIfE mpty Prot otype

public static IEnumerable<T> DefaultIfEmpty<T>(

CHAPTER 4 ■ DEFERRED OPERATORS

142

 this IEnumerable<T> source,
 T defaultValue);

This operator is useful for all the other operators that throw exceptions if the input source sequence

is empty. Additionally, this operator is useful in conjunction with the GroupJoin operator for producing
left outer joins.

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

Listing 4-42 shows the example of the first DefaultIfEmpty prototype with an empty sequence. In this
example, we will not use the DefaultIfEmpty operator to see what happens. We will search our
presidents array for "Jones", return the first element, and, if it’s not null, output a message.

Listing 4-42. The First Example for the First DefaultIfEmpty Prototype, Without Using DefaultIfEmpty

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string jones = presidents.Where(n => n.Equals("Jones")).First();
if (jones != null)
 Console.WriteLine("Jones was found");
else
 Console.WriteLine("Jones was not found");

Here are the results:

Unhandled Exception: System.InvalidOperationException: Sequence contains no
elements
…

In the preceding code, the query didn’t find any elements equal to "Jones", so an empty sequence
was passed to the First operator. The First operator doesn’t like empty sequences, so an exception is
thrown.

Now, in Listing 4-43, we will call the same code, except we will insert a call to the DefaultIfEmpty
operator between the Where operator and the First operator. This way, instead of an empty sequence, a
sequence containing a null element will be passed to First.

CHAPTER 4 ■ DEFERRED OPERATORS

143

Listing 4-43. The Second Example for the First DefaultIfEmpty Prototype, Using DefaultIfEmpty

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string jones = presidents.Where(n => n.Equals("Jones")).DefaultIfEmpty().First();
if (jones != null)
 Console.WriteLine("Jones was found.");
else
 Console.WriteLine("Jones was not found.");

The results now are as follows:

Jones was not found.

For an example of the second prototype, we are allowed to specify the default value for an empty
sequence, as shown in Listing 4-44.

Listing 4-44. An Example for the Second DefaultIfEmpty Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name =
 presidents.Where(n => n.Equals("Jones")).DefaultIfEmpty("Missing").First();
Console.WriteLine(name);

The results are as follows:

Missing

Next, for one last set of examples, we will perform a left outer join using both the GroupJoin and
DefaultIfEmpty operators. We will use our two common classes, Employee and
EmployeeOptionEntry. In Listing 4-45 is an example without using the DefaultIfEmpty operator.

CHAPTER 4 ■ DEFERRED OPERATORS

144

Listing 4-45. An Example Without the DefaultIfEmpty Operator

ArrayList employeesAL = Employee.GetEmployeesArrayList();
// Add a new employee so one employee will have no EmployeeOptionEntry records.
employeesAL.Add(new Employee {
 id = 102,
 firstName = "Michael",
 lastName = "Bolton" });
Employee[] employees = employeesAL.Cast<Employee>().ToArray();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();

var employeeOptions = employees
 .GroupJoin(
 empOptions,
 e => e.id,
 o => o.id,
 (e, os) => os
 .Select(o => new
 {
 id = e.id,
 name = string.Format("{0} {1}", e.firstName, e.lastName),
 options = o != null ? o.optionsCount : 0
 }))
 .SelectMany(r => r);

foreach (var item in employeeOptions)
 Console.WriteLine(item);

There are three things we want to point out about this example. First, it is very similar to the

example we presented for the GroupJoin operator example when we discussed it. Second, since our
common EmployeeOptionEntry class already has a matching object for every employee in the common
Employee class, we are getting the ArrayList of employees and adding a new employee, Michael
Bolton, to it so that we will have one employee with no matching EmployeeOptionEntry objects. Third,
we are not making a call to the DefaultIfEmpty operator in that example.

The results of this query are as follows:

{ id = 1, name = Joe Rattz, options = 2 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 3, name = Anders Hejlsberg, options = 5000 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 4, name = David Lightman, options = 1500 }
{ id = 101, name = Kevin Flynn, options = 2 }

CHAPTER 4 ■ DEFERRED OPERATORS

145

Please notice that, since there were no matching objects in the EmployeeOptionEntry array for
employee Michael Bolton, we got no record for that employee in the output sequence. By using the
DefaultIfEmpty operator, we can provide a matching default record, as shown in Listing 4-46.

Listing 4-46. An Example with the DefaultIfEmpty Operator

ArrayList employeesAL = Employee.GetEmployeesArrayList();
// Add a new employee so one employee will have no EmployeeOptionEntry records.
employeesAL.Add(new Employee {
 id = 102,
 firstName = "Michael",
 lastName = "Bolton" });
Employee[] employees = employeesAL.Cast<Employee>().ToArray();
EmployeeOptionEntry[] empOptions = EmployeeOptionEntry.GetEmployeeOptionEntries();

var employeeOptions = employees
 .GroupJoin(
 empOptions,
 e => e.id,
 o => o.id,
 (e, os) => os
 .DefaultIfEmpty()
 .Select(o => new
 {
 id = e.id,
 name = string.Format("{0} {1}", e.firstName, e.lastName),
 options = o != null ? o.optionsCount : 0
 }))
 .SelectMany(r => r);

foreach (var item in employeeOptions)
 Console.WriteLine(item);

In the preceding example, we are still adding an employee object for Michael Bolton with no

matching EmployeeOptionEntry objects. We am now calling the DefaultIfEmpty operator. Here are
the results of our resulting left outer join:

{ id = 1, name = Joe Rattz, options = 2 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 2, name = William Gates, options = 10000 }
{ id = 3, name = Anders Hejlsberg, options = 5000 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 3, name = Anders Hejlsberg, options = 7500 }
{ id = 4, name = David Lightman, options = 1500 }
{ id = 101, name = Kevin Flynn, options = 2 }

CHAPTER 4 ■ DEFERRED OPERATORS

146

{ id = 102, name = Michael Bolton, options = 0 }

As you can see, we now have a record for Michael Bolton even though there are no matching
EmployeeOptionEntry objects. From the results, you can see Michael Bolton has received no employee
options.

Generation
The generation operators assist with generating sequences.

Range
The Range operator generates a sequence of integers.

Prototypes

There is one prototype for the Range operator we will cover.

The R ange Prot otype

public static IEnumerable<int> Range(
 int start,
 int count);

A sequence of integers will be generated starting with the value passed as start and continuing for

the number of count.
Notice that this is not an extension method and one of the few Standard Query Operators that does

not extend IEnumerable<T>.

■ NNote Range is not an extension method. It is a static method called on System.Linq.Enumerable.

Exceptions

ArgumentOutOfRangeException is thrown if the count is less than zero or if start plus count minus
one is greater than int.MaxValue.

Examples

Listing 4-47. An Example Calling the Range Operator

IEnumerable<int> ints = Enumerable.Range(1, 10);
foreach(int i in ints)

CHAPTER 4 ■ DEFERRED OPERATORS

147

 Console.WriteLine(i);

Again, we want to stress that we am not calling the Range operator on a sequence. It is a static

method of the System.Linq.Enumerable class. There are no surprises here, as the results prove:

1
2
3
4
5
6
7
8
9
10

Repeat
The Repeat operator generates a sequence by repeating a specified element a specified number of times.

Prototypes

The Repeat operator has one prototype we will cover.

The R epeat Prot otyp e

public static IEnumerable<T> Repeat<T>(
 T element,
 int count);

This prototype returns an object that, when enumerated, will yield count number of T elements.
Notice that this is not an extension method and one of the few Standard Query Operators that does

not extend IEnumerable<T>.

■ NNote Repeat is not an extension method. It is a static method called on System.Linq.Enumerable.

Exceptions

ArgumentOutOfRangeException is thrown if the count is less than zero.

CHAPTER 4 ■ DEFERRED OPERATORS

148

Examples

In Listing 4-48 we will generate a sequence containing ten elements where each element is the number
2.

Listing 4-48. Returning a Sequence of Ten Integers All with the Value 2

IEnumerable<int> ints = Enumerable.Repeat(2, 10);
foreach(int i in ints)
 Console.WriteLine(i);

Here are the results of this example:

2
2
2
2
2
2
2
2
2
2

Empty
The Empty operator generates an empty sequence of a specified type.

Prototypes

The Empty operator has one prototype we will cover.

The E mpty Prot otype

public static IEnumerable<T> Empty<T>();

This prototype returns an object that, when enumerated, will return a sequence containing zero

elements of type T.
Notice that this is not an extension method and one of the few Standard Query Operators that does

not extend IEnumerable<T>.

■ NNote Empty is not an extension method. It is a static method called on System.Linq.Enumerable.

CHAPTER 4 ■ DEFERRED OPERATORS

149

Exceptions

There are no exceptions.

Examples

In Listing 4-49 we generate an empty sequence of type string using the Empty operator and display the
Count of the generated sequence, which should be zero since the sequence is empty.

Listing 4-49. An Example to Return an Empty Sequence of Strings

IEnumerable<string> strings = Enumerable.Empty<string>();
foreach(string s in strings)
 Console.WriteLine(s);
Console.WriteLine(strings.Count());

Here is the output of the preceding code:

0

Since the sequence is empty, there are no elements to display in the foreach loop, so we added the
display of the count of the number of elements in the sequence.

Summary
We know this has been a whirlwind tour of the deferred Standard Query Operators. We have attempted
to provide examples for virtually every prototype of each deferred operator, instead of just the simplest
prototype. We always dislike it when books show the simplest form of calling a method but leave it to
you to figure out the more complex versions. Ideally, we will have made calling the more complex
prototypes simple for you.

Additionally, we hope that by breaking up the Standard Query Operators into those that are deferred
and those that are not, we have properly emphasized the significance this can have on your queries.

While this chapter covered the bulk of the Standard Query Operators, in the next chapter we will
conclude our coverage of LINQ to Objects with an examination of the nondeferred Standard Query
Operators.

CHAPTER 4 ■ DEFERRED OPERATORS

150

C H A P T E R 5

■ ■ ■

151

Nondeferred Operators

In the previous chapter, we covered the deferred Standard Query Operators. These are easy to spot
because they return either IEnumerable<T> or OrderedSequence<T>. But the deferred operators are
only half the Standard Query Operator story. For the full story, we must also cover the nondeferred query
operators. A nondeferred operator is easy to spot because it has a return data type other than
IEnumerable<T> or OrderedSequence<T>. These nondeferred operators are categorized in this chapter
by their purpose.

To code and execute the examples in this chapter, you will need to make sure you have using
directives for all the necessary namespaces. You must also have some common code that the examples
share.

Referenced Namespaces
The examples in this chapter will use the System.Linq, System.Collections, and
System.Collections.Generic namespaces. Therefore, you should add the following using directives
to your code if they are not present:

using System.Linq;
using System.Collections;
using System.Collections.Generic;

In addition to these namespaces, if you download the companion code, you will see that we have

also added a using directive for the System.Diagnostics namespace. This will not be necessary if you
are typing in the examples from this chapter. It is necessary in the companion code because of some
housekeeping code.

Common Classes
Several of the examples in this chapter require classes to fully demonstrate an operator’s behavior. This
section describes four classes that will be shared by more than one example, beginning with the
Employee class.

The Employee class is meant to represent an employee. For convenience, it contains static methods
to return an ArrayList or array of employees.

CHAPTER 5 ■ NONDEFERRED OPERATORS

152

The Shared E mploy ee Class

public class Employee
{
 public int id;
 public string firstName;
 public string lastName;

 public static ArrayList GetEmployeesArrayList()
 {
 ArrayList al = new ArrayList();

 al.Add(new Employee { id = 1, firstName = "Joe", lastName = "Rattz" });
 al.Add(new Employee { id = 2, firstName = "William", lastName = "Gates" });
 al.Add(new Employee { id = 3, firstName = "Anders", lastName = "Hejlsberg" });
 al.Add(new Employee { id = 4, firstName = "David", lastName = "Lightman" });
 al.Add(new Employee { id = 101, firstName = "Kevin", lastName = "Flynn" });
 return (al);
 }

 public static Employee[] GetEmployeesArray()
 {
 return ((Employee[])GetEmployeesArrayList().ToArray());
 }
}

The EmployeeOptionEntry class represents an award of stock options to a specific employee. For

convenience, it contains a static method to return an array of awarded option entries.

The Shared E mploy eeOptionEnt ry Class

public class EmployeeOptionEntry
{
 public int id;
 public long optionsCount;
 public DateTime dateAwarded;

 public static EmployeeOptionEntry[] GetEmployeeOptionEntries()
 {
 EmployeeOptionEntry[] empOptions = new EmployeeOptionEntry[] {
 new EmployeeOptionEntry {
 id = 1,
 optionsCount = 2,
 dateAwarded = DateTime.Parse("1999/12/31") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,

CHAPTER 5 ■ NONDEFERRED OPERATORS

153

 dateAwarded = DateTime.Parse("1992/06/30") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,
 dateAwarded = DateTime.Parse("1994/01/01") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 5000,
 dateAwarded = DateTime.Parse("1997/09/30") },
 new EmployeeOptionEntry {
 id = 2,
 optionsCount = 10000,
 dateAwarded = DateTime.Parse("2003/04/01") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 7500,
 dateAwarded = DateTime.Parse("1998/09/30") },
 new EmployeeOptionEntry {
 id = 3,
 optionsCount = 7500,
 dateAwarded = DateTime.Parse("1998/09/30") },
 new EmployeeOptionEntry {
 id = 4,
 optionsCount = 1500,
 dateAwarded = DateTime.Parse("1997/12/31") },
 new EmployeeOptionEntry {
 id = 101,
 optionsCount = 2,
 dateAwarded = DateTime.Parse("1998/12/31") }
 };

 return (empOptions);
 }
}

Several of the operators will accept classes that implement the IEqualityComparer<T> interface for

the purpose of comparing elements to determine whether they are equal. This is useful for those times
when two values may not exactly be equal but you want them to be deemed equal. For example, you
may want to be able to ignore case when comparing two strings. However, for this situation, an equality
comparison class already exists in the .NET Framework.

Since we covered the IEqualityComparer<T> interface in detail in the previous chapter, we will
not explain it here.

For our examples, we want an equality comparison class that will know how to check for the
equality of numbers in string format. So for example, the strings "17" and "00017" would be considered
equal. Here is our MyStringifiedNumberComparer class that does just that:

CHAPTER 5 ■ NONDEFERRED OPERATORS

154

The Shared MySt ringifiedNu mberComparer Class

public class MyStringifiedNumberComparer : IEqualityComparer<string>
{
 public bool Equals(string x, string y)
 {
 return(Int32.Parse(x) == Int32.Parse(y));
 }

 public int GetHashCode(string obj)
 {
 return Int32.Parse(obj).ToString().GetHashCode();
 }
}

Notice that this implementation of the IEqualityComparer interface will work only for variables of

type string, but that will suffice for this example. Basically, for all comparisons, we just convert all the
values from string to Int32. This way, "002" gets converted to an integer with a value of 2, so leading
zeros do not affect the key value.

For some of the examples in this chapter, we need a class that could have records with nonunique
keys. For this purpose, we have created the Actor class here. We will use the birthYear member as the
key specifically for this purpose.

The Shared A ct or Class

public class Actor
{
 public int birthYear;
 public string firstName;
 public string lastName;

 public static Actor[] GetActors()
 {
 Actor[] actors = new Actor[] {
 new Actor { birthYear = 1964, firstName = "Keanu", lastName = "Reeves" },
 new Actor { birthYear = 1968, firstName = "Owen", lastName = "Wilson" },
 new Actor { birthYear = 1960, firstName = "James", lastName = "Spader" },
 new Actor { birthYear = 1964, firstName = "Sandra", lastName = "Bullock" },
 };

 return (actors);
 }
}

CHAPTER 5 ■ NONDEFERRED OPERATORS

155

The Nondeferred Operators by Purpose
The nondeferred Standard Query Operators are organized by their purposes in this section.

Conversion
The following conversion operators provide a simple and convenient way of converting sequences to
other collection types.

ToArray
The ToArray operator creates an array of type T from an input sequence of type T.

Prototypes

There is one prototype we will cover.

The ToA rray Prot otype

public static T[] ToArray<T>(
 this IEnumerable<T> source);

This operator takes an input sequence named source, of type T elements, and returns an array of

type T elements.

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

For an example demonstrating the ToArray operator, we need a sequence of type IEnumerable<T>. We
will create a sequence of that type by calling the OfType operator, which we covered in the previous
chapter, on an array. Once we have that sequence, we can call the ToArray operator to create an array,
as shown in Listing 5-1.

Listing 5-1. A Code Sample Calling the ToArray Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 5 ■ NONDEFERRED OPERATORS

156

string[] names = presidents.OfType<string>().ToArray();

foreach (string name in names)
 Console.WriteLine(name);

First we convert the presidents array to a sequence of type IEnumerable<string> using the

OfType operator. Then we convert that sequence to an array using the ToArray operator. Since the
ToArray is a nondeferred operator, the query is performed immediately, even prior to enumerating it.

Here is the output when running the previous code:

Adams
Arthur
Buchanan
Bush
Carter
Cleveland
Clinton
Coolidge
Eisenhower
Fillmore
Ford
Garfield
Grant
Harding
Harrison
Hayes
Hoover
Jackson
Jefferson
Johnson
Kennedy
Lincoln
Madison
McKinley
Monroe
Nixon
Obama
Pierce
Polk
Reagan
Roosevelt
Taft
Taylor
Truman
Tyler

CHAPTER 5 ■ NONDEFERRED OPERATORS

157

Van Buren
Washington
Wilson

Now, technically, the code in this example is a little redundant. The presidents array is already a
sequence, because in C#, arrays implement the IEnumerable<T> interface. So, we could have omitted
the call to the OfType operator and merely called the ToArray operator on the presidents array.
However, we didn’t think it would be very impressive to convert an array to an array.

This operator is often useful for caching a sequence so that it cannot change before you can
enumerate it. Also, because this operator is not deferred and is executed immediately, multiple
enumerations on the array created will always see the same data.

ToList
The ToList operator creates a List of type T from an input sequence of type T.

Prototypes

There is one prototype we will cover.

The ToList Prot otype

public static List<T> ToList<T>(
 this IEnumerable<T> source);

This operator takes an input sequence named source, of type T elements, and returns a List of type

T elements.

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

Listing 5-2 demonstrates the ToList operator.

Listing 5-2. A Code Sample Calling the ToList Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",

CHAPTER 5 ■ NONDEFERRED OPERATORS

158

 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

List<string> names = presidents.ToList();

foreach (string name in names)
 Console.WriteLine(name);

In the previous code, we use the array from the previous example. Unlike the previous example, we

do not call the OfType operator to create an intermediate sequence of IEnumerable<T> because it
seems sufficient to convert the presidents array to a List<string>.

Here are the results:

Adams
Arthur
Buchanan
Bush
Carter
Cleveland
Clinton
Coolidge
Eisenhower
Fillmore
Ford
Garfield
Grant
Harding
Harrison
Hayes
Hoover
Jackson
Jefferson
Johnson
Kennedy
Lincoln
Madison
McKinley
Monroe
Nixon
Obama
Pierce
Polk
Reagan
Roosevelt
Taft
Taylor
Truman
Tyler

CHAPTER 5 ■ NONDEFERRED OPERATORS

159

Van Buren
Washington
Wilson

This operator is often useful for caching a sequence so that it cannot change before you can
enumerate it. Also, because this operator is not deferred and is executed immediately, multiple
enumerations on the List<T> created will always see the same data.

ToDictionary
The ToDictionary operator creates a Dictionary of type <K, T>, or perhaps <K, E> if the prototype
has the elementSelector argument, from an input sequence of type T, where K is the type of the key
and T is the type of the stored values. Or if the Dictionary is of type <K, E>, the type of stored values
are of type E, which is different from the type of elements in the sequence, which is type T.

■ NNote If you are unfamiliar with the C# Dictionary collection class, it allows elements to be stored that can be

retrieved with a key. Each key must be unique, and only one element can be stored for a single key. You index into

the Dictionary using the key to retrieve the stored element for that key.

Prototypes

There are four prototypes we cover.

The Fi rst Prot otype for the ToDi ctionary Op erat or

public static Dictionary<K, T> ToDictionary<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector);

In this prototype, a Dictionary of type <K, T> is created and returned by enumerating the input

sequence named source. The keySelector method delegate is called to extract the key value from each
input element, and that key is the element’s key into the Dictionary. This version of the operator
results in elements in the Dictionary being the same type as the elements in the input sequence.

Since this prototype prevents the specification of an IEqualityComparer<K> object, this version of
ToDictionary defaults to the EqualityComparer<K>.Default equality comparison object.

The second ToDictionary prototype is similar to the first, except it provides the ability to specify an
IEqualityComparer<K> equality comparison object. Here is the second prototype:

The Second Prot otype for the ToDi ctionary Op erat or

public static Dictionary<K, T> ToDictionary<T, K>(
 this IEnumerable<T> source,

CHAPTER 5 ■ NONDEFERRED OPERATORS

160

 Func<T, K> keySelector,
 IEqualityComparer<K> comparer);

This prototype provides the ability to specify an IEqualityComparer<K> equality comparison

object. This object is used to make comparisons on the key value. So if you add or access an element in
the Dictionary, it will use this comparer to compare the key you specify to the keys already in the
Dictionary to determine whether it has a match.

A default implementation of the IEqualityComparer<K> interface is provided by
EqualityComparer.Default. However, if you are going to use the default equality comparison class,
there is no reason to specify the comparer, because the previous prototype where the comparer is not
specified defaults to this one anyway. The StringComparer class implements several equality
comparison classes, such as one that ignores case. This way, using the keys "Joe" and "joe" evaluates
to being the same key.

The third ToDictionary prototype is just like the first except it allows you to specify an element
selector so that the data type of the value stored in the Dictionary can be of a different type than the
input sequence element.

The Third Prot otype f or the ToDi cti onary Operator

public static Dictionary<K, E> ToDictionary<T, K, E>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 Func<T, E> elementSelector);

Through the elementSelector argument, you can specify a method delegate that returns a portion

of the input element—or a newly created object of an altogether different data type—that you want to be
stored in the Dictionary.

The fourth prototype for the ToDictionary operator gives you the best of all worlds. It is a
combination of the second and third prototypes, which means you can specify an elementSelector
and a comparer object.

The F ourth Prot otype for the ToDi ctionary Op erat or

public static Dictionary<K, E> ToDictionary<T, K, E>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

This prototype allows you to specify the elementSelector and comparer object.

Exceptions

ArgumentNullException is thrown if the source, keySelector, or elementSelector argument is null
or if a key returned by keySelector is null.

ArgumentException is thrown if a keySelector returns the same key for two elements.

CHAPTER 5 ■ NONDEFERRED OPERATORS

161

Examples

In this example, instead of using the typical presidents array we have been using, we use our common
Employee class. We are going to create a dictionary of type Dictionary<int, Employee> where the key
of type int is the id member of the Employee class and the Employee object itself is the element stored.

Listing 5-3 is an example calling the ToDictionary operator using the Employee class.

Listing 5-3. Sample Code Calling the First ToDictionary Prototype

Dictionary<int, Employee> eDictionary =
 Employee.GetEmployeesArray().ToDictionary(k => k.id);

Employee e = eDictionary[2];
Console.WriteLine("Employee whose id == 2 is {0} {1}", e.firstName, e.lastName);

We declare our Dictionary to have a key type of integer because we will be using the Employee.id

field as the key. Since this ToDictionary operator prototype only allows us to store the entire input
element, which is an Employee object, as the element in the Dictionary, the Dictionary element type
is Employee as well. The Dictionary<int, Employee> then allows me to look up employees by their
employee id providing the performance efficiencies and retrieval convenience of a Dictionary. Here
are the results of the previous code:

Employee whose id == 2 is William Gates

For an example demonstrating the second prototype, since the purpose of the second prototype is
to allow me to specify an equality comparison object of type IEqualityComparer<T>, we need a
situation where an equality comparison class would be useful. This is a situation where keys that may
not literally be equal will be considered equal by our equality comparison class. We will use a numeric
value in string format as the key for this purpose, such as "1". Since sometimes numeric values in string
format end up with leading zeros, it is quite feasible that a key for the same data could end up being "1",
or "01", or even "00001". Since those string values are not equal, we need an equality comparison class
that would know how to determine that they should be considered equal.

First, though, we need a class with a key of type string. For this, we will make a slight modification
to the common Employee class that we have been using on occasion. We will create the following
Employee2 class that is identical to the Employee class, except that the id member type is now string
instead of int.

A Class f or the Second Prototyp e Code Samp le of t he ToDi cti onary Operator

public class Employee2
{
 public string id;
 public string firstName;
 public string lastName;

CHAPTER 5 ■ NONDEFERRED OPERATORS

162

 public static ArrayList GetEmployeesArrayList()
 {
 ArrayList al = new ArrayList();

 al.Add(new Employee2 { id = "1", firstName = "Joe", lastName = "Rattz" });
 al.Add(new Employee2 { id = "2", firstName = "William", lastName = "Gates" });
 al.Add(new Employee2 { id = "3", firstName = "Anders",
 lastName = "Hejlsberg" });
 al.Add(new Employee2 { id = "4", firstName = "David", lastName = "Lightman" });
 al.Add(new Employee2 { id = "101", firstName = "Kevin", lastName = "Flynn" });
 return (al);
 }

 public static Employee2[] GetEmployeesArray()
 {
 return ((Employee2[])GetEmployeesArrayList().ToArray(typeof(Employee2)));
 }
}

We have changed the key type to string to demonstrate how an equality comparison class can be

used to determine whether two keys are equal, even though they may not literally be equal. In this
example, because our keys are now string, we will use our common MyStringifiedNumberComparer
class that will know that the key "02" is equal to the key "2".

Now let’s look at some code using the Employee2 class and our implementation of
IEqualityComparer, shown in Listing 5-4.

Listing 5-4. Sample Code Calling the Second ToDictionary Prototype

Dictionary<string, Employee2> eDictionary = Employee2.GetEmployeesArray()
 .ToDictionary(k => k.id, new MyStringifiedNumberComparer());

Employee2 e = eDictionary["2"];
Console.WriteLine("Employee whose id == \"2\" : {0} {1}",
 e.firstName, e.lastName);

e = eDictionary["000002"];
Console.WriteLine("Employee whose id == \"000002\" : {0} {1}",
 e.firstName, e.lastName);

In this example, we try to access elements in the Dictionary with key values of "2" and "000002".

If our equality comparison class works properly, we should get the same element from the Dictionary
both times. Here are the results:

Employee whose id == "2" : William Gates
Employee whose id == "000002" : William Gates

CHAPTER 5 ■ NONDEFERRED OPERATORS

163

As you can see, we did get the same element from the Dictionary regardless of our string key
used for access, as long as each string value parsed to the same integer value.

The third prototype allows us to store an element in the Dictionary that is a different type from the
input sequence element type. For the third prototype example, we use the same Employee class that we
use in the first prototype sample code for ToDictionary. Listing 5-5 is the sample code calling the third
ToDictionary prototype.

Listing 5-5. Sample Code Calling the Third ToDictionary Prototype

Dictionary<int, string> eDictionary = Employee.GetEmployeesArray()
 .ToDictionary(k => k.id,
 i => string.Format("{0} {1}", // elementSelector
 i.firstName, i.lastName));

string name = eDictionary[2];
Console.WriteLine("Employee whose id == 2 is {0}", name);

In this code, we provide a lambda expression that concatenates the firstName and lastName into a

string. That concatenated string becomes the value stored in the Dictionary. So, although our input
sequence element type is Employee, our element data type stored in the dictionary is string. Here are
the results of this query:

Employee whose id == 2 is William Gates

To demonstrate the fourth ToDictionary prototype, we will use our Employee2 class and our
common MyStringifiedNumberComparer class. Listing 5-6 is our sample code.

Listing 5-6. Sample Code Calling the Fourth ToDictionary Prototype

Dictionary<string, string> eDictionary = Employee2.GetEmployeesArray()
 .ToDictionary(k => k.id, // keySelector
 i => string.Format("{0} {1}", // elementSelector
 i.firstName, i.lastName),
 new MyStringifiedNumberComparer()); // comparer

string name = eDictionary["2"];
Console.WriteLine("Employee whose id == \"2\" : {0}", name);

name = eDictionary["000002"];
Console.WriteLine("Employee whose id == \"000002\" : {0}", name);

In the previous code, we provide an elementSelector that specifies a single string as the value to

store in the Dictionary, and we provide a custom equality comparison object. The result is that we can
use "2" or "000002" to retrieve the element from the Dictionary because of our equality comparison

CHAPTER 5 ■ NONDEFERRED OPERATORS

164

class, and what we get out of the Dictionary is now just a string, which happens to be the employee’s
lastName appended to the firstName. Here are the results:

Employee whose id == "2" : William Gates
Employee whose id == "000002" : William Gates

As you can see, indexing into the Dictionary with the key values of "2" and "000002" retrieve the
same element.

ToLookup
The ToLookup operator creates a Lookup of type <K, T>, or perhaps <K, E>, from an input sequence of
type T, where K is the type of the key and T is the type of the stored values. Or if the Lookup is of type <K,
E>, the type of stored values are of type E, which is different from the type of elements in the sequence,
which is type T.

Although all prototypes of the ToLookup operator create a Lookup, they return an object that
implements the ILookup interface. In this section, we will commonly refer to the object implementing
the ILookup interface that is returned as a Lookup.

■ NNote If you are unfamiliar with the C# Lookup collection class, it allows elements to be stored that can be
retrieved with a key. Each key need not be unique, and multiple elements can be stored for a single key. You index

into the Lookup using the key to retrieve a sequence of the stored elements for that key.

Prototypes

There are four prototypes we cover.

The Fi rst Prot otype for the ToLookup Operat or

public static ILookup<K, T> ToLookup<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector);

In this prototype, a Lookup of type <K, T> is created and returned by enumerating the input

sequence, named source. The keySelector method delegate is called to extract the key value from each
input element, and that key is the element’s key into the Lookup. This version of the operator results in
stored values in the Lookup being the same type as the elements in the input sequence.

Since this prototype prevents the specification of an IEqualityComparer<K> equality comparison
object, this version of ToLookup defaults to the EqualityComparer<K>.Default equality comparison
class.

CHAPTER 5 ■ NONDEFERRED OPERATORS

165

The second ToLookup prototype is similar to the first, except it provides the ability to specify an
IEqualityComparer<K> equality comparison object. Here is the second prototype:

The Second Prot otype for the ToLookup Op erat or

public static ILookup<K, T> ToLookup<T, K>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 IEqualityComparer<K> comparer);

This prototype provides the ability to specify an IEqualityComparer comparer object. This object

is used to make comparisons on the key value. So if you add or access an element in the Lookup, it will
use this comparer object to compare the key you specify to the keys already in the Lookup to determine
whether there is a match.

A default implementation of the IEqualityComparer<K> interface is provided by
EqualityComparer.Default. However, if you are going to use the default equality comparison class,
there is no reason to specify the equality comparison object because the previous prototype where the
equality comparison object is not specified defaults to this one anyway. The StringComparer class
implements several equality comparison classes, such as one that ignores case. This way, using the keys
"Joe" and "joe" evaluates to being the same key.

The third ToLookup prototype is just like the first one except it allows you to specify an element
selector so that the data type of the value stored in the Lookup can be of a different type than the input
sequence element. Here is the third prototype:

The Third Prot otype f or the ToLookup Operat or

public static ILookup<K, E> ToLookup<T, K, E>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 Func<T, E> elementSelector);

Through the elementSelector argument, you can specify a method delegate that returns the

portion of the input element—or a newly created object of an altogether different data type—that you
want to be stored in the Lookup.

The fourth prototype for the ToLookup operator gives you the best of all worlds. It is a combination
of the second and third prototypes, which means you can specify an elementSelector and a comparer
equality comparison object. Here is the fourth prototype:

The F ourth Prot otype for the ToLookup Operat or

public static ILookup<K, E> ToLookup<T, K, E>(
 this IEnumerable<T> source,
 Func<T, K> keySelector,
 Func<T, E> elementSelector,

 IEqualityComparer<K> comparer);

CHAPTER 5 ■ NONDEFERRED OPERATORS

166

This prototype allows you to specify the elementSelector and comparer.

Exceptions

ArgumentNullException is thrown if the source, keySelector, or elementSelector argument is null
or if a key returned by keySelector is null.

Examples

In this example of the first ToLookup prototype, instead of using the typical presidents array we have
been using, we need a class with elements containing members that can be used as keys but are not
unique. For this purpose, we will use our common Actor class.

Listing 5-7 is an example calling the ToLookup operator using the Actor class.

Listing 5-7. Sample Code Calling the First ToLookup Prototype

ILookup<int, Actor> lookup = Actor.GetActors().ToLookup(k => k.birthYear);

// Let's see if we can find the 'one' born in 1964.
IEnumerable<Actor> actors = lookup[1964];
foreach (var actor in actors)
 Console.WriteLine("{0} {1}", actor.firstName, actor.lastName);

First we create the Lookup using the Actor.birthYear member as the key into the Lookup. Next we

index into the Lookup using our key, 1964. Then we enumerate through the returned values. Here are
the results:

Keanu Reeves
Sandra Bullock

Uh-oh, it looks like we got multiple results. We guess he isn’t “the one” after all. It’s a good thing we
converted this input sequence to a Lookup instead of a Dictionary, because there were multiple
elements with the same key.

For an example demonstrating the second ToLookup prototype, we will make a slight modification
to our common Actor class. We will create an Actor2 class that is identical to the Actor class except
that the birthYear member type is now string instead of int.

A Class f or the Second Prototyp e Code Samp le of t he ToLookup Operat or

public class Actor2
{
 public string birthYear;
 public string firstName;
 public string lastName;

CHAPTER 5 ■ NONDEFERRED OPERATORS

167

 public static Actor2[] GetActors()
 {
 Actor2[] actors = new Actor2[] {
 new Actor2 { birthYear = "1964", firstName = "Keanu", lastName = "Reeves" },
 new Actor2 { birthYear = "1968", firstName = "Owen", lastName = "Wilson" },
 new Actor2 { birthYear = "1960", firstName = "James", lastName = "Spader" },
 // The world's first Y10K-compliant date!
 new Actor2 { birthYear = "01964", firstName = "Sandra",
 lastName = "Bullock" },
 };

 return(actors);
 }
}

Notice we changed the birthYear member to be a string for the class. Now we will call the

ToLookup operator, as shown in Listing 5-8.

Listing 5-8. Sample Code Calling the Second ToLookup Prototype

ILookup<string, Actor2> lookup = Actor2.GetActors()
 .ToLookup(k => k.birthYear, new MyStringifiedNumberComparer());

// Let's see if we can find the 'one' born in 1964.
IEnumerable<Actor2> actors = lookup["0001964"];
foreach (var actor in actors)
 Console.WriteLine("{0} {1}", actor.firstName, actor.lastName);

We are using the same equality comparison object we use in the Dictionary examples. In this case,

we convert the input sequence to a Lookup, and we provide an equality comparison object because we
know that the key, which is stored as a string, may sometimes contain leading zeros. Our equality
comparison object knows how to handle that. Here are the results:

Keanu Reeves
Sandra Bullock

Notice that when we try to retrieve all elements whose key is "0001964", we get back elements
whose keys are "1964" and "01964". So we know our equality comparison object works.

For the third prototype for the ToLookup operator, we will use the same Actor class that we use in
the first prototype sample code for ToLookup. Listing 5-9 is our sample code calling the third ToLookup
prototype.

Listing 5-9. Sample Code Calling the Third ToLookup Prototype

ILookup<int, string> lookup = Actor.GetActors()
 .ToLookup(k => k.birthYear,

CHAPTER 5 ■ NONDEFERRED OPERATORS

168

 a => string.Format("{0} {1}", a.firstName, a.lastName));

// Let's see if we can find the 'one' born in 1964.
IEnumerable<string> actors = lookup[1964];
foreach (var actor in actors)
 Console.WriteLine("{0}", actor);

For our elementSelector, we just concatenate the firstName and lastName members. Here are

the results:

Keanu Reeves
Sandra Bullock

Using the elementSelector variation of the ToLookup operator allows me to store a different data
type in the Lookup than the input sequence element’s data type.

For an example of the fourth ToLookup prototype, we will use our Actor2 class and our common
MyStringifiedNumberComparer class. Listing 5-10 is our sample code.

Listing 5-10. Sample Code Calling the Fourth ToLookup Prototype

ILookup<string, string> lookup = Actor2.GetActors()
 .ToLookup(k => k.birthYear,
 a => string.Format("{0} {1}", a.firstName, a.lastName),
 new MyStringifiedNumberComparer());

// Let's see if we can find the 'one' born in 1964.
IEnumerable<string> actors = lookup["0001964"];
foreach (var actor in actors)
 Console.WriteLine("{0}", actor);

Here is the output:

Keanu Reeves
Sandra Bullock

You can see that we index into the Lookup using a key value different from either of the values
retrieved using that key, so we can tell our equality comparison object is working. And instead of storing
the entire Actor2 object, we merely store the string we are interested in.

Equality
The following equality operators are used for testing the equality of sequences.

CHAPTER 5 ■ NONDEFERRED OPERATORS

169

SequenceEqual
The SequenceEqual operator determines whether two input sequences are equal.

Prototypes

There are two prototypes we cover.

The Fi rst SequenceE qual Prot otype

public static bool SequenceEqual<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second);

This operator enumerates each input sequence in parallel, comparing the elements of each using

the System.Object.Equals method. If the elements are all equal and the sequences have the same
number of elements, the operator returns true. Otherwise, it returns false.

The second prototype of the operator works just as the first, except an IEqualityComparer<T>
comparer object can be used to determine element equality.

The Second SequenceEqual Prot otype

public static bool SequenceEqual<T>(
 this IEnumerable<T> first,
 IEnumerable<T> second,
 IEqualityComparer<T> comparer);

Exceptions

ArgumentNullException is thrown if either argument is null.

Examples

Listing 5-11 is an example.

Listing 5-11. An Example of the First SequenceEqual Operator Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool eq = presidents.SequenceEqual(presidents);

CHAPTER 5 ■ NONDEFERRED OPERATORS

170

Console.WriteLine(eq);

And here are the results:

True

That seems a little cheap, doesn’t it? OK, we will make it a little more difficult, as shown in Listing 5-
12.

Listing 5-12. Another Example of the First SequenceEqual Operator Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool eq = presidents.SequenceEqual(presidents.Take(presidents.Count()));
Console.WriteLine(eq);

In the previous code, we use the Take operator to take only the first N number of elements of the

presidents array and then compare that output sequence to the original presidents sequence. So in
the previous code, if we take all the elements of the presidents array by taking the number of the
presidents.Count(), we should get the entire sequence output. Sure enough, here are the results:

True

OK, that worked as expected. Now we will take all the elements except the last one by subtracting
one from the presidents.Count(), as shown in Listing 5-13.

Listing 5-13. Yet Another Example of the First SequenceEqual Operator Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool eq = presidents.SequenceEqual(presidents.Take(presidents.Count() - 1));
Console.WriteLine(eq);

CHAPTER 5 ■ NONDEFERRED OPERATORS

171

Now the results should be false, because the two sequences should not even have the same

number of elements. The second sequence, the one we passed, should be missing the very last element:

False

This is going well. Just out of curiosity, let’s try one more. We recall that in our discussion of the
Take and Skip operators in the previous chapter, we said that when concatenated together properly,
they should output the original sequence. We will now give that a try. We will get to use the Take, Skip,
Concat, and SequenceEqual operators to prove this statement, as shown in Listing 5-14.

Listing 5-14. A More Complex Example of the First SequenceEqual Operator Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool eq =
 presidents.SequenceEqual(presidents.Take(5).Concat(presidents.Skip(5)));
Console.WriteLine(eq);

In this example, we get the first five elements of the original input sequence by calling the Take

operator. We then concatenate on the input sequence starting with the sixth element using the Skip and
Concat operators. Finally, we determine whether that concatenated sequence is equal to the original
sequence calling the SequenceEqual operator. What do you think? Let’s see:

True

Cool, it worked! For an example of the second prototype, we create two arrays of type string where
each element is a number in string form. The elements of the two arrays will be such that when parsed
into integers, they will be equal. We use our common MyStringifiedNumberComparer class for this
example, shown in Listing 5-15.

Listing 5-15. An Example of the Second SequenceEqual Operator Prototype

string[] stringifiedNums1 = {
 "001", "49", "017", "0080", "00027", "2" };

string[] stringifiedNums2 = {
 "1", "0049", "17", "080", "27", "02" };

CHAPTER 5 ■ NONDEFERRED OPERATORS

172

bool eq = stringifiedNums1.SequenceEqual(stringifiedNums2,
 new MyStringifiedNumberComparer());

Console.WriteLine(eq);

In this example, if you examine the two arrays, you can see that if you parse each element from each

array into an integer and then compare the corresponding integers, the two arrays would be considered
equal. Let’s see whether the results indicate that the two sequences are equal:

True

Element
The following element operators allow you to retrieve single elements from an input sequence.

First
The First operator returns the first element of a sequence or the first element of a sequence matching a
predicate, depending on the prototype used.

Prototypes

There are two prototypes we cover.

The Fi rst First Prot otyp e

public static T First<T>(
 this IEnumerable<T> source);

Using this prototype of the First operator enumerates the input sequence named source and

returns the first element of the sequence.
The second prototype of the First operator allows a predicate to be passed.

The Second First Prot otyp e

public static T First<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

This version of the First operator returns the first element it finds for which the predicate returns

true. If no elements cause the predicate to return true, the First operator throws an
InvalidOperationException.

CHAPTER 5 ■ NONDEFERRED OPERATORS

173

Exceptions

ArgumentNullException is thrown if any arguments are null.
InvalidOperationException is thrown if the source sequence is empty or if the predicate never

returns true.

Examples

Listing 5-16 is an example of the first First prototype.

Listing 5-16. Sample Code Calling the First First Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.First();
Console.WriteLine(name);

Here are the results:

Adams

You may be asking yourself how this operator differs from calling the Take operator and passing it a
1. The difference is the Take operator returns a sequence of elements, even if that sequence contains
only a single element. The First operator always returns exactly one element, or it throws an exception
if there is no first element to return.

Listing 5-17 is some sample code using the second prototype of the First operator.

Listing 5-17. Code Calling the Second First Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.First(p => p.StartsWith("H"));
Console.WriteLine(name);

CHAPTER 5 ■ NONDEFERRED OPERATORS

174

This should return the first element in the input sequence that begins with the string "H". Here are

the results:

Harding

Remember, if either prototype of the First operator ends up with no element to return, an
InvalidOperationException is thrown. To avoid this, use the FirstOrDefault operator.

FirstOrDefault
The FirstOrDefault operator is similar to the First operator except for how it behaves when an
element is not found.

Prototypes

There are two prototypes we cover.

The Fi rst First OrDef ault Protot ype

public static T FirstOrDefault<T>(
 this IEnumerable<T> source);

This version of the FirstOrDefault prototype returns the first element found in the input

sequence. If the sequence is empty, default(T) is returned. For reference and nullable types, the
default value is null.

The second prototype of the FirstOrDefault operator allows you to pass a predicate to determine
which element should be returned.

The Second First OrDef ault Prot otype

public static T FirstOrDefault<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 5-18 is an example of the first FirstOrDefault prototype where no element is found. We have to
get an empty sequence to do this. We’ll call Take(0) for this purpose.

CHAPTER 5 ■ NONDEFERRED OPERATORS

175

Listing 5-18. Calling the First FirstOrDefault Prototype Where an Element Is Not Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.Take(0).FirstOrDefault();
Console.WriteLine(name == null ? "NULL" : name);

Here are the results:

NULL

Listing 5-19 is the same example without the Take(0) call, so an element is found.

Listing 5-19. Calling the First FirstOrDefault Prototype Where an Element Is Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.FirstOrDefault();
Console.WriteLine(name == null ? "NULL" : name);

And finally, here are the results for the code when we find an element:

Adams

For the second FirstOrDefault prototype, we specify that we want the first element that starts with
the string "B", as shown in Listing 5-20.

Listing 5-20. Calling the Second FirstOrDefault Prototype Where an Element Is Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",

CHAPTER 5 ■ NONDEFERRED OPERATORS

176

 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.FirstOrDefault(p => p.StartsWith("B"));
Console.WriteLine(name == null ? "NULL" : name);

Here are the results:

Buchanan

Now we will try that with a predicate that will not find a match, as shown in Listing 5-21.

Listing 5-21. Calling the Second FirstOrDefault Prototype Where an Element Is Not Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.FirstOrDefault(p => p.StartsWith("Z"));
Console.WriteLine(name == null ? "NULL" : name);

Since there is no name in the presidents array beginning with a "Z", here are the results:

NULL

Last
The Last operator returns the last element of a sequence or the last element of a sequence matching a
predicate, depending on the prototype used.

Prototypes

There are two prototypes we cover.

The Fi rst Last Prot otype

public static T Last<T>(

CHAPTER 5 ■ NONDEFERRED OPERATORS

177

 this IEnumerable<T> source);

Using this prototype, the Last operator enumerates the input sequence named source and returns

the last element of the sequence.
The second prototype of Last allows a predicate to be passed and looks like this:

The Second Last Prot otype

public static T Last<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

This version of the Last operator returns the last element it finds for which the predicate returns

true.

Exceptions

ArgumentNullException is thrown if any arguments are null.
InvalidOperationException is thrown if the source sequence is empty or if the predicate never

returns true.

Examples

Listing 5-22 is an example of the first Last prototype.

Listing 5-22. Sample Code Calling the First Last Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.Last();
Console.WriteLine(name);

Here are the results:

Wilson

The Last operator always returns exactly one element, or it throws an exception if there is no last
element to return.

CHAPTER 5 ■ NONDEFERRED OPERATORS

178

Listing 5-23 is some sample code using the second prototype of the Last operator.

Listing 5-23. Calling the Second Last Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.Last(p => p.StartsWith("H"));
Console.WriteLine(name);

This should return the last element in the input sequence that begins with the string "H". Here are

the results:

Hoover

Remember, if either prototype of the Last operator ends up with no element to return, an
InvalidOperationException is thrown. To avoid this, use the LastOrDefault operator.

LastOrDefault
The LastOrDefault operator is similar to the Last operator except for how it behaves when an element
is not found.

Prototypes

There are two prototypes we cover.

The Fi rst Last OrDefau lt Prot otype

public static T LastOrDefault<T>(
 this IEnumerable<T> source);

This version of the LastOrDefault prototype returns the last element found in the input sequence.

If the sequence is empty, default(T) is returned. For reference and nullable types, the default value is
null.

The second prototype of the LastOrDefault operator allows you to pass a predicate to determine
which element should be returned.

CHAPTER 5 ■ NONDEFERRED OPERATORS

179

The Second Last OrD efau lt Prot otype

public static T LastOrDefault<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any arguments are null.

Examples

Listing 5-24 is an example of the first LastOrDefault operator where no element is found. We have to
get an empty sequence to do this. We’ll call Take(0) for this purpose.

Listing 5-24. Calling the First LastOrDefault Prototype Where an Element Is Not Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.Take(0).LastOrDefault();
Console.WriteLine(name == null ? "NULL" : name);

Here are the results:

NULL

Listing 5-25 is the same example without the Take(0), so an element is found.

Listing 5-25. Calling the First LastOrDefault Prototype Where an Element Is Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.LastOrDefault();
Console.WriteLine(name == null ? "NULL" : name);

CHAPTER 5 ■ NONDEFERRED OPERATORS

180

And finally, here are the results for the code when we find an element:

Wilson

For the second prototype of the LastOrDefault operator, shown in Listing 5-26, we specify that we
want the last element to start with the string "B".

Listing 5-26. Calling the Second LastOrDefault Prototype Where an Element Is Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.LastOrDefault(p => p.StartsWith("B"));
Console.WriteLine(name == null ? "NULL" : name);

Here are the results:

Bush

Now we will try that with a predicate that will not find a match, as shown in Listing 5-27.

Listing 5-27. Calling the Second LastOrDefault Prototype Where an Element Is Not Found

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string name = presidents.LastOrDefault(p => p.StartsWith("Z"));
Console.WriteLine(name == null ? "NULL" : name);

Since there is no name in the presidents array beginning with a "Z", here are the results:

NULL

CHAPTER 5 ■ NONDEFERRED OPERATORS

181

Single
The Single operator returns the only element of a single element sequence or the only element of a
sequence matching a predicate, depending on the prototype used.

Prototypes

There are two prototypes we cover.

The Fi rst Si ngle Protot ype

public static T Single<T>(
 this IEnumerable<T> source);

Using this prototype, the Single operator enumerates the input sequence named source and

returns the only element of the sequence.
The second prototype of Single allows a predicate to be passed and looks like this:

The Second Si ngle Protot ype

public static T Single<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

This version of the Single operator returns the only element it finds for which the predicate

returns true. If no elements cause the predicate to return true or multiple elements cause the
predicate to return true, the Single operator throws an InvalidOperationException.

Exceptions

ArgumentNullException is thrown if any arguments are null.
InvalidOperationException is thrown if the source sequence is empty or if the predicate never

returns true or finds more than one element for which it returns true.

Examples

Listing 5-28 is an example of the first Single prototype using the common Employee class.

Listing 5-28. Samp le Code Calling the Fi rst Si ngle Prot otype

Employee emp = Employee.GetEmployeesArray()
 .Where(e => e.id == 3).Single();

Console.WriteLine("{0} {1}", emp.firstName, emp.lastName);

CHAPTER 5 ■ NONDEFERRED OPERATORS

182

In this example, instead of wanting the query to produce a sequence, we just want a reference to a
particular employee. The Single operator is very useful for this as long as you can ensure there will be
only a single element in the sequence passed to it. In this case, since we called the Where operator and
specified a unique key, we are safe. Here are the results:

Anders Hejlsberg

Listing 5-29 is some sample code using the second prototype of the Single operator.

Listing 5-29. Code Calling the Second Single Prototype

Employee emp = Employee.GetEmployeesArray()
 .Single(e => e.id == 3);

Console.WriteLine("{0} {1}", emp.firstName, emp.lastName);

This code is functionally equivalent to the previous example. Instead of calling the Where operator

to ensure a single element is in the sequence, we can provide the same sequence filtering operation in
the Single operator. This should return the only element in the input sequence whose id is 3. Here are
the results:

Anders Hejlsberg

Remember, if either prototype of the Single operator ends up with no element to return, an
InvalidOperationException is thrown. To avoid this, use the SingleOrDefault operator.

SingleOrDefault
The SingleOrDefault operator is similar to the Single operator except for how it behaves when an
element is not found.

Prototypes

There are two prototypes we cover.

The Fi rst Si ngleOrDef ault Prot otype

public static T SingleOrDefault<T>(
 this IEnumerable<T> source);

This version of the prototype returns the only element found in the input sequence. If the sequence

is empty, default(T) is returned. For reference and nullable types, the default value is null. If more
than one element is found, an InvalidOperationException is thrown.

CHAPTER 5 ■ NONDEFERRED OPERATORS

183

The second prototype of the SingleOrDefault operator allows you to pass a predicate to
determine which element should be returned.

The Second Si ngleOrDef ault Prot otype

public static T SingleOrDefault<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any arguments are null.
InvalidOperationException is thrown if the operator finds more than one element for which the

predicate returns true.

Examples

Listing 5-30 is an example of the first SingleOrDefault prototype where no element is found. We have
to get an empty sequence to do this. I’ll use the Where operator and provide a key comparison for a key
that doesn’t exist for this purpose.

Listing 5-30. Calling the First SingleOrDefault Prototype Where an Element Is Not Found

Employee emp = Employee.GetEmployeesArray()
 .Where(e => e.id == 5).SingleOrDefault();

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

We queried for the employee whose id is 5 since we know none exists, so an empty sequence will be

returned. Unlike the Single operator, the SingleOrDefault operator handles empty sequences just
fine. Here are the results:

NULL

Listing 5-31 is the same example where a single element is found. We use the Where operator to
provide a sequence with just one element.

Listing 5-31. Calling the First SingleOrDefault Prototype Where an Element Is Found

Employee emp = Employee.GetEmployeesArray()
 .Where(e => e.id == 4).SingleOrDefault();

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

CHAPTER 5 ■ NONDEFERRED OPERATORS

184

This time we specify an id we know exists. Here are the results for the code when an element is

found:

David Lightman

As you can see, the employee has been found. For the second SingleOrDefault prototype, shown
in Listing 5-32, we specify an id that we know exists. Instead of using the Where operator, we embed the
filter into the SingleOrDefault operator call.

Listing 5-32. Calling the Second SingleOrDefault Prototype Where an Element Is Found

Employee emp = Employee.GetEmployeesArray()
 .SingleOrDefault(e => e.id == 4);

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

This example is functionally equivalent to the previous example except instead of filtering the

elements using the Where operator, we filter them by passing a predicate to the SingleOrDefault
operator. Here are the results:

David Lightman

Now we will try that with a predicate that will not find a match, as shown in Listing 5-33.

Listing 5-33. Calling the Second SingleOrDefault Prototype Where an Element Is Not Found

Employee emp = Employee.GetEmployeesArray()
 .SingleOrDefault(e => e.id == 5);

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

Since there is no element whose id is 5, no elements are found. Here are the results:

NULL

Although no elements were found in the sequence, the SingleOrDefault operator handled the
situation gracefully instead of throwing an exception.

CHAPTER 5 ■ NONDEFERRED OPERATORS

185

ElementAt
The ElementAt operator returns the element from the source sequence at the specified index.

Prototypes

There is one prototype we cover.

The E lementAt Prot otype

public static T ElementAt<T>(
 this IEnumerable<T> source,
 int index);

If the sequence implements IList<T>, the IList interface is used to retrieve the indexed element

directly. If the sequence does not implement IList<T>, the sequence is enumerated until the indexed
element is reached. An ArgumentOutOfRangeException is thrown if the index is less than zero or greater
than or equal to the number of elements in the sequence.

■ NNote In C#, indexes are zero-based. This means the first element’s index is zero. The last element’s index is

the sequence’s count minus one.

Exceptions

ArgumentNullException is thrown if the source argument is null.
ArgumentOutOfRangeException is thrown if the index is less than zero or greater than or equal to

the number of elements in the sequence.

Examples

Listing 5-34 is an example calling the only prototype of the ElementAt operator.

Listing 5-34. Calling the ElementAt Operator

Employee emp = Employee.GetEmployeesArray()
 .ElementAt(3);

Console.WriteLine("{0} {1}", emp.firstName, emp.lastName);

We specified that we want the element whose index is 3, which is the fourth element. Here are the

results of the query:

David Lightman

CHAPTER 5 ■ NONDEFERRED OPERATORS

186

ElementAtOrDefault
The ElementAtOrDefault operator returns the element from the source sequence at the specified
index.

Prototypes

There is one prototype we cover.

The E lementAt OrDefau lt Prot otype

public static T ElementAtOrDefault<T>(
 this IEnumerable<T> source,
 int index);

If the sequence implements IList<T>, the IList interface is used to retrieve the indexed element

directly. If the sequence does not implement IList<T>, the sequence will be enumerated until the
indexed element is reached.

If the index is less than zero or greater than or equal to the number of elements in the sequence,
default(T) is returned. For reference and nullable types, the default value is null. This is the behavior
that distinguishes it from the ElementAt operator.

Exceptions

ArgumentNullException is thrown if the source argument is null.

Examples

Listing 5-35 is an example calling the ElementAtOrDefault operator when the index is valid.

Listing 5-35. Calling the ElementAtOrDefault Operator with a Valid Index

Employee emp = Employee.GetEmployeesArray()
 .ElementAtOrDefault(3);

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

Here are the results of the query:

David Lightman

Just as expected, the element at index 3 is retrieved. Now we will try a query with an invalid index
using the code in Listing 5-36.

CHAPTER 5 ■ NONDEFERRED OPERATORS

187

Listing 5-36. Calling the ElementAtOrDefault Operator with an Invalid Index

Employee emp = Employee.GetEmployeesArray()
 .ElementAtOrDefault(5);

Console.WriteLine(emp == null ? "NULL" :
 string.Format("{0} {1}", emp.firstName, emp.lastName));

There is no element whose index is 5. Here are the results of the query:

NULL

Quantifiers
The following quantifier operators allow you to perform quantification type operations on input
sequences.

Any
The Any operator returns true if any element of an input sequence matches a condition.

Prototypes

There are two prototypes we cover.

The Fi rst Any Protot ype

public static bool Any<T>(
 this IEnumerable<T> source);

This prototype of the Any operator will return true if the source input sequence contains any

elements. The second prototype of the Any operator enumerates the source input sequence and returns
true if at least one element in the input sequence causes the predicate method delegate to return
true. The source input sequence enumeration halts once the predicate returns true.

The Second Any Prot otype

public static bool Any<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any of the arguments are null.

CHAPTER 5 ■ NONDEFERRED OPERATORS

188

Examples

First we will try the case of an empty sequence, as shown in Listing 5-37. We will use the Empty operator
we covered in the previous chapter.

Listing 5-37. First Any Prototype Where No Elements Are in the Source Input Sequence

bool any = Enumerable.Empty<string>().Any();
Console.WriteLine(any);

Here are the results of this code:

False

Next we will try the same prototype but, this time, with elements in the input sequence, as shown in
Listing 5-38.

Listing 5-38. First Any Prototype Where Elements Are in the Source Input Sequence

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool any = presidents.Any();
Console.WriteLine(any);

Here are the results of this code:

True

For the next example, we use the second prototype, first with no elements matching the predicate,
as shown in Listing 5-39.

Listing 5-39. Second Any Prototype Where No Elements Cause the Predicate to Return True

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",

CHAPTER 5 ■ NONDEFERRED OPERATORS

189

 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool any = presidents.Any(s => s.StartsWith("Z"));
Console.WriteLine(any);

We specify that we want the presidents that start with the string "Z". Since there are none, an

empty sequence will be returned causing the Any operator to return false. The results are as one would
expect:

False

Finally, we try an example of the second prototype with a predicate that should return true for at
least one element, as shown in Listing 5-40.

Listing 5-40. Second Any Prototype Where at Least One Element Causes the Predicate to Return True

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool any = presidents.Any(s => s.StartsWith("A"));
Console.WriteLine(any);

And finally, here are the results:

True

All
The All operator returns true if every element in the input sequence matches a condition.

Prototypes

There is one prototype we cover.

The A ll Prot otype

public static bool All<T>(
 this IEnumerable<T> source,

CHAPTER 5 ■ NONDEFERRED OPERATORS

190

 Func<T, bool> predicate);

The All operator enumerates the source input sequence and returns true only if the predicate

returns true for every element in the sequence. Once the predicate returns false, the enumeration
will cease.

Exceptions

ArgumentNullException is thrown if any of the arguments are null.

Examples

In Listing 5-41 we begin with a predicate with which we know at least some of the elements will return
false.

Listing 5-41. All Prototype Where Not Every Element Causes the Predicate to Return True

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool all = presidents.All(s => s.Length > 5);
Console.WriteLine(all);

Since we know not every president in the array has a length of more than five characters, we know

that predicate will return false for some elements. Here is the output:

False

Now we will try a case where we know every element will cause the predicate to return true, as
shown in Listing 5-42.

Listing 5-42. All Prototype Where Every Element Causes the Predicate to Return True

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

CHAPTER 5 ■ NONDEFERRED OPERATORS

191

bool all = presidents.All(s => s.Length > 3);
Console.WriteLine(all);

Since we know every president’s name has at least four characters, the All operator should return

true. Here is the output:

True

Contains
The Contains operator returns true if any element in the input sequence matches the specified value.

Prototypes

There are two prototypes we cover.

The Fi rst Contai ns Prototype

public static bool Contains<T>(
 this IEnumerable<T> source,
 T value);

This prototype of the Contains operator first checks the source input sequence to see whether it

implements the ICollection<T> interface, and if it does, it calls the Contains method of the
sequence’s implementation. If the sequence does not implement the ICollection<T> interface, it
enumerates the source input sequence to see whether any element matches the specified value. Once it
finds an element that does match, the enumeration halts.

The specified value is compared to each element using the EqualityComparer<K>.Default default
equality comparison class.

The second prototype is like the previous except an IEqualityComparer<T> object can be
specified. If this prototype is used, each element in the sequence is compared to the passed value using
the passed equality comparison object.

The Second Contai ns Prot otype

public static bool Contains<T>(
 this IEnumerable<T> source,
 T value,
 IEqualityComparer<T> comparer);

Exceptions

ArgumentNullException is thrown if the source input sequence is null.

CHAPTER 5 ■ NONDEFERRED OPERATORS

192

Examples

For an example of the first prototype, we begin with a value that we know is not in our input sequence,
as shown in Listing 5-43.

Listing 5-43. First Contains Prototype Where No Element Matches the Specified Value

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool contains = presidents.Contains("Rattz");
Console.WriteLine(contains);

Since there is no element whose value is "Rattz" in the array, the contains variable should be

false. Here is the output:

False

In Listing 5-44, we know an element will match our specified value.

Listing 5-44. First Contains Prototype Where an Element Matches the Specified Value

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

bool contains = presidents.Contains("Hayes");
Console.WriteLine(contains);

Since there is an element with the value of "Hayes", the contains variable should be true. Here is

the output:

True

For an example of the second Contains operator prototype, we will use our common
MyStringifiedNumberComparer class. We will check an array of numbers in string format for a number

CHAPTER 5 ■ NONDEFERRED OPERATORS

193

in string format that is technically unequal to any element in the array, but because we use our equality
comparison class, the appropriate element will be found. Listing 5-45 shows the example.

Listing 5-45. Second Contains Prototype Where an Element Matches the Specified Value

string[] stringifiedNums = {
 "001", "49", "017", "0080", "00027", "2" };

bool contains = stringifiedNums.Contains("0000002",
 new MyStringifiedNumberComparer());

Console.WriteLine(contains);

We are looking for an element with a value of "0000002". Our equality comparison object will be

used, which will convert that string value as well as all the sequence elements to an integer before
making the comparison. Since our sequence contains the element "2", the contains variable should be
true. Let’s take a look at the results:

True

Now we will try the same example except this time we will query for an element that we know
doesn’t exist. Listing 5-46 shows the code.

Listing 5-46. Second Contains Prototype Where an Element Does Not Match the Specified Value

string[] stringifiedNums = {
 "001", "49", "017", "0080", "00027", "2" };

bool contains = stringifiedNums.Contains("000271",
 new MyStringifiedNumberComparer());

Console.WriteLine(contains);

Since we know that none of the elements when converted to an integer equals 271, we search the

array for "000271". Here are the results:

False

Aggregate
The following aggregate operators allow you to perform aggregate operations on the elements of an
input sequence.

CHAPTER 5 ■ NONDEFERRED OPERATORS

194

Count
The Count operator returns the number of elements in the input sequence.

Prototypes

There are two prototypes we cover.

The Fi rst Count Prot otype

public static int Count<T>(
 this IEnumerable<T> source);

This prototype of the Count operator returns the total number of elements in the source input

sequence by first checking the input sequence to see whether it implements the ICollection<T>
interface, and if so, it obtains the sequence’s count using the implementation of that interface. If the
source input sequence does not implement the ICollection<T> interface, it enumerates the entire
input sequence counting the number of elements.

The second prototype of the Count operator enumerates the source input sequence and counts
every element that causes the predicate method delegate to return true.

The Second Count Prot otype

public static int Count<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any argument is null.
OverflowException is thrown if the count exceeds the capacity of int.MaxValue.

Examples

Listing 5-47 begins with the first prototype. How many elements are there in the presidents sequence?

Listing 5-47. The First Count Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

CHAPTER 5 ■ NONDEFERRED OPERATORS

195

int count = presidents.Count();
Console.WriteLine(count);

Here are the results:

38

Now we will try an example of the second prototype, shown in Listing 5-48. We will count the
number of presidents beginning with the letter "J".

Listing 5-48. The Second Count Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

int count = presidents.Count(s => s.StartsWith("J"));
Console.WriteLine(count);

The results from this code are the following:

3

So what happens if the count exceeds the capacity of Int32.MaxValue? That’s what the LongCount
operator is for.

LongCount
The LongCount operator returns the number of elements in the input sequence as a long.

Prototypes

There are two prototypes we cover.

The Fi rst LongCou nt Prot otype

public static long LongCount<T>(
 this IEnumerable<T> source);

CHAPTER 5 ■ NONDEFERRED OPERATORS

196

The first prototype of the LongCount operator returns the total number of elements in the source
input sequence by enumerating the entire input sequence and counting the number of elements.

The second prototype of the LongCount operator enumerates the source input sequence and
counts every element that causes the predicate method delegate to return true.

The Second LongCou nt Prot otype

public static long LongCount<T>(
 this IEnumerable<T> source,
 Func<T, bool> predicate);

Exceptions

ArgumentNullException is thrown if any argument is null.

Examples

We will begin with an example of the first prototype, shown in Listing 5-49. We could just reiterate the
same two examples we use for the Count operator, changing the relevant parts to type long, but that
wouldn’t be very demonstrative of the operator. Since it isn’t feasible for me to have a sequence long
enough to require the LongCount operator, we use a standard query operator to generate one.
Unfortunately, the generation operators we covered in the previous chapter only allow you to specify the
number of elements to generate using an int. We have to concatenate a couple of those generated
sequences together to get enough elements to require the LongCount operator.

Listing 5-49. The First LongCount Prototype

long count = Enumerable.Range(0, int.MaxValue).
 Concat(Enumerable.Range(0, int.MaxValue)).LongCount();

Console.WriteLine(count);

As you can see, we generated two sequences using the Range operator we cover in the previous

chapter and concatenated them together using the Concat operator also covered in the previous
chapter.

■ CCaution This example takes a while to run. On our four-core machine with 4GB of memory, it took

approximately one minute.

Before you run that example, let us warn you that it takes a long time to run. Don’t be surprised if it
takes several minutes. After all, it has to generate two sequences, each with 2,147,483,647 elements. Here
are the results:

CHAPTER 5 ■ NONDEFERRED OPERATORS

197

4294967294

If you try to run that same example using the Count operator, you will get an exception. Now we will
try an example of the second prototype. For this example, we use the same basic example as the
previous, except we specify a predicate that only returns true for integers greater than 1 and less than
4. This essentially means 2 and 3. Since we have two sequences with the same values, we should get a
count of 4, as shown in Listing 5-50.

Listing 5-50. An Example of the Second LongCount Prototype

long count = Enumerable.Range(0, int.MaxValue).
 Concat(Enumerable.Range(0, int.MaxValue)).LongCount(n => n > 1 && n < 4);

Console.WriteLine(count);

This code is much the same as the previous example except we have specified a predicate. This

example takes even longer to run than the previous example.
The results from this code are the following:

4

Sum
The Sum operator returns the sum of numeric values contained in the elements of the input sequence.

Prototypes

There are two prototypes we cover.

The Fi rst Su m Prot otype

public static Numeric Sum(
 this IEnumerable<Numeric> source);

The Numeric type must be one of int, long, double, or decimal or one of their nullable

equivalents, int?, long?, double?, or decimal?.
The first prototype of the Sum operator returns the sum of each element in the source input

sequence.
An empty sequence will return the sum of zero. The Sum operator will not include null values in the

result for Numeric types that are nullable.
The second prototype of the Sum operator behaves like the previous, except it will sum the value

selected from each element by the selector method delegate.

CHAPTER 5 ■ NONDEFERRED OPERATORS

198

The Second Su m Prot otyp e

public static Numeric Sum<T>(
 this IEnumerable<T> source,
 Func<T, Numeric> selector);

Exceptions

ArgumentNullException is thrown if any argument is null.
OverflowException is thrown if the sum is too large to be stored in the Numeric type if the

Numeric type is other than decimal or decimal?. If the Numeric type is decimal or decimal?, a positive or
negative infinity value is returned.

Examples

We will begin with an example of the first prototype, shown in Listing 5-51. First we generate a sequence
of integers using the Range operator, and then we use the Sum operator to sum them.

Listing 5-51. An Example of the First Sum Prototype

IEnumerable<int> ints = Enumerable.Range(1, 10);

foreach (int i in ints)
 Console.WriteLine(i);

Console.WriteLine("--");

int sum = ints.Sum();
Console.WriteLine(sum);

Here are the results:

1
2
3
4
5
6
7
8
9
10
--
55

CHAPTER 5 ■ NONDEFERRED OPERATORS

199

Now we will try an example of the second prototype, shown in Listing 5-52. For this example, we use
the common EmployeeOptionEntry class and sum the count of the options for all employees.

Listing 5-52. An Example of the Second Sum Prototype

IEnumerable<EmployeeOptionEntry> options =
 EmployeeOptionEntry.GetEmployeeOptionEntries();

long optionsSum = options.Sum(o => o.optionsCount);
Console.WriteLine("The sum of the employee options is: {0}", optionsSum);

Instead of trying to sum the entire element, which makes no sense in this example because it is an

employee object, we can use the second prototype’s element selector to retrieve just the member we
am interested in summing, which in this case is the optionsCount member. The results of this code are
the following:

The sum of the employee options is: 51504

Min
The Min operator returns the minimum value of an input sequence.

Prototypes

There are four prototypes we cover.

The Fi rst Mi n Prot otype

public static Numeric Min(
 this IEnumerable<Numeric> source);

The Numeric type must be one of int, long, double, or decimal or one of their nullable

equivalents, int?, long?, double?, or decimal?.
The first prototype of the Min operator returns the element with the minimum numeric value in the

source input sequence. If the element type implements the IComparable<T> interface, that interface
will be used to compare the elements. If the elements do not implement the IComparable<T> interface,
the nongeneric IComparable interface will be used.

An empty sequence, or one that contains only null values, will return the value of null.
The second prototype of the Min operator behaves like the previous, except it is for non-Numeric

types.

The Second Mi n Prot otype

public static T Min<T>(
 this IEnumerable<T> source);

CHAPTER 5 ■ NONDEFERRED OPERATORS

200

The third prototype is for Numeric types and is like the first, except now a selector method delegate

can be provided, allowing a member of each element in the input sequence to be compared while
searching for the minimum value in the input sequence and returning that minimum value.

The Third Min Protot ype

public static Numeric Min<T>(
 this IEnumerable<T> source,
 Func<T, Numeric> selector);

The fourth prototype is for non-Numeric types and is like the second, except now a selector

method delegate can be provided, allowing a member of each element in the input sequence to be
compared while searching for the minimum value in the input sequence and returning that minimum
value.

The F ourth Mi n Prot otype

public static S Min<T, S>(
 this IEnumerable<T> source,
 Func<T, S> selector);

Exceptions

ArgumentNullException is thrown if any argument is null.
InvalidOperationException is thrown if the source sequence is empty for the Numeric versions

of the prototypes if the type T is non-nullable, such as int, long, double, or decimal. If the types are
nullable, that is, int?, long?, double?, or decimal?, a null is returned from the operator instead.

Examples

In the example of the first Min prototype, shown in Listing 5-53, we declare an array of integers and
return the minimum from it.

Listing 5-53. An Example of the First Min Prototype

int[] myInts = new int[] { 974, 2, 7, 1374, 27, 54 };
int minInt = myInts.Min();
Console.WriteLine(minInt);

That is a pretty trivial example. The following is the result:

2

CHAPTER 5 ■ NONDEFERRED OPERATORS

201

For our example of the second prototype, shown in Listing 5-54, we will just call the Min operator on
our standard presidents array. This should return the element with the lowest value, alphabetically
speaking.

Listing 5-54. An Example of the Second Min Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string minName = presidents.Min();
Console.WriteLine(minName);

This example provides the following results:

Adams

Although this may be the same output that calling the First operator would provide, this is only
because the presidents array is already sequenced alphabetically. Had the array been in some other
order, or disordered, the results would have still been Adams.

For the example of the third prototype of the Min operator, we use our common Actor class to find
the earliest actor birth year by calling the Min operator on the birth year.

Listing 5-55 is the code calling the Min operator.

Listing 5-55. An Example of the Third Min Prototype

int oldestActorAge = Actor.GetActors().Min(a => a.birthYear);
Console.WriteLine(oldestActorAge);

And the birth year of the actor with the most plastic surgery, we mean, the earliest birth year is the

following:

1960

For an example of the fourth Min prototype, shown in Listing 5-56, we obtain the last name of the
actor that would come first alphabetically using our common Actor class.

Listing 5-56. An Example of the Fourth Min Prototype

string firstAlphabetically = Actor.GetActors().Min(a => a.lastName);

CHAPTER 5 ■ NONDEFERRED OPERATORS

202

Console.WriteLine(firstAlphabetically);

And the Oscar goes to...

Bullock

Max
The Max operator returns the maximum value of an input sequence.

Prototypes

There are four prototypes we cover.

The Fi rst Max Prot otype

public static Numeric Max(
 this IEnumerable<Numeric> source);

The Numeric type must be one of int, long, double, or decimal or one of their nullable

equivalents, int?, long?, double?, or decimal?.
The first prototype of the Max operator returns the element with the maximum numeric value in the

source input sequence. If the element type implements the IComparable<T> interface, that interface
will be used to compare the elements. If the elements do not implement the IComparable<T> interface,
the nongeneric IComparable interface will be used.

An empty sequence, or one that contains only null values, will return the value of null.
The second prototype of the Max operator behaves like the previous, except it is for non-Numeric

types.

The Second Max Prot otype

public static T Max<T>(
 this IEnumerable<T> source);

The third prototype is for Numeric types and like the first, except now a selector method delegate

can be provided, allowing a member of each element in the input sequence to be compared while
searching for the maximum value in the input sequence and returning that maximum value.

The Third Max Prot otyp e

public static Numeric Max<T>(
 this IEnumerable<T> source,
 Func<T, Numeric> selector);

CHAPTER 5 ■ NONDEFERRED OPERATORS

203

The fourth prototype is for non-Numeric types and is like the second, except now a selector
method delegate can be provided, allowing a member of each element in the input sequence to be
compared while searching for the maximum value in the input sequence and returning that maximum
value.

The F ourth Max Prot otype

public static S Max<T, S>(
 this IEnumerable<T> source,
 Func<T, S> selector);

Exceptions

ArgumentNullException is thrown if any argument is null.
InvalidOperationException is thrown if the source sequence is empty for the Numeric versions

of the prototypes if the type T is non-nullable, such as int, long, double, or decimal. If the types are
nullable, such as int?, long?, double?, or decimal?, a null is returned from the operator instead.

Examples

As an example of the first Max prototype, shown in Listing 5-57, we declare an array of integers and
return the maximum from it.

Listing 5-57. An Example of the First Max Prototype

int[] myInts = new int[] { 974, 2, 7, 1374, 27, 54 };
int maxInt = myInts.Max();
Console.WriteLine(maxInt);

The results are the following:

1374

For an example of the second prototype, shown in Listing 5-58, we just call the Max operator on our
standard presidents array.

Listing 5-58. An Example of the Second Max Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

CHAPTER 5 ■ NONDEFERRED OPERATORS

204

string maxName = presidents.Max();
Console.WriteLine(maxName);

This provides the following results:

Wilson

Again, like we mentioned in the equivalent example for the Min operator, although this example
provides the same result that the Last operator would, this is only because the presidents array is
already ordered alphabetically.

For the example of the third prototype of the Max operator, we use our common Actor class to find
the latest actor birth year by calling the Max operator on the birth year.

Listing 5-59 is the code calling the Max operator.

Listing 5-59. An Example of the Third Max Prototype

int youngestActorAge = Actor.GetActors().Max(a => a.birthYear);
Console.WriteLine(youngestActorAge);

And the latest actor birth year in our Actor class is the following:

1968

For an example of the fourth Max prototype, shown in Listing 5-60, we will obtain the last name of
the actor who would come last alphabetically using the same Actor class as previously.

Listing 5-60. An Example of the Fourth Max Prototype

string lastAlphabetically = Actor.GetActors().Max(a => a.lastName);
Console.WriteLine(lastAlphabetically);

The results are the following:

Wilson

Average
The Average operator returns the average of numeric values contained in the elements of the input
sequence.

CHAPTER 5 ■ NONDEFERRED OPERATORS

205

Prototypes

There are two prototypes we cover.

The Fi rst Average Prot otype

public static Result Average(
 this IEnumerable<Numeric> source);

The Numeric type must be one of int, long, double, or decimal or one of their nullable

equivalents, int?, long?, double?, or decimal?. If the Numeric type is int or long, the Result type will
be double. If the Numeric type is int? or long?, the Result type will be double?. Otherwise, the Result
type will be the same as the Numeric type.

The first prototype of the Average operator enumerates the input source sequence of Numeric type
elements, creating an average of the elements themselves.

The second prototype of the Average operator enumerates the source input sequence and
determines the average for the member returned by the selector for every element in the input source
sequence.

The Second Average Prot otype

public static Result Average<T>(
 this IEnumerable<T> source,
 Func<T, Numeric> selector);

Exceptions

ArgumentNullException is thrown if any argument is null.
OverflowException is thrown if the sum of the averaged values exceeds the capacity of a long for

Numeric types int, int?, long, and long?.

Examples

We will begin with an example of the first prototype, shown in Listing 5-61. For this example, we use the
Range operator to create a sequence of integers, and then we will average them.

Listing 5-61. An Example of the First Average Prototype

IEnumerable<int> intSequence = Enumerable.Range(1, 10);
Console.WriteLine("Here is our sequence of integers:");
foreach (int i in intSequence)
 Console.WriteLine(i);

double average = intSequence.Average();
Console.WriteLine("Here is the average: {0}", average);

Here are the results:

CHAPTER 5 ■ NONDEFERRED OPERATORS

206

Here is our sequence of integers:
1
2
3
4
5
6
7
8
9
10
Here is the average: 5.5

Now we will try an example of the second prototype, which will access a member of the element. For
this example, shown in Listing 5-62, we use our common EmployeeOptionEntry class.

Listing 5-62. An Example of the Second Average Prototype

IEnumerable<EmployeeOptionEntry> options =
 EmployeeOptionEntry.GetEmployeeOptionEntries();

Console.WriteLine("Here are the employee ids and their options:");
foreach (EmployeeOptionEntry eo in options)
 Console.WriteLine("Employee id: {0}, Options: {1}", eo.id, eo.optionsCount);

// Now I'll get the average of the options.
double optionAverage = options.Average(o => o.optionsCount);
Console.WriteLine("The average of the employee options is: {0}", optionAverage);

First we retrieve the EmployeeOptionEntry objects. Then we enumerate through the sequence of

objects and display each. At the end, we calculate the average and display it. The results of this code are
the following:

Here are the employee ids and their options:
Employee id: 1, Options: 2
Employee id: 2, Options: 10000
Employee id: 2, Options: 10000
Employee id: 3, Options: 5000
Employee id: 2, Options: 10000
Employee id: 3, Options: 7500
Employee id: 3, Options: 7500
Employee id: 4, Options: 1500
Employee id: 101, Options: 2
The average of the employee options is: 5722.66666666667

CHAPTER 5 ■ NONDEFERRED OPERATORS

207

Aggregate
The Aggregate operator performs a user-specified function on each element of an input sequence,
passing in the function’s return value from the previous element and returning the return value of the
last element.

Prototypes

There are two prototypes we cover.

The Fi rst Aggregat e Prot otype

public static T Aggregate<T>(
 this IEnumerable<T> source,
 Func<T, T, T> func);

In this version of the prototype, the Aggregate operator enumerates through each element of the

input source sequence, calling the func method delegate on each, passing the return value from the
previous element as the first argument and the element itself as the second argument, and finally storing
the value returned by func into an internal accumulator, which will then be passed to the next element.
The first element will be passed itself as the input value to the func method delegate.

The second prototype of the Aggregate operator behaves like the first version, except a seed value is
provided that will be the input value for the first invocation of the func method delegate instead of the
first element.

The Second Aggregat e Prot otyp e

public static U Aggregate<T, U>(
 this IEnumerable<T> source,
 U seed,

 Func<U, T, U> func);

Exceptions

ArgumentNullException is thrown if the source or func argument is null.
InvalidOperationException is thrown if the input source sequence is empty, only for the first

Aggregate prototype, where no seed value is provided.

Examples

We will begin with an example of the first prototype, shown in Listing 5-63. In the example, we calculate
the factorial for the number 5. A factorial is the product of all positive integers less than or equal to some
number. The factorial of 5 is the product of all positive integers less than or equal to 5. So, 5!,
pronounced 5 factorial, will be equal to 1 * 2 * 3 * 4 * 5. It looks like we could use the Range operator and
the Aggregate operator to calculate this.

CHAPTER 5 ■ NONDEFERRED OPERATORS

208

Listing 5-63. An Example of the First Aggregate Prototype

int N = 5;
IEnumerable<int> intSequence = Enumerable.Range(1, N);

// we will just output the sequence so all can see it.
foreach (int item in intSequence)
 Console.WriteLine(item);

// Now calculate the factorial and display it.
// av == aggregated value, e == element
int agg = intSequence.Aggregate((av, e) => av * e);
Console.WriteLine("{0}! = {1}", N, agg);

In the previous code, we generate a sequence containing the integers from 1 to 5 using the Range

operator. After displaying each element in the generated sequence, we call the Aggregate operator
passing a lambda expression that multiplies the passed aggregated value with the passed element itself.
The following are the results:

1
2
3
4
5
5! = 120

■ CCaution You should be careful when using this version of the Aggregate operator that the first element
doesn’t get operated on twice, since it is passed in as the input value and the element for the first element. In the

previous example, our first call to our func lambda expression would have passed in 1 and 1. Since we just
multiplied these two values and they are both ones, there is no bad side effect. But if we had added the two

values, we would have a sum that included the first element twice.

For the second prototype’s example, shown in Listing 5-64, we roll our own version of the Sum
operator.

CHAPTER 5 ■ NONDEFERRED OPERATORS

209

Listing 5-64. An Example of the Second Aggregate Prototype

IEnumerable<int> intSequence = Enumerable.Range(1, 10);

// I'll just output the sequence so all can see it.
foreach (int item in intSequence)
 Console.WriteLine(item);
Console.WriteLine("--");

// Now calculate the sum and display it.
int sum = intSequence.Aggregate(0, (s, i) => s + i);
Console.WriteLine(sum);

Notice that we passed 0 as the seed for this call to the Aggregate operator. And the envelope,

please...

1
2
3
4
5
6
7
8
9
10
--
55

As you can see, we got the same results that we did when calling the Sum operator in Listing 5-51.

Summary
Wow, our head is spinning. We hope we didn’t lose too many of you. We know a lot of this chapter and
the previous chapter was a little dry, but these two chapters are packed with the essentials of LINQ. We
hope that as we covered each query operator you tried to visualize when you might use it. A large part of
making LINQ effective for you is having a feel for the operators and what they do. Even if you can’t
remember every variation of each operator, just knowing they exist and what they can do for you is
essential.

From our coverage of LINQ to Objects and the Standard Query Operators, we hope you can see just
how powerful and convenient LINQ is for querying data of all types of in-memory data collections.

With nearly 50 operators to choose from, LINQ to Objects is sure to make your data-querying code
more consistent, more reliable, and more expedient to write.

We can’t emphasize enough that most of the Standard Query Operators work on collections that
implement the IEnumerable<T> interface, and this excludes the legacy C# collections. We know that
some readers are going to miss this fact and get frustrated because they have legacy code with an

CHAPTER 5 ■ NONDEFERRED OPERATORS

210

ArrayList and cannot seem to find a way to query data from it. If this is you, please read about the Cast
and OfType operators.

Now that you have a sound understanding of LINQ to Objects and just what LINQ can do for you,
it’s time to learn about using LINQ to query and generate XML. This functionality is called LINQ to XML
and, not so coincidentally, that is the name of the next part of this book.

P A R T 3

■ ■ ■

211

LINQ to XML

212

C H A P T E R 6

■ ■ ■

213

LINQ to XML Introduction

So you want to be an XML hero? Are you willing to suffer the slings and arrows? Listing 6-1 shows some
code that creates a trivial XML hierarchy using Microsoft’s original XML Document Object Model (DOM)
API, which is based on the W3C DOM XML API, demonstrating just how painful that model can be.

Listing 6-1. A Simple XML Example

using System.Xml;

// I'll declare some variables we will reuse.
XmlElement xmlBookParticipant;
XmlAttribute xmlParticipantType;
XmlElement xmlFirstName;
XmlElement xmlLastName;

// First, we must build an XML document.
XmlDocument xmlDoc = new XmlDocument();

// I'll create the root element and add it to the document.
XmlElement xmlBookParticipants = xmlDoc.CreateElement("BookParticipants");
xmlDoc.AppendChild(xmlBookParticipants);

// I'll create a participant and add it to the book participants list.
xmlBookParticipant = xmlDoc.CreateElement("BookParticipant");

xmlParticipantType = xmlDoc.CreateAttribute("type");
xmlParticipantType.InnerText = "Author";
xmlBookParticipant.Attributes.Append(xmlParticipantType);

xmlFirstName = xmlDoc.CreateElement("FirstName");
xmlFirstName.InnerText = "Joe";
xmlBookParticipant.AppendChild(xmlFirstName);

xmlLastName = xmlDoc.CreateElement("LastName");
xmlLastName.InnerText = "Rattz";
xmlBookParticipant.AppendChild(xmlLastName);

CHAPTER 6 ■ LINQ TO XML INTRODUCTION

214

xmlBookParticipants.AppendChild(xmlBookParticipant);

// I'll create another participant and add it to the book participants list.
xmlBookParticipant = xmlDoc.CreateElement("BookParticipant");

xmlParticipantType = xmlDoc.CreateAttribute("type");
xmlParticipantType.InnerText = "Editor";
xmlBookParticipant.Attributes.Append(xmlParticipantType);

xmlFirstName = xmlDoc.CreateElement("FirstName");
xmlFirstName.InnerText = "Ewan";
xmlBookParticipant.AppendChild(xmlFirstName);

xmlLastName = xmlDoc.CreateElement("LastName");
xmlLastName.InnerText = "Buckingham";
xmlBookParticipant.AppendChild(xmlLastName);

xmlBookParticipants.AppendChild(xmlBookParticipant);

// Now, I'll search for authors and display their first and last name.
XmlNodeList authorsList =
 xmlDoc.SelectNodes("BookParticipants/BookParticipant[@type=\"Author\"]");

foreach (XmlNode node in authorsList)
{
 XmlNode firstName = node.SelectSingleNode("FirstName");
 XmlNode lastName = node.SelectSingleNode("LastName");
 Console.WriteLine("{0} {1}", firstName, lastName);

}

That last line of code, the call to the WriteLine method, is in bold because we will be changing it

momentarily. All that code does is build the following XML hierarchy and attempt to display the name of
each book participant:

The Desi red Xml St ru cture

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

CHAPTER 6 ■ LINQ TO XML INTRODUCTION

215

That code is a nightmare to write, understand, and maintain. It is very verbose. Looking at it gives
you no idea what the XML structure should look like. Part of what makes it so cumbersome is that you
cannot create an element, initialize it, and attach it to the hierarchy in a single statement. Instead, each
element must first be created, then have its InnerText member set to the desired value, and finally
appended to some node already existing in the XML document. This must be done for every element
and attribute. This leads to a lot of code. Additionally, an XML document must first be created because
without it, you cannot even create an element. It is common to not want an actual XML document
because sometimes just a fragment like the previous is all that is needed. Finally, look at how many lines
of code it takes to generate such a small amount of XML.

Now let’s take a look at the glorious output; just press Ctrl+F5:

System.Xml.XmlElement System.Xml.XmlElement

Oops! It looks like we didn’t get the actual text out of the FirstName and LastName nodes in that
foreach loop. We’ll modify that Console.WriteLine method call to get the data:

 Console.WriteLine("{0} {1}", firstName.ToString(), lastName.ToString());

Now prepare to be impressed! Abracadabra, Ctrl+F5:

System.Xml.XmlElement System.Xml.XmlElement

Heavy sigh.
If chicks really do dig scars as Keanu Reeves’s character suggests in the movie The Replacements,

they ought to love Extensible Markup Language (XML) developers. If you have had any experience using
XML, then you will have stories to tell that involve frustration, confusion, and different “industry-
standard” schemas produced by each and every company in each and every industry.

Regardless of the battle scars we may have, there is no doubt that XML has become the standard for
data exchange. And as one of our friends says when struggling for a compliment for XML, it compresses
well.

So the next time you want to turn that young lady’s head, let her hear you whisper a sweet
something about namespaces, nodes, or attributes. She will be putty in your hands:

<PuttyInYourHands>True</PuttyInYourHands>

Introduction
Microsoft could have given us a new LINQ XML API that only added the ability to perform LINQ queries
and been done with it. Fortunately for XML developers, Microsoft went the extra mile. In addition to
making XML support LINQ queries, Microsoft addressed many of the deficiencies of the standard DOM
XML API. After years of suffering with the W3C DOM XML API, most developers were aware that many
tasks did not seem as simple as they should. When dealing with small fragments of XML, using the W3C
DOM required creating an XML document just to create a few elements. Have you ever just built a string
so that it looks like XML, rather than using the DOM API because it was such a hassle? We sure have.

Several key deficiencies were addressed. A new object model was created. And the result is a far

simpler and more elegant method for creating XML trees. Bloated code like that in Listing 6-1 will be an

CHAPTER 6 ■ LINQ TO XML INTRODUCTION

216

artifact of an API past its prime and left in the wake of LINQ. Creating a full XML tree in a single
statement is now a reality thanks to functional construction. Functional construction is the term used to
describe the ability to construct an entire XML hierarchy in a single statement. That alone makes LINQ
to XML worth its weight in gold.

Of course, it wouldn’t be part of LINQ if the new XML API didn’t support LINQ queries. In that vein,
several new XML-specific query operators, implemented as extension methods, were added. Combining
these new XML-specific operators with the LINQ to Objects Standard Query Operators we discuss in Part
2 of this book creates a powerfully elegant solution for finding whatever data you are searching for in an
XML tree.

Not only does LINQ support all this, but combine a query with functional construction, and you get
an XML transformation. LINQ to XML is very flexible.

Cheating the W3C DOM XML API
OK, you are working on your project, and you know some particular data should be stored as XML. In
one case, one of us was developing a general logging class that tracked everything a user does within an
ASP.NET web application. The logging class was developed for two reasons. First, it was developed to
prove someone was abusing the system should that ever happen. Second, and most important, when the
web application would signal via e-mail that an exception had occurred, the users who triggered the
exceptions could never remember what they were doing at the time they happened. They could never
recall the details that led them to the error.

So, we wanted something tracking their every move, at least on the server side. Every different type
of action a user would make, such as an invoice query or an order submission, would be considered an
event. In the database, there were fields that captured the user, the date, the time, the event type, and all
the common fields you would want. However, it wasn’t enough to know they were perhaps querying for
an invoice; we also had to know what the search parameters were. If they were submitting an order, we
needed to know what the part ID was and how many they ordered. Basically, we needed all the data so
that we could perform the same operation they attempted in order to reproduce the exception
condition. Each type of event had different parameter data. We didn’t want a different table for each
event type, and we didn’t want the Event Viewer code to have to hit a zillion different tables to
reconstruct the user’s actions. We wanted one table to capture it all so that when viewing the table we
could see every action (event) the user performed. So there we were, confronted with the notion that
what we needed was a string of XML data stored in the database that contained the event’s parameter
data.

There would be no schema defining what the XML looked like, because it was whatever data a
particular event needed it to be. If the event was an invoice inquiry across a date range, it might look like
this:

<StartDate>10/2/2006</StartDate>
<EndDate>10/9/2006</EndDate>
<IncludePaid>False</IncludePaid>

If it was an order submission, it might look like this:
<PartId>4754611903</PartId>
<Quantity>12</Quantity>
<DistributionCenter>Atlanta<DistributionCenter>
<ShippingCode>USPS First Class<ShippingCode>

We captured whatever fields would be necessary to manually reproduce the event. Since the data

varied with the event type, this ruled out validating the XML, so there went one benefit of using the XML
DOM API.

CHAPTER 6 ■ LINQ TO XML INTRODUCTION

217

This event tracker became a first-class support tool, as well as making it much easier to identify and
resolve bugs. As a side note, it is quite entertaining to call a user the next day and tell them that the error
they saw when they tried to pull up invoice number 3847329 the previous day is now fixed. The paranoia
that results when users know you know exactly what they did is often reward enough for the tracking
code.

Those of you who are already familiar with XML may be looking at those schemas and saying, “Hey,
that’s not well-formed. There’s no root node.” OK, that’s true and is a problem if you use the W3C DOM
API. However, we didn’t use the W3C DOM API to produce that XML; we used a different XML API. You
have probably used it too. It’s called the String.Format XML API, and using it looks a little like this:

string xmlData =
 string.Format(
 "<StartDate>{0}</StartDate><EndDate>{1}</EndDate><IncPaid>{2}</IncPaid>",
 Date.ToShortDateString(),
 endDate.ToShortDateString(),
 includePaid.ToString());

Yes, we are aware this is a poor way to create XML data. And, yes, it is prone to bugs. It’s certainly

easy to misspell, or set the case of (EndDate vs. endDate, for example), a closing tag this way. We even
went so far as to create a method to pass a parameter list of element names and their data. So, the code
actually looks a little more like this:

string xmlData =
 XMLHelper(
 "StartDate", startDate.ToShortDateString(),
 "EndDate", endDate.ToShortDateString(),
 "IncPaid", includePaid.ToString());

That XMLHelper method will create a root node, too. Yet again, this isn’t much better. You can see

that there is nothing to encode the data in that call. So, it was an error down the road before we realized
we had better be encoding those data values that get passed.

Although using the String.Format method, or any technique other than the XML DOM API, is a
poor substitute for the DOM, the existing API is often too much trouble when dealing with just an XML
fragment, as in this case.

If you think this is a unique approach to creating XML, we were at a Microsoft seminar recently, and
the presenter demonstrated code that built a string of XML using string concatenation. If only there was
a better way. If only LINQ had been available!

Summary
Whenever someone utters the word LINQ, the first image that most developers seem to conjure is that of
performing a data query. More specifically than that, they seem to want to exclude data sources other
than databases. LINQ to XML is here to tell you that LINQ is about XML too—and not just about
querying XML.

In this chapter, we demonstrated some of the pain of dealing with XML when using the existing
W3C DOM XML API and some of the traditional cheats to avoid that pain. In the next chapter, we cover
the LINQ to XML API. Using this API, we demonstrate how to create XML hierarchies in a fraction of the
code possible with the W3C DOM XML API. Just to tease you, we will tell you now that in the next
chapter we create the same XML hierarchy that is created in Listing 6-1 using LINQ to XML, and instead

CHAPTER 6 ■ LINQ TO XML INTRODUCTION

218

of the 29 lines of code that Listing 6-1 requires to create the hierarchy, LINQ to XML allows us to create
that same hierarchy with only 10 lines of code.

By the time you are finished reading the next two chapters, you will agree that LINQ is as
revolutionary for XML manipulation as it is for database queries.

C H A P T E R 7

■ ■ ■

219

The LINQ to XML API

In the previous chapter, we demonstrated creating an XML document using the W3C DOM XML API and
just how cumbersome that API can be. We also showed you some of the techniques we have seen used to
circumvent the pain it causes.

We also let you in on a seemingly little-known secret about LINQ: LINQ is not just about data
queries—it is also about XML. We told you there was a new XML API on the horizon and that API is the
LINQ to XML API.

Now, there is a better, or at least simpler, way to construct, traverse, manipulate, and query XML,
and it’s called LINQ to XML. In this chapter, we show you how to create, manipulate, and traverse XML
documents using the LINQ to XML API, as well as how to perform searches on an XML object.

For the examples in this chapter, we created a console application. However, before you can
leverage this new API, you need to add a reference to your project for the System.Xml.Linq assembly if
it is not already present.

Referenced Namespaces
The examples in this chapter use the System.Linq, System.Xml.Linq, and
System.Collections.Generic namespaces. Therefore, you should add using directives for these
namespaces to your code if they are not already present:

using System.Linq;
using System.Xml.Linq;
using System.Collections.Generic;

In addition to these namespaces, if you download the companion code, you will see that we also

added a using directive for the System.Diagnostics namespace. This will not be necessary if you are
typing in the examples from this chapter. It is necessary in the downloadable companion code because
of some housekeeping code.

Significant API Design Enhancements
After a few years of experience with Microsoft’s W3C XML DOM API, several key areas have been
identified by Microsoft as inconveniences, annoyances, or weaknesses in the original API. To combat
these issues, the following points have been addressed:

CHAPTER 7 ■ THE LINQ TO XML API

220

• XML tree construction

• Document centricity

• Namespaces and prefixes

• Node value extraction

Each of these problem domains has been a stumbling block to working with XML. Not only have
these issues made XML code bloated and unintentionally obfuscated, they needed to be addressed for
XML to really work seamlessly with LINQ queries. For example, if you want to use projection to return
XML from a LINQ query, it’s a bit of a problem if you can’t instantiate an element with a new statement.
This limitation of the existing XML API had to be addressed in order for LINQ to be practical with XML.
Let’s take a look at each of these problem areas and how they have been addressed in the new LINQ to
XML API.

XML Tree Construction Simplified with Functional Construction
When reading the first sample code of the previous chapter, Listing 6-1, it becomes clear that it is very
difficult to determine the XML schema by looking at the code that creates the XML tree. The code is also
verbose. After creating the XML document, we must create some type of XML node such as an element,
set its value, and append it to its parent element. However, each of those three steps must be performed
individually using the W3C DOM API. This leads to an obfuscated schema and a lot of code. The API just
doesn’t support creating an element, or any other type of node, in place in the XML tree with respect to
its parent and then initializing it, all in a single operation.

The LINQ to XML API not only provides the same ability to create the XML tree as the W3C DOM
does, but it also provides a new technique known as functional construction to create an XML tree.
Functional construction allows the schema to be dictated as the XML objects are constructed and the
values are initialized all at the same time in a single statement. The API accomplishes this by providing
constructors for the new API’s XML objects that accept either a single object or multiple objects that
specify its value. The type of object, or objects, being added determines where in the schema the added
object belongs. The pattern looks like this:

XMLOBJECT o =
 new XMLOBJECT(OBJECTNAME,
 XMLOBJECT1,
 XMLOBJECT2,
 ...
 XMLOBJECTN);

■ NNote The preceding code is merely pseudocode meant to illustrate a pattern. None of the classes referenced in

the pseudocode actually exists; they just represent conceptually abstract XML classes.

If you add an XML attribute, which is implemented with the LINQ to XML XAttribute class, to an
element, implemented with the XElement class, the attribute becomes an attribute of the element. For
example, if XMLOBJECT1 in the previous pseudocode is added to the newly created XMLOBJECT named o,

CHAPTER 7 ■ THE LINQ TO XML API

221

where o is an XElement and XMLOBJECT1 is an XAttribute, then XMLOBJECT1 becomes an attribute of
XElement named o.

If you add an XElement to an XElement, the added XElement becomes a child element of the
element to which it is added. So for example, if XMLOBJECT1 is an element and o is an element,
XMLOBJECT1 becomes a child element of o.

When we instantiate an XMLOBJECT, as indicated in the previous pseudocode, we can specify its
contents by specifying 1 to N XMLOBJECTs. As you will learn later in the section titled “Creating Text with
XText,” you can even specify its contents to include a string, because that string will be automatically
converted to an XMLOBJECT for you.

This makes complete sense and is at the heart of functional construction. Listing 7-1 shows an
example.

Listing 7-1. Using Functional Construction to Create an XML Schema

XElement xBookParticipant =
 new XElement("BookParticipant",
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"));

Console.WriteLine(xBookParticipant.ToString());

Notice that when we constructed the element named BookParticipant, we passed two XElement

objects as its value, and each of which becomes a child element. Also notice that when we constructed
the FirstName and LastName elements, instead of specifying multiple child objects, as we did when
constructing the BookParticipant element, we provided the element’s text value. Here are the results
of that code:

<BookParticipant>
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>

Notice how much easier it is now to visualize the XML schema from the code. Also notice how much
less verbose that code is than the first code sample of the previous chapter (Listing 6-1). The LINQ to
XML API code necessary to replace the code in Listing 6-1 that actually creates the XML tree is
significantly shorter, as shown in Listing 7-2.

Listing 7-2. Creates the Same XML Tree as Listing 6-1 but with Far Less Code

XElement xBookParticipants =
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",

CHAPTER 7 ■ THE LINQ TO XML API

222

 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")));

Console.WriteLine(xBookParticipants.ToString());

That is far less code to create and maintain. Also, the schema is fairly ascertainable by just reading

the code. Here is the output:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

There is one more additional benefit to the new API that is apparent in the example’s results. Please
notice that the output is formatted to look like a tree of XML. If we output the XML tree created in Listing
6-1, it actually looks like this:

<BookParticipants><BookParticipant type="Author"><FirstName>Joe</FirstName>…

Which would you rather read? In the next chapter, when we get to the section on performing LINQ
queries that produce XML output, you will see the necessity of functional construction.

Document Centricity Eliminated in Favor of Element Centricity
With the original W3C DOM API, you could not simply create an XML element, XmlElement; you must
have an XML document, XmlDocument, from which to create it. If you try to instantiate an XmlElement
like this:

XmlElement xmlBookParticipant = new XmlElement("BookParticipant");

you will be greeted with the following compiler error:

'System.Xml.XmlElement.XmlElement(string, string, string, System.Xml.XmlDocument)'
is inaccessible due to its protection level

With the W3C DOM API, you can create an XmlElement only by calling an XmlDocument object’s
CreateElement method like this:

CHAPTER 7 ■ THE LINQ TO XML API

223

XmlDocument xmlDoc = new XmlDocument();
XmlElement xmlBookParticipant = xmlDoc.CreateElement("BookParticipant");

This code compiles just fine. But it is often inconvenient to be forced to create an XML document

when you just want to create an XML element. The new LINQ-enabled XML API allows you to instantiate
an element itself without creating an XML document:

XElement xeBookParticipant = new XElement("BookParticipant");

XML elements are not the only XML type of node impacted by this W3C DOM restriction. Attributes,

comments, CData sections, processing instructions, and entity references all must be created from an
XML document. Thankfully, the LINQ to XML API has made it possible to directly instantiate each of
these on the fly.

Of course, nothing prevents you from creating an XML document with the new API. For example,
you could create an XML document and add the BookParticipants element and one
BookParticipant to it, as shown in Listing 7-3.

Listing 7-3. Using the LINQ to XML API to Create an XML Document and Adding Some Structure to It

XDocument xDocument =
 new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(xDocument.ToString());

Pressing Ctrl+F5 yields the following results:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

The XML produced by the previous code is very similar to the XML we created in Listing 6-1, with
the exception that we added only one BookParticipant instead of two. This code is much more
readable, though, than Listing 6-1, thanks to our new functional construction capabilities. And it is
feasible to determine the schema from looking at the code. However, now that XML documents are no
longer necessary, we could just leave the XML document out and obtain the same results, as shown in
Listing 7-4.

CHAPTER 7 ■ THE LINQ TO XML API

224

Listing 7-4. Same Example as the Previous but Without the XML Document

XElement xElement =
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")));

Console.WriteLine(xElement.ToString());

Running the code produces the same results as the previous example:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

In addition to creating XML trees without an XML document, you can do most of the other things
that a document requires, such as reading XML from a file and saving it to a file.

Names, Namespaces, and Prefixes
To eliminate some of the confusion stemming from names, namespaces, and namespace prefixes,
namespace prefixes are out—out of the API, that is. With the LINQ to XML API, namespace prefixes get
expanded on input and honored on output. On the inside, they no longer exist.

A namespace is used in XML to uniquely identify the XML schema for some portion of the XML tree.
A URI is used for XML namespaces because they are already unique to any organization. In several of our
code samples, we have created an XML tree that looks like this:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

Any code that is processing that XML data will be written to expect the BookParticipants node to

contain multiple BookParticipant nodes, each of which have a type attribute and a FirstName and
LastName node. But what if this code also needs to be able to process XML from another source, and it
too has a BookParticipants node but the schema within that node is different from the previous? A
namespace will alert the code as to what the schema should look like, thereby allowing the code to
handle the XML appropriately.

With XML, every element needs a name. When an element gets created, if its name is specified in
the constructor, that name is implicitly converted from a string to an XName object. An XName object

CHAPTER 7 ■ THE LINQ TO XML API

225

consists of a namespace (XNamespace), object, and its local name, which is the name you provided. So,
for example, you can create the BookParticipants element like this:

XElement xBookParticipants = new XElement("BookParticipants");

When you create the element, an XName object gets created with an empty namespace and a local

name of BookParticipants. If you debug that line of code and examine the xBookParticipants
variable in the watch window, you will see that its Name member is set to {BookParticipants}. If you
expand the Name member, it contains a member named LocalName that will be set to
BookParticipants, and a member named Namespace that is empty, {}. In this case, there is no
namespace.

To specify a namespace, you need merely create an XNamespace object and prepend it to the local
name you specify like this:

XNamespace nameSpace = "http://www.linqdev.com";
XElement xBookParticipants = new XElement(nameSpace + "BookParticipants");

Now when you examine the xBookParticipants element in the debugger watch window, the Name

is set to http://www.linqdev.com/BookParticipants. Expanding the Name member reveals that the
LocalName member is still BookParticipants, but now the Namespace member is set to
http://www.linqdev.com.

It is not necessary to actually use an XNamespace object to specify the namespace. We could have
specified it as a hard-coded string literal like this:

XElement xBookParticipants = new XElement("{http://www.linqdev.com}" +
 "BookParticipants");

Notice that we enclose the namespace in braces. This clues the XElement constructor into the fact

that this portion is the namespace. If you examine the BookParticipants’s Name member in the watch
window again, you will see that the Name member and its embedded LocalName and Namespace
members are all set identically to the same values as the previous example where we used an
XNamespace object to create the element.

Keep in mind that when setting the namespace, merely specifying the URI to your company or
organization domain may not be enough to guarantee its uniqueness. It only guarantees you won’t have
any collisions with any other organization that also plays by the namespace naming convention rules.
However, once inside your organization, any other department could have a collision if you provide
nothing more than the organization URI. This is where your knowledge of your organization’s divisions,
departments, and so on, can be quite useful. It would be best if your namespace could extend all the way
to some level you have control over. For example, if you work at LINQDev.com and you are creating a
schema for the human resources department that will contain information for the pension plan, your
namespace might be the following:

XNamespace nameSpace = "http://www.linqdev.com/humanresources/pension";

So for a final example showing how namespaces are used, we will modify the code from Listing 7-2

to use a namespace, as shown in Listing 7-5.

http://www.linqdev.com
http://www.linqdev.com/BookParticipants
http://www.linqdev.com
http://www.linqdev.com
http://www.linqdev.com/humanresources/pension

CHAPTER 7 ■ THE LINQ TO XML API

226

Listing 7-5. Modified Version Listing 7-2 with a Namespace Specified

XNamespace nameSpace = "http://www.linqdev.com";

XElement xBookParticipants =
 new XElement(nameSpace + "BookParticipants",
 new XElement(nameSpace + "BookParticipant",
 new XAttribute("type", "Author"),
 new XElement(nameSpace + "FirstName", "Joe"),
 new XElement(nameSpace + "LastName", "Rattz")),
 new XElement(nameSpace + "BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement(nameSpace + "FirstName", "Ewan"),
 new XElement(nameSpace + "LastName", "Buckingham")));

Console.WriteLine(xBookParticipants.ToString());

Pressing Ctrl+F5 reveals the following results:

<BookParticipants xmlns="http://www.linqdev.com">
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Now any code could read that and know that the schema should match the schema provided by
LINQDev.com.

To have control over the namespace prefixes going out, use the XAttribute object to create a prefix
as in Listing 7-6.

Listing 7-6. Specifying a Namespace Prefix

XNamespace nameSpace = "http://www.linqdev.com";

XElement xBookParticipants =
 new XElement(nameSpace + "BookParticipants",
 new XAttribute(XNamespace.Xmlns + "linqdev", nameSpace),

 new XElement(nameSpace + "BookParticipant"));

Console.WriteLine(xBookParticipants.ToString());

http://www.linqdev.com
http://www.linqdev.com
http://www.linqdev.com

CHAPTER 7 ■ THE LINQ TO XML API

227

In the previous code, we specify linqdev as the namespace prefix, and we use the XAttribute
object to get the prefix specification into the schema. Here is the output from this code:

<linqdev:BookParticipants xmlns:linqdev="http://www.linqdev.com">
 <linqdev:BookParticipant />
</linqdev:BookParticipants>

Node Value Extraction
If you read the first code sample of the previous chapter, Listing 6-1, and laughed at our results, you no
doubt have experienced the same issue that prevented us from getting the results we were after—getting
the actual value from a node is a bit of a nuisance. We find that if we haven’t been working with XML
DOM code for a while, we inevitably end up with an error like the one in Listing 6-1. We always forget we
have to take the extra step to get the value of the node.

The LINQ to XML API fixes that problem very nicely. First, calling the ToString method of an
element outputs the XML string itself, not the object type as it does with the W3C DOM API. This is very
handy when you want an XML fragment from a certain point in the tree and makes far more sense than
outputting the object type. Listing 7-7 shows an example.

Listing 7-7. Calling the ToString Method on an Element Produces the XML Tree

XElement name = new XElement("Name", "Joe");
Console.WriteLine(name.ToString());

Pressing Ctrl+F5 gives us the following:

<Name>Joe</Name>

Wow, that’s a nice change. But wait, it gets better. Of course, child nodes are included in the output,
and since the WriteLine method doesn’t have an explicit overload accepting an XElement, it calls the
ToString method for you, as shown in Listing 7-8.

Listing 7-8. Console.WriteLine Implicitly Calling the ToString Method on an Element to Produce an

XML Tree

XElement name = new XElement("Person",
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"));
Console.WriteLine(name);

And the following is the output:

<Person>

 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>

http://www.linqdev.com

CHAPTER 7 ■ THE LINQ TO XML API

228

</Person>

Even more important, if you cast a node to a data type that its value can be converted to, the value
itself will be output. Listing 7-9 shows another example, but we will also print out the node cast to a
string.

Listing 7-9. Casting an Element to Its Value’s Data Type Outputs the Value

XElement name = new XElement("Name", "Joe");
Console.WriteLine(name);
Console.WriteLine((string)name);

Here are the results of this code:

<Name>Joe</Name>
Joe

How slick is that? Now how much would you pay? And there are cast operators provided for string,
int, int?, uint, uint?, long, long?, ulong, ulong?, bool, bool?, float, float?, double, double?,
decimal, decimal?, TimeSpan, TimeSpan?, DateTime, DateTime?, GUID, and GUID?.

Listing 7-10 shows an example of a few different node value types.

Listing 7-10. Different Node Value Types Retrieved via Casting to the Node Value’s Type

XElement count = new XElement("Count", 12);
Console.WriteLine(count);
Console.WriteLine((int)count);

XElement smoker = new XElement("Smoker", false);
Console.WriteLine(smoker);
Console.WriteLine((bool)smoker);

XElement pi = new XElement("Pi", 3.1415926535);
Console.WriteLine(pi);
Console.WriteLine((double)pi);

And the envelope, please!

<Count>12</Count>
12
<Smoker>false</Smoker>
False
<Pi>3.1415926535</Pi>
3.1415926535

CHAPTER 7 ■ THE LINQ TO XML API

229

That seems very simple and intuitive. If we use the LINQ to XML API instead of the W3C DOM API,
errors like the one in Listing 6-1 of the previous chapter will be a thing of the past.

Although all of those examples make obtaining an element’s value simple, they are all cases of
casting the element to the same data type that its value initially was. This is not necessary. All that is
necessary is for the element’s value to be able to be converted to the specified data type. Listing 7-11
shows an example where the initial data type is string, but we will obtain its value as a bool.

Listing 7-11. Casting a Node to a Different Data Type Than Its Value’s Original Data Type

XElement smoker = new XElement("Smoker", "true");
Console.WriteLine(smoker);
Console.WriteLine((bool)smoker);

Since we have specified the value of the element to be "true" and since the string "true" can be

successfully converted to a bool, the code works:

<Smoker>true</Smoker>
True

Unfortunately, exactly how the values get converted is not specified, but it appears that the
conversion methods in the System.Xml.XmlConvert class are used for this purpose. Listing 7-12
demonstrates that this is the case when casting as a bool.

Listing 7-12. Casting to a Bool Calls the System.Xml.XmlConvert.ToBoolean Method

try
{
 XElement smoker = new XElement("Smoker", "Tue");
 Console.WriteLine(smoker);
 Console.WriteLine((bool)smoker);
}
catch (Exception ex)
{
 Console.WriteLine(ex);
}

Notice that we intentionally misspell "True" in the previous code to force an exception in the

conversion hoping for a clue to be revealed in the exception that is thrown. Will we be so lucky? Let’s
press Ctrl+F5 to find out.

<Smoker>Tue</Smoker>
System.FormatException: The string 'tue' is not a valid Boolean value.
 at System.Xml.XmlConvert.ToBoolean(String s)
...

CHAPTER 7 ■ THE LINQ TO XML API

230

As you can see, the exception occurred in the call to the System.Xml.XmlConvert.ToBoolean
method.

The LINQ to XML Object Model
With the new LINQ to XML API comes a new object model containing many new classes that exist in the
System.Xml.Linq namespace. One is the static class where the LINQ to XML extension methods live,
Extensions; two are comparer classes, XNodeDocumentOrderComparer and XNodeEqualityComparer,
and the remaining are used to build your XML trees. Those remaining classes are displayed in Figure 7-1.

Figure 7-1. LINQ to XML API object model

There are some interesting things to note:

* Of those remaining classes, three are abstract—XObject, XContainer, and XNode—so you will

never construct them.

* An attribute, XAttribute, is not derived from a node, XNode. In fact, it is not a node at all but

instead is a totally different type of class that is basically a name-value pair.

* Streaming elements, XStreamingElement, have no inheritance relationship with elements,

XElement.

* The XDocument and XElement classes are the only classes that have child nodes derived from

XNode.

These are the classes you will use to build your XML trees. Most notably, you will use the XElement
class, because as we have already discussed, the LINQ to XML API is very element-centric, as opposed to
document-centric like the W3C XML DOM.

CHAPTER 7 ■ THE LINQ TO XML API

231

Deferred Query Execution, Node Removal, and the Halloween
Problem
This section serves as a warning that there are some goblins out there to be leery of. First up is deferred
query execution. Never forget that many of the LINQ operators defer query execution until absolutely
necessary, and this can cause potential side effects.

Another problem to be on the lookout for is the Halloween problem. The Halloween problem
earned its name because it was first openly discussed among a small group of experts on Halloween. The
problem is basically any problem that occurs by changing data that is being iterated over that affects the
iteration. It was first detected by database engineers while working on the database optimizer. Their
run-in with the problem occurred when their test query was changing the value of a database column
that the optimizer they were developing was using as an index. Their test query would retrieve a record
based on an index created over one of the table’s columns, and the query would change the value in that
column. Since that column affected the indexing of the record, the record appeared again further down
in the list of records, causing it to be retrieved again in the same query and reprocessed. This caused an
endless loop, because every time it was retrieved from the record set, it was updated and moved further
down the record set where it would only be picked up again and processed the same way indefinitely.

You may have seen the Halloween problem yourself even though you may have not known the
name for it. Have you ever worked with some sort of collection, iterated through it, and deleted an item,
and this caused the iteration to break or misbehave? We have seen this recently working with a major
suite of ASP.NET server controls. The suite has a DataGrid server control, and we needed to remove
selected records from it. We iterated through the records from start to finish, deleting the ones we
needed to, but in doing so, it messed up the pointers being used for the iteration. The result was some
records that should not have been deleted were, and some that should have been deleted were not. We
called the vendor for support, and its solution was to iterate through the records backward. This resolved
the problem.

With LINQ to XML, you will most likely run into this problem when removing nodes from an XML
tree, although it can occur at other times, so you want to keep this in your mind when you are coding.
Let’s examine the example in Listing 7-13.

Listing 7-13. Intentionally Exposing the Halloween Problem

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",

CHAPTER 7 ■ THE LINQ TO XML API

232

 element.Name, element.Value);
}

foreach (XElement element in elements)
{
 Console.WriteLine("Removing {0} = {1} ...", element.Name, element.Value);
 element.Remove();
}

Console.WriteLine(xDocument);

In the previous code, we first build our XML document. Next, we build a sequence of the

BookParticipant elements. This is the sequence we will enumerate through, removing elements. Next,
we display each element in our sequence so you can see that we do indeed have two BookParticipant
elements. We then enumerate through the sequence again, displaying a message that we are removing
the element, and we remove the BookParticipant element. We then display the resulting XML
document.

If the Halloween problem does not manifest itself, you should see the “Removing …” message twice;
when the XML document is displayed at the end, you should have an empty BookParticipants
element. Here are the results:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Removing BookParticipant = JoeRattz ...
<BookParticipants>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Just as we anticipated, there are two source BookParticipant elements in the sequence to remove.
You can see the first one, Joe Rattz, gets removed. However, we never see the second one get removed,
and when we display the resulting XML document, the last BookParticipant element is still there. The
enumeration misbehaved; the Halloween problem got us. Keep in mind that the Halloween problem
does not always manifest itself in the same way. Sometimes enumerations may terminate sooner than
they should; sometimes they throw exceptions. Their behavior varies depending on exactly what is
happening.

I know that you are wondering, what is the solution? The solution for this case is to cache the
elements and to enumerate through the cache instead of through the normal enumeration technique,
which relies on internal pointers that are getting corrupted by the removal or modification of elements.
For this example, we will cache the sequence of elements using one of the Standard Query Operators
that is designed for the purpose of caching to prevent deferred query execution problems. We will use
the ToArray operator. Listing 7-14 shows the same code as before, except we call the ToArray operator
and enumerate on it.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 7 ■ THE LINQ TO XML API

233

Listing 7-14. Preventing the Halloween Problem

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

foreach (XElement element in elements.ToArray())
{
 Console.WriteLine("Removing {0} = {1} ...", element.Name, element.Value);
 element.Remove();
}

Console.WriteLine(xDocument);

This code is identical to the previous example except we call the ToArray operator in the final

enumeration where we remove the elements. Here are the results:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Removing BookParticipant = JoeRattz ...
Removing BookParticipant = EwanBuckingham ...
<BookParticipants />

Notice that this time we got two messages informing us that a BookParticipant element was being
removed. Also, when we display the XML document after the removal, we do have an empty
BookParticipants element because all the child elements have been removed. The Halloween problem
has been foiled!

CHAPTER 7 ■ THE LINQ TO XML API

234

XML Creation
As we have already discussed, functional construction provided by the LINQ to XML API makes creating
an XML tree a breeze compared to the W3C DOM API. We will now take a look at creating each of the
major XML classes in the LINQ to XML API.

Because the new API is centered on elements and that is what you will be creating the majority of
the time, we cover creating elements with the XElement class first. We then cover the rest of the XML
classes in alphabetical order.

Creating Elements with XElement
First, you should keep in mind that with the new API, the XElement class is the one you will use most.
That said, let’s take a look at instantiating an XElement object. XElement has several constructors, but
we are going to examine two of them:

XElement.XElement(XName name, object content);
XElement.XElement(XName name, params object[] content);

The first constructor is the simplest case where an element has a text value and no child nodes. It’s

as simple as Listing 7-15.

Listing 7-15. Creating an Element Using the First Prototype

XElement firstName = new XElement("FirstName", "Joe");
Console.WriteLine((string)firstName);

The first argument of the constructor is an XName object. As previously mentioned, an XName object

will be created by implicitly converting the input string to an XName. The second argument is a single
object representing the element’s content. In this case, the content is a string with the value of "Joe".
The API will convert that string literal of "Joe" to an XText object for us on the fly. Notice that we are
taking advantage of the new node value extraction capabilities to get the value from the firstName
element variable. That is, we are casting the element to the type of its value, which in this case is a
string. So, the value of the firstName element variable will be extracted. Here are the results:

Joe

The data type of the single content object is very flexible. It is the data type of the content object that
controls its relationship to the element to which it is added. Table 7-1 shows all of the allowed content
object data types and how they are handled.

Remember that even though the element’s value may be stored as a string, as it would be for any
remaining type1 such as an integer, you can get it out as the original type thanks to the new node value
extraction facilities. So for example, if when you create the XElement object you specify an integer (int)
as the content object, by casting the node to an integer (int), you get the value converted to an integer
for you. As long as you are casting to one of the data types a cast operator is provided for, and as long as

1 This term is explained in Table 7-1.

CHAPTER 7 ■ THE LINQ TO XML API

235

the element’s value can be converted to the type you are casting to, casting provides a simple way of
obtaining the element’s value.

The second XElement constructor listed previously is just like the first one, except you can provide
multiple objects for the content. This is what makes functional construction so powerful. You need only
examine Listing 7-1 or Listing 7-2 to see an example using the second constructor where multiple
content objects are provided to the XElement constructor.

Table 7-1. LINQ to XML Object to Parent Insertion Behavior Table

Content Object Data Type Manner Handled

string A string object or string literal is automatically converted to an
XText object and handled as XText from there.

XText This object can have either a string or an XText value. It is added as
a child node of the element but treated as the element’s text content.

XCData This object can have either a string or an XCData value. It is added
as a child node of the element but treated as the element’s CData
content.

XElement This object is added as a child element.

XAttribute This object is added as an attribute.

XProcessingInstruction This object is added as child content.

XComment This object is added as child content.

IEnumerable This object is enumerated, and the handling of the object types is
applied recursively.

null This object is ignored. You may be wondering why you would ever
want to pass null into the constructor of an element, but it turns out
that this can be quite handy for XML transformations.

Any remaining type The ToString method is called, and the resulting value is treated as
string content.

Earlier, we mentioned that functional construction is going to be very useful for LINQ queries that
produce XML. As an example, we will create the standard BookParticipants XML tree that we have
been using, but instead of hard-coding the element values with string literals, we will retrieve the data
from a LINQ-queryable data source. In this case, the data source will be an array.

First, we need a class that the data can be stored in. Also, since we have types of BookParticipants,
we will create an enum for the different types, as follows:

CHAPTER 7 ■ THE LINQ TO XML API

236

An enu m and Class f or th e Next Examp le

enum ParticipantTypes
{
 Author = 0,
 Editor
}

class BookParticipant
{
 public string FirstName;
 public string LastName;
 public ParticipantTypes ParticipantType;
}

Now we will build an array of the BookParticipant type and generate an XML tree using a LINQ

query to retrieve the data from the array, as shown in Listing 7-16.

Listing 7-16. Generating an XML Tree with a LINQ Query

BookParticipant[] bookParticipants = new[] {
 new BookParticipant {FirstName = "Joe", LastName = "Rattz",
 ParticipantType = ParticipantTypes.Author},
 new BookParticipant {FirstName = "Ewan", LastName = "Buckingham",
 ParticipantType = ParticipantTypes.Editor}
};

XElement xBookParticipants =
 new XElement("BookParticipants",
 bookParticipants.Select(p =>
 new XElement("BookParticipant",
 new XAttribute("type", p.ParticipantType),
 new XElement("FirstName", p.FirstName),
 new XElement("LastName", p.LastName))));

Console.WriteLine(xBookParticipants);

In the previous code, we create an array of BookParticipant objects named bookParticipants.

Next, the code queries the values from the bookParticipants array using the Select operator and
generates a BookParticipant element for each, using the members of the element of the array. Here is
the XML tree generated by the previous code:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>

CHAPTER 7 ■ THE LINQ TO XML API

237

 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Imagine trying to do that with the W3C XML DOM API. Actually, you don’t have to imagine it; you
can just look at Listing 6-1 because that code creates the same XML tree.

Creating Attributes with XAttribute
Unlike the W3C DOM API, attributes do not inherit from nodes. An attribute, implemented in LINQ to
XML with the XAttribute class, is a name-value pair that is stored in a collection of XAttribute objects
belonging to an XElement object.

We can create an attribute and add it to its element on the fly using functional construction, as
shown in Listing 7-17.

Listing 7-17. Creating an Attribute with Functional Construction

XElement xBookParticipant = new XElement("BookParticipant",
 new XAttribute("type", "Author"));

Console.WriteLine(xBookParticipant);

Running this code provides the following results:

<BookParticipant type="Author" />

Sometimes, however, you can’t create the attribute at the same time its element is being
constructed. For that, you must instantiate one and then add it to its element as in Listing 7-18.

Listing 7-18. Creating an Attribute and Adding It to Its Element

XElement xBookParticipant = new XElement("BookParticipant");
XAttribute xAttribute = new XAttribute("type", "Author");
xBookParticipant.Add(xAttribute);

Console.WriteLine(xBookParticipant);

The results are identical:

<BookParticipant type="Author" />

CHAPTER 7 ■ THE LINQ TO XML API

238

Notice again how flexible the XElement.Add method is. It accepts any object, applying the same
rules for the element’s content that are followed when instantiating an XElement. Sweet!

Creating Comments with XComment
Creating comments with LINQ to XML is trivial. XML comments are implemented in LINQ to XML with
the XComment class. You can create a comment and add it to its element on the fly using functional
construction, as in Listing 7-19.

Listing 7-19. Creating a Comment with Functional Construction

XElement xBookParticipant = new XElement("BookParticipant",
 new XComment("This person is retired."));

Console.WriteLine(xBookParticipant);

Running this code provides the following results:

<BookParticipant>
 <!--This person is retired.-->
</BookParticipant>

Sometimes, however, you can’t create the comment at the same time its element is being
constructed. For that, you must instantiate one and then add it to its element, as in Listing 7-20.

Listing 7-20. Creating a Comment and Adding It to Its Element

XElement xBookParticipant = new XElement("BookParticipant");
XComment xComment = new XComment("This person is retired.");
xBookParticipant.Add(xComment);

Console.WriteLine(xBookParticipant);

The results are identical:

<BookParticipant>
 <!--This person is retired.-->
</BookParticipant>

Creating Containers with XContainer
Because XContainer is an abstract class, you cannot instantiate it. Instead, you must instantiate one of
its subclasses, XDocument or XElement. Conceptually, an XContainer is a class that inherits from the
XNode class that can contain other classes inheriting from XNode.

CHAPTER 7 ■ THE LINQ TO XML API

239

Creating Declarations with XDeclaration
With the LINQ to XML API, creating declarations is a simple matter. XML declarations are implemented
in LINQ to XML with the XDeclaration class.

Unlike most of the other classes in the LINQ to XML API, declarations are meant to be added to an
XML document, not an element. Do you recall, though, how flexible the constructor was for the
XElement class? Any class it wasn’t specifically designed to handle would have its ToString method
called, and that text would be added to the element as text content. So, you can inadvertently add a
declaration using the XDeclaration class to an element. But it will not give you the results you are
looking for.

■ CCaution Although XML declarations apply to an XML document as a whole and should be added to an XML
document, an XElement object will gladly accept an XDeclaration object being added to it. However, this will

not be the result you want.

We can create a declaration and add it to an XML document on the fly using functional
construction, as in Listing 7-21.

Listing 7-21. Creating a Declaration with Functional Construction

XDocument xDocument = new XDocument(new XDeclaration("1.0", "UTF-8", "yes"),
 new XElement("BookParticipant"));

Console.WriteLine(xDocument);

This code produces the following results:

<BookParticipant />

Did you notice that the declaration is missing from the output? That’s right; the ToString method
will omit the declaration. However, if you debug the code and put a watch on the document, you will see
that the declaration is there.

Sometimes, however, you can’t create the declaration at the same time the document is being
constructed. For that, you must instantiate one and then set the document’s Declaration property to
the instantiated declaration, as in Listing 7-22.

Listing 7-22. Creating a Declaration and Setting the Document’s Declaration Property to It

XDocument xDocument = new XDocument(new XElement("BookParticipant"));

XDeclaration xDeclaration = new XDeclaration("1.0", "UTF-8", "yes");
xDocument.Declaration = xDeclaration;

CHAPTER 7 ■ THE LINQ TO XML API

240

Console.WriteLine(xDocument);

This code produces the following results:

<BookParticipant />

Again, notice that the declaration does not get output when a document’s ToString method is
called. But just as with the previous example, if you debug the code and examine the document, the
declaration is indeed there.

Creating Document Types with XDocumentType
The LINQ to XML API makes creating document types a fairly painless operation. XML document types
are implemented in LINQ to XML with the XDocumentType class.

Unlike most of the other classes in the LINQ to XML API, document types are meant to be added to
an XML document, not an element. Do you recall, though, how flexible the constructor was for the
XElement class? Any class it wasn’t specifically designed to handle would have its ToString method
called, and that text would be added to the element as text content. So, you can inadvertently add a
document type using the XDocumentType class to an element. But it will not give you the results you
want.

■ CCaution Although XML document types apply to an XML document as a whole and should be added to an XML
document, an XElement object will gladly accept an XDocumentType object being added to it. However, this will

not be the result you want.

You can create a document type and add it to an XML document on the fly using functional
construction, as in Listing 7-23.

Listing 7-23. Creating a Document Type with Functional Construction

XDocument xDocument = new XDocument(new XDocumentType("BookParticipants",
 null,
 "BookParticipants.dtd",
 null),
 new XElement("BookParticipant"));

Console.WriteLine(xDocument);

This code produces the following results:

CHAPTER 7 ■ THE LINQ TO XML API

241

<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<BookParticipant />

Sometimes, however, you can’t create the document type at the same time the document is being
constructed. For that, you must instantiate one and then add it to the document as in Listing 7-24.

Listing 7-24. Creating a Document Type and Adding It to a Document

XDocument xDocument = new XDocument();

XDocumentType documentType =
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null);

xDocument.Add(documentType, new XElement("BookParticipants"));

Console.WriteLine(xDocument);

The following is the result of this code:

<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<BookParticipants />

Notice in the previous code that we did not add any elements prior to adding the document type. If
you do add a document type after adding any elements, you will receive the following exception:

Unhandled Exception: System.InvalidOperationException: This operation would create
an incorrectly structured document.
…

So if you are going to specify a document type after the document’s instantiation, make sure you do
not specify any elements during the document’s instantiation using functional construction or add any
elements prior to adding the document type.

Creating Documents with XDocument
We have probably stated this so many times by now that you are sick of hearing it, but with LINQ to
XML, it isn’t necessary to create an XML document just to create an XML tree or fragment. However,
should the need arise, creating an XML document with LINQ to XML is trivial too. XML documents are
implemented in LINQ to XML with the XDocument class. Listing 7-25 is an example.

CHAPTER 7 ■ THE LINQ TO XML API

242

Listing 7-25. A Simple Example of Creating an XML Document with XDocument

XDocument xDocument = new XDocument();
Console.WriteLine(xDocument);

This code produces no output, though, because the XML document is empty. The previous example

may be a little too trivial, so we will create a document with all the LINQ to XML classes that are
specifically designed to be added to an XDocument object, as shown in Listing 7-26.

Listing 7-26. A Slightly More Complex Example of Creating an XML Document with XDocument

XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 new XElement("BookParticipants"));

Console.WriteLine(xDocument);

Both the processing instruction and element can be added to elements as well, but we wanted to

create an XML document with some meat, so here it is. And we wanted to include a processing
instruction so you could see one in action.

The results of this code are the following:

<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<?BookCataloger out-of-print?>
<BookParticipants />

You may have noticed that the declaration is missing. Just as was mentioned with the examples of
creating declarations, the document’s ToString method omits the declaration from its output.
However, if you debug the code and examine the document, you will see that the declaration is there.

Creating Names with XName
As we discussed earlier in this chapter, with LINQ to XML, you have no need to directly create names via
the XName object. In fact, the XName class has no public constructors, so there is no way for you to
instantiate one. An XName object will get created for you from a string, and optionally a namespace,
automatically when an XName object is required.

An XName object consists of a LocalName—which is a string—and a namespace—which is an
XNamespace.

Listing 7-27 is some code calling the XElement constructor requiring an XName as its only argument.

Listing 7-27. Sample Code Where an XName Object Is Created for You

XElement xBookParticipant = new XElement("BookParticipant");

CHAPTER 7 ■ THE LINQ TO XML API

243

Console.WriteLine(xBookParticipant);

In the previous example, we instantiate an XElement object by passing the element’s name as a

string, so an XName object is created for us with a LocalName of BookParticipant and is assigned to the
XElement object’s Name property. In this case, no namespace is provided, so the XName object has no
namespace.

Pressing Ctrl+F5 reveals the following results:

<BookParticipant />

We could have specified a namespace with the code in Listing 7-28.

Listing 7-28. Sample Code Where an XName Object Is Created for You and a Namespace Is Specified

XNamespace ns = "http://www.linqdev.com/Books";
XElement xBookParticipant = new XElement(ns + "BookParticipant");
Console.WriteLine(xBookParticipant);

This code will output this XML:

<BookParticipant xmlns="http://www.linqdev.com/Books" />

For more information about creating names using the LINQ to XML API, see the section titled
“Names, Namespaces, and Prefixes” earlier in this chapter.

Creating Namespaces with XNamespace
In the LINQ to XML API, namespaces are implemented with the XNamespace class. For an example of
creating and using a namespace, see the previous example, Listing 7-28. It demonstrates creating a
namespace with the XNamespace class.

For more information about creating namespaces using the LINQ to XML API, see the section titled
“Names, Namespaces, and Prefixes” earlier in this chapter.

Creating Nodes with XNode
Because XNode is an abstract class, you cannot instantiate it. Instead, you must instantiate one of its
subclasses: XComment, XContainer, XDocumentType, XProcessingInstruction, or XText.
Conceptually, an XNode is any class that functions as a node in the XML tree.

Creating Processing Instructions with XProcessingInstruction
Processing instructions have never been easier to create than with the LINQ to XML API. With the LINQ
to XML API, processing instructions are implemented with the XProcessingInstruction class.

http://www.linqdev.com/Books
http://www.linqdev.com/Books

CHAPTER 7 ■ THE LINQ TO XML API

244

You can create processing instructions at the document or element level. Listing 7-29 shows an
example of doing both on the fly using functional construction.

Listing 7-29. Creating a Processing Instruction at Both the Document and Element Levels

XDocument xDocument = new XDocument(
 new XProcessingInstruction("BookCataloger", "out-of-print"),

 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XProcessingInstruction("ParticipantDeleter", "delete"),

 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(xDocument);

In the previous code, we added a processing instruction to both the document and the

BookParticipant element. Before displaying the results, we want to take a second to point out just how
well this functional construction flows. It is a very simple matter to create this XML tree with two
processing instructions. Comparing this to our very first sample program in the previous chapter, Listing
6-1, again proves how much the new LINQ to XML API is going to simplify your code. And, lastly, here
are the results:

<?BookCataloger out-of-print?>
<BookParticipants>
 <BookParticipant>
 <?ParticipantDeleter delete?>
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

By now we would presume you can already imagine the code for adding a processing instruction
after construction, since it would be just like adding any of the other nodes we have already covered. So
instead of boring you with the mundane, Listing 7-30 shows a significantly more complex example of
creating and adding a processing instruction after the fact.

Listing 7-30. A More Complex Example of Adding Processing Instructions After the Document and

Element Have Been Constructed

XDocument xDocument =
 new XDocument(new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

CHAPTER 7 ■ THE LINQ TO XML API

245

XProcessingInstruction xPI1 = new XProcessingInstruction("BookCataloger",
 "out-of-print");
xDocument.AddFirst(xPI1);

XProcessingInstruction xPI2 = new XProcessingInstruction("ParticipantDeleter",
 "delete");
XElement outOfPrintParticipant = xDocument
 .Element("BookParticipants")
 .Elements("BookParticipant")
 .Where(e => ((string)((XElement)e).Element("FirstName")) == "Joe"
 && ((string)((XElement)e).Element("LastName")) == "Rattz")
 .Single<XElement>();

outOfPrintParticipant.AddFirst(xPI2);

Console.WriteLine(xDocument);

There are several items worth mentioning in this sample. First, we created the document and its

XML tree using functional construction. Then, after the construction of the document and tree, we
added a processing instruction to the document. However, here we are using the XElement.AddFirst
method to make it the first child node of the document, as opposed to the XElement.Add method, which
would just append it to the end of the document’s child nodes, which may be too late for any processing
instruction to be honored.

In addition, to add a processing instruction to one of the elements, we had to have a reference to it.
We could have just constructed an XElement object and kept the reference to it, but we thought it might
be time to start giving a hint about some of the query capabilities coming. You can see we perform a
rather complex query where we get the BookParticipants element from the document using the
Element method that we cover later in the section titled “XML Traversal” and then get the sequence of
XElement objects named BookParticipant where the BookParticipant element’s FirstName element
equals "Joe" and the LastName element equals "Rattz". Notice that we use the new node value
extraction features of the LINQ to XML API that we previously discussed to get the values of the
FirstName and LastName node by casting them as a string.

Finally, the Where operator returns an IEnumerable<T>, but we want a XElement object directly. So,
in our coverage of the LINQ to Objects deferred Standard Query Operators in Chapter 5, we recall that
there is an operator that will return the actual element from a sequence, provided there is only one, and
that operator is the Single operator. Once we have the reference to the proper XElement object with
that query, it is trivial to add the processing instruction to it and display the results. And, speaking of
results, here they are:

<?BookCataloger out-of-print?>
<BookParticipants>
 <BookParticipant>
 <?ParticipantDeleter delete?>
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

CHAPTER 7 ■ THE LINQ TO XML API

246

Creating Streaming Elements with XStreamingElement
Do you recall in Part 2 of this book, “LINQ to Objects,” that many of the Standard Query Operators
actually defer their work until the time the returned data is enumerated? If we call some operators that
do in fact defer their operation and we want to project our query’s output as XML, we would have a
dilemma. On the one hand, we want to take advantage of the deferred nature of the operator since there
is no need to do work until it needs to be done. But on the other hand, our LINQ to XML API call will
cause the query to execute immediately.

Notice in Listing 7-31 that even though we change the fourth element of the names array when we
output our XElement object’s value, the XML tree contains the original value. This is because the xNames
element was fully created before we changed the names array element.

Listing 7-31. Immediate Execution of the XML Tree Construction

string[] names = { "John", "Paul", "George", "Pete" };

XElement xNames = new XElement("Beatles",
 from n in names
 select new XElement("Name", n));

names[3] = "Ringo";

Console.WriteLine(xNames);

Before discussing the results of this code, we want to point out just how cool this example is. Notice

that we are creating an element whose name is Beatles and whose content is a sequence of XElement
objects whose element is named Name. This code produces the following XML tree:

<Beatles>
 <Name>John</Name>
 <Name>Paul</Name>
 <Name>George</Name>
 <Name>Pete</Name>
</Beatles>

That is pretty awesome. Each XElement object from the sequence becomes a child element. How
cool is that? As we mentioned, notice that even though we changed names[3] to "Ringo" prior to
outputting the XML, the last element still contains Pete, the original value. This is because the names
sequence has to be enumerated in order to construct the XElement object, thereby immediately
executing the query.

If we do indeed want the XML tree construction deferred, we need another way to do this, and that
is exactly what streaming elements are for. With LINQ to XML, a streaming element is implemented with
the XStreamingElement class.

So, Listing 7-32 shows the same example, except this time we will use XStreamingElement objects
instead of XElement objects.

CHAPTER 7 ■ THE LINQ TO XML API

247

Listing 7-32. Demonstrating the Deferred Execution of the XML Tree Construction by Using the

XStreamingElement Class

string[] names = { "John", "Paul", "George", "Pete" };

XStreamingElement xNames =
 new XStreamingElement("Beatles",
 from n in names
 select new XStreamingElement("Name", n));

names[3] = "Ringo";

Console.WriteLine(xNames);

If this works as we have explained, the last Name node’s value will now be Ringo and not Pete. But

the proof is in the pudding:

<Beatles>
 <Name>John</Name>
 <Name>Paul</Name>
 <Name>George</Name>
 <Name>Ringo</Name>
</Beatles>

Sorry, Pete, it looks like you have been replaced yet again.

Creating Text with XText
Creating an element with a text value is a pretty simple task. Listing 7-33 is some code doing just that.

Listing 7-33. Creating an Element and Assigning a String As Its Value

XElement xFirstName = new XElement("FirstName", "Joe");
Console.WriteLine(xFirstName);

This is straightforward, and there are no surprises. Running the code by pressing Ctrl+F5 produces

the following results:

<FirstName>Joe</FirstName>

What is hidden, though, is the fact that the string "Joe" is converted into an XText object, and it is
that object that is added to the XElement object. In fact, examining the xFirstName object in the
debugger reveals that it contains a single node, an XText object whose value is "Joe". Since this is all
done automatically for you, in most circumstances you will not need to directly construct a text object.

CHAPTER 7 ■ THE LINQ TO XML API

248

However, should the need arise, you can create a text object by instantiating an XText object, as
shown in Listing 7-34.

Listing 7-34. Creating a Text Node and Passing It As the Value of a Created Element

XText xName = new XText("Joe");
XElement xFirstName = new XElement("FirstName", xName);
Console.WriteLine(xFirstName);

This code produces the same output as the previous example, and if we examine the internal state of

the xFirstName object, it too is identical to the one created in the previous example:

<FirstName>Joe</FirstName>

Creating CData with XCData
Creating an element with a CData value is also pretty simple. Listing 7-35 is an example.

Listing 7-35. Creating an XCData Node and Passing It As the Value of a Created Element

XElement xErrorMessage = new XElement("HTMLMessage",
 new XCData("<H1>Invalid user id or password.</H1>"));

Console.WriteLine(xErrorMessage);

This code produces the following output:

<HTMLMessage><![CDATA[<H1>Invalid user id or password.</H1>]]></HTMLMessage>

As you can see, the LINQ to XML API makes handling CData simple.

XML Output
Of course, creating, modifying, and deleting XML data does no good if you cannot persist the changes.
This section contains a few ways to output your XML.

Saving with XDocument.Save()
You can save your XML document using any of several XDocument.Save methods. Here is a list of
prototypes:

void XDocument.Save(string filename);
void XDocument.Save(TextWriter textWriter);

CHAPTER 7 ■ THE LINQ TO XML API

249

void XDocument.Save(XmlWriter writer);
void XDocument.Save(string filename, SaveOptions options);
void XDocument.Save(TextWriter textWriter, SaveOptions options);

Listing 7-36 is an example where we save the XML document to a file in our project’s folder.

Listing 7-36. Saving a Document with the XDocument.Save Method

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

xDocument.Save("bookparticipants.xml");

Notice that we called the Save method on an object of type XDocument. This is because the Save

methods are instance methods. The Load methods you will read about later in the “XML Input” section
are static methods and must be called on the XDocument or XElement class.

Here are the contents of the generated bookparticipants.xml file when viewing them in a text
editor such as Notepad:

<?xml version="1.0" encoding="utf-8"?>
<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

That XML document output is easy to read because the version of the Save method that we called is
formatting the output. That is, if we call the version of the Save method that accepts a string file name
and a SaveOptions argument, passing a value of SaveOptions.None would give the same results as the
previous. Had we called the Save method like this:

xDocument.Save("bookparticipants.xml", SaveOptions.DisableFormatting);

the results in the file would look like this:

<?xml version="1.0" encoding="utf-8"?><BookParticipants><BookParticipant type=
"Author" experience="first-time" language="English"><FirstName>Joe</FirstName>
<LastName>Rattz</LastName></BookParticipant></BookParticipants>

CHAPTER 7 ■ THE LINQ TO XML API

250

This is one single continuous line of text. However, you would have to examine the file in a text
editor to see the difference because a browser will format it nicely for you.

Of course, you can use any of the other methods available to output your document as well; it’s up
to you.

Saving with XElement.Save()
We have said many times that with the LINQ to XML API, creating an XML document is not necessary.
And to save your XML to a file, it still isn’t. The XElement class has several Save methods for this
purpose:

void XElement.Save(string filename);
void XElement.Save(TextWriter textWriter);
void XElement.Save(XmlWriter writer);
void XElement.Save(string filename, SaveOptions options);
void XElement.Save(TextWriter textWriter, SaveOptions options);

Listing 7-37 is an example very similar to the previous, except we never even create an XML

document.

Listing 7-37. Saving an Element with the XElement.Save Method

XElement bookParticipants =
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")));

bookParticipants.Save("bookparticipants.xml");

And the saved XML looks identical to the previous example where we actually have an XML

document:

<?xml version="1.0" encoding="utf-8"?>
<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

CHAPTER 7 ■ THE LINQ TO XML API

251

XML Input
Creating and persisting XML to a file does no good if you can’t load it back into an XML tree. Here are
some techniques to read XML back in.

Loading with XDocument.Load()
Now that you know how to save your XML documents and fragments, you would probably like to know
how to load them. You can load your XML document using any of several methods. Here is a list:

static XDocument XDocument.Load(string uri);
static XDocument XDocument.Load(TextReader textReader);
static XDocument XDocument.Load(XmlReader reader);
static XDocument XDocument.Load(string uri, LoadOptions options);
static XDocument XDocument.Load(TextReader textReader, LoadOptions options);
static XDocument XDocument.Load(XmlReader reader, LoadOptions options);

You may notice how symmetrical these methods are to the XDocument.Save methods. However,

there are a couple differences worth pointing out. First, in the Save methods, you must call the Save
method on an object of XDocument or XElement type because the Save method is an instance method.
But the Load method is static, so you must call it on the XDocument class itself. Second, the Save
methods that accept a string are requiring file names to be passed, whereas the Load methods that
accept a string are allowing a URI to be passed.

Additionally, the Load method allows a parameter of type LoadOptions to be specified while
loading the XML document. The LoadOptions enum has the options shown in Table 7-2.

Table 7-2. The LoadOptions Enumeration

Option Description

LoadOptions.None Use this option to specify that no load options are to be used.

LoadOptions.PreserveWhitespace Use this option to preserve the whitespace in the XML source,
such as blank lines.

LoadOptions.SetLineInfo Use this option so that you may obtain the line and position of
any object inheriting from XObject by using the IXmlLineInfo
interface.

LoadOptions.SetBaseUri Use this option so that you may obtain the base URI of any
object inheriting from XObject.

These options can be combined with a bitwise OR (|) operation. However, some options will not
work in some contexts. For example, when creating an element or a document by parsing a string, there
is no line information available, nor is there a base URI. Or, when creating a document with an
XmlReader, there is no base URI.

CHAPTER 7 ■ THE LINQ TO XML API

252

Listing 7-38 shows an example where we load our XML document created in the previous example,
Listing 7-37.

Listing 7-38. Loading a Document with the XDocument.Load Method

XDocument xDocument = XDocument.Load("bookparticipants.xml",
 LoadOptions.SetBaseUri | LoadOptions.SetLineInfo);

Console.WriteLine(xDocument);

XElement firstName = xDocument.Descendants("FirstName").First();

Console.WriteLine("FirstName Line:{0} - Position:{1}",
 ((IXmlLineInfo)firstName).LineNumber,
 ((IXmlLineInfo)firstName).LinePosition);

Console.WriteLine("FirstName Base URI:{0}", firstName.BaseUri);

■ NNote You must either add a using directive for System.Xml, if one is not present, or specify the namespace
when referencing the IXmlLineInfo interface in your code; otherwise, the IXmlLineInfo type will not be

found.

This code is loading the same XML file we created in the previous example. After we load and
display the document, we obtain a reference for the FirstName element and display the line and
position of the element in the source XML document. Then we display the base URI for the element.

Here are the results:

<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>
FirstName Line:4 - Position:6
FirstName Base URI:file:///C:/Documents and Settings/…/Projects/LINQChapter7/
LINQChapter7/bin/Debug/bookparticipants.xml

This output looks just as we would expect, with one possible exception. First, the actual XML
document looks fine. We see the line and position of the FirstName element, but the line number is
causing us concern. It is shown as four, but in the displayed XML document, the FirstName element is
on the third line. What is that about? If you examine the XML document we loaded, you will see that it
begins with the document declaration, which is omitted from the output:

file:///C:/Documents

CHAPTER 7 ■ THE LINQ TO XML API

253

<?xml version="1.0" encoding="utf-8"?>

This is why the FirstName element is being reported as being on line 4.

Loading with XElement.Load()
Just as you could save from either an XDocument or an XElement, we can load from either as well.
Loading into an element is virtually identical to loading into a document. Here are the methods
available:

static XElement XElement.Load(string uri);
static XElement XElement.LoadTextReader textReader);
static XElement XElement.Load(XmlReader reader);
static XElement XElement.Load(string uri, LoadOptions options);
static XElement XElement.Load(TextReader textReader, LoadOptions options);
static XElement XElement.Load(XmlReader reader, LoadOptions options);

These methods are static just like the XDocument.Save methods, so they must be called from the

XElement class directly. Listing 7-39 contains an example loading the same XML file we saved with the
XElement.Save method in Listing 7-37.

Listing 7-39. Loading an Element with the XElement.Load Method

XElement xElement = XElement.Load("bookparticipants.xml");
Console.WriteLine(xElement);

Just as you already expect, the output looks like the following:

<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

Just as the XDocument.Load method does, the XElement.Load method has overloads that accept a
LoadOptions parameter. Please see the description of these in the “Loading with XDocument.Load()”
section previously in the chapter.

Parsing with XDocument.Parse() or XElement.Parse()
How many times have you passed XML around in your programs as a string, only to suddenly need to
do some serious XML work? Getting the data from a string variable to an XML document type variable

CHAPTER 7 ■ THE LINQ TO XML API

254

always seems like such a hassle. Well, worry yourself no longer. One of our personal favorite features of
the LINQ to XML API is the parse method.

Both the XDocument and XElement classes have a static method named Parse for parsing XML
strings. We think by now you probably feel comfortable accepting that if you can parse with the
XDocument class, you can probably parse with the XElement class, and vice versa. And since the LINQ to
XML API is all about the elements, baby, we are going to only give you an element example this time.

In the “Saving with XDocument.Save()” section earlier in this chapter, we show the output of the
Save method if the LoadOptions parameter is specified as DisableFormatting. The result is a single
string of XML. For the example in Listing 7-40, we start with that XML string (after escaping the inner
quotes), parse it into an element, and output the XML element to the screen.

Listing 7-40. Parsing an XML String into an Element

string xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?><BookParticipants>" +
 "<BookParticipant type=\"Author\" experience=\"first-time\" language=" +
 "\"English\"><FirstName>Joe</FirstName><LastName>Rattz</LastName>" +
 "</BookParticipant></BookParticipants>";

XElement xElement = XElement.Parse(xml);
Console.WriteLine(xElement);

The results are the following:

<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

How cool is that? Remember the old days when you had to create a document using the W3C XML
DOM XmlDocument class? Thanks to the elimination of document centricity, you can turn XML strings
into real XML trees in the blink of an eye with one method call.

XML Traversal
XML traversal is primarily accomplished with 4 properties and 11 methods. In this section, we try to
mostly use the same code example for each property or method, except we change a single argument on
one line when possible. The example in Listing 7-41 builds a full XML document.

Listing 7-41. A Base Example Subsequent Examples May Be Derived From

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(

CHAPTER 7 ■ THE LINQ TO XML API

255

 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(xDocument);

First, notice that we are saving a reference to the first BookParticipant element we construct. We

do this so that we can have a base element from which to do all the traversal. Although we will not be
using the firstParticipant variable in this example, we will in the subsequent traversal examples. The
next thing to notice is the argument for the Console.WriteLine method. In this case, we output the
document itself. As we progress through these traversal examples, we change that argument to
demonstrate how to traverse the XML tree. So, here is the output showing the document from the
previous example:

<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<?BookCataloger out-of-print?>
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Traversal Properties
We will begin our discussion with the primary traversal properties. When directions (up, down, and so
on) are specified, they are relative to the element the method is called on. In the subsequent examples,
we save a reference to the first BookParticipant element, and it is the base element used for the
traversal.

CHAPTER 7 ■ THE LINQ TO XML API

256

Forward with XNode.NextNode
Traversing forward through the XML tree is accomplished with the NextNode property. Listing 7-42 is an
example.

Listing 7-42. Traversing Forward from an XElement Object via the NextNode Property

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(firstParticipant.NextNode);

Since the base element is the first BookParticipant element, firstParticipant, traversing

forward should provide us with the second BookParticipant element. Here are the results:

<BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipant>

Based on these results, we would say we are right on the money. Would you believe us if we told you
that if we had accessed the PreviousNode property of the element, it would have been null since it is
the first node in its parent’s node list? It’s true, but we’ll leave you the task of proving it to yourself.

Backward with XNode.PreviousNode
If you want to traverse the XML tree backward, use the PreviousNode property. Since there is no
previous node for the first participant node, we’ll get tricky and access the NextNode property first,
obtaining the second participant node, as we did in the previous example, from which we will obtain the

CHAPTER 7 ■ THE LINQ TO XML API

257

PreviousNode. If you got lost in that, we will end up back at the first participant node. That is, we will go
forward with NextNode to then go backward with PreviousNode, leaving us where we started. If you
have ever heard the expression “taking one step forward and two steps back,” with just one more access
of the PreviousNode property, you could actually do that. LINQ makes it possible. Listing 7-43 is the
example.

Listing 7-43. Traversing Backward from an XElement Object via the PreviousNode Property

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(firstParticipant.NextNode.PreviousNode);

If this works as we expect, we should have the first BookParticipant element’s XML:

<BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>

LINQ to XML actually makes traversing an XML tree fun. Well, sort of. For us, anyway.

Up to Document with XObject.Document
Obtaining the XML document from an XElement object is as simple as accessing the Document property
of the element. So, please notice our change to the Console.WriteLine method call, shown in Listing 7-
44.

CHAPTER 7 ■ THE LINQ TO XML API

258

Listing 7-44. Accessing the XML Document from an XElement Object via the Document Property

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(firstParticipant.Document);

This will output the document, which is the same output as Listing 7-41, and here is the output to

prove it:

<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<?BookCataloger out-of-print?>
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Up with XObject.Parent
If you need to go up one level in the tree, it will probably be no surprise that the Parent property will do
the job. Changing the node passed to the WriteLine method to what’s shown in Listing 7-45 changes
the output (as you will see).

CHAPTER 7 ■ THE LINQ TO XML API

259

Listing 7-45. Traversing Up from an XElement Object via the Parent Property

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(firstParticipant.Parent);

The output is changed to this:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Don’t let that fool you either. This is not the entire document. Notice it is missing the document
type and processing instruction.

Traversal Methods
To demonstrate the traversal methods, since they return sequences of multiple nodes, we must now
change that single Console.WriteLine method call to a foreach loop to output the potential multiple
nodes. This will result in the former call to the Console.WriteLine method looking basically like this:

CHAPTER 7 ■ THE LINQ TO XML API

260

foreach(XNode node in firstParticipant.Nodes())
{
 Console.WriteLine(node);
}

From example to example, the only thing changing will be the method called on the

firstParticipant node in the foreach statement.

Down with XContainer.Nodes()
No, we are not expressing our disdain for nodes. Nor are we stating we are all in favor of nodes, as in
being “down for” rock climbing—meaning being excited about the prospect of going rock climbing. We
are merely describing the direction of traversal we are about to discuss.

Traversing down an XML tree is easily accomplished with a call to the Nodes method. It will return a
sequence of an object’s child XNode objects. In case you snoozed through some of the earlier chapters, a
sequence is an IEnumerable<T>, meaning an IEnumerable of some type T. Listing 7-46 is the example.

Listing 7-46. Traversing Down from an XElement Object via the Nodes Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Nodes())
{
 Console.WriteLine(node);
}

Here is the output:

<FirstName>Joe</FirstName>
<LastName>Rattz</LastName>

CHAPTER 7 ■ THE LINQ TO XML API

261

Don’t forget, that method is returning all child nodes, not just elements. So, any other nodes in the
first participant’s list of child nodes will be included. This could include comments (XComment), text
(XText), processing instructions (XProcessingInstruction), document type (XDocumentType), or
elements (XElement). Also notice that it does not include the attribute because an attribute is not a
node.

To provide a better example of the Nodes method, let’s look at the code in Listing 7-47. It is similar
to the base example with some extra nodes thrown in.

Listing 7-47. Traversing Down from an XElement Object via the Nodes Method with Additional Node

Types

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),

 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Nodes())
{
 Console.WriteLine(node);
}

This example is different from the previous one in that there is now a comment and processing

instruction added to the first BookParticipant element. Pressing Ctrl+F5 displays the following:

<!--This is a new author.-->
<?AuthorHandler new?>
<FirstName>Joe</FirstName>
<LastName>Rattz</LastName>

CHAPTER 7 ■ THE LINQ TO XML API

262

We can now see the comment and the processing instruction. What if you want only a certain type
of node, though, such as just the elements? Do you recall from Chapter 4 the OfType operator? We can
use that operator to return only the nodes that are of a specific type, such as XElement. Using the same
basic code as Listing 7-47, to return just the elements, we will merely change the foreach line, as shown
in Listing 7-48.

Listing 7-48. Using the OfType Operator to Return Just the Elements

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),

 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Nodes().OfType<XElement>())
{
 Console.WriteLine(node);
}

As you can see, the XComment and XProcessingInstruction objects are still being created. But

since we are now calling the OfType operator, the code produces these results:

<FirstName>Joe</FirstName>
<LastName>Rattz</LastName>

Are you starting to see how cleverly all the C# language features and LINQ are coming together? Isn’t
it cool that we can use that Standard Query Operator to restrict the sequence of XML nodes this way? So
if you want to get just the comments from the first BookParticipant element, could you use the OfType
operator to do so? Of course you could, and the code would look like Listing 7-49.

CHAPTER 7 ■ THE LINQ TO XML API

263

Listing 7-49. Using the OfType Operator to Return Just the Comments

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),

 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Nodes().OfType<XComment>())
{
 Console.WriteLine(node);
}

Here is the output:

<!--This is a new author.-->

Just to be anticlimactic, can you use the OfType operator to get just the attributes? No, you cannot.
This is a trick question. Remember that unlike the W3C XML DOM API, with the LINQ to XML API,
attributes are not nodes in the XML tree. They are a sequence of name-value pairs hanging off the
element. To get to the attributes of the first BookParticipant node, we would change the code to that in
Listing 7-50.

Listing 7-50. Accessing an Element’s Attributes Using the Attributes Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),

CHAPTER 7 ■ THE LINQ TO XML API

264

 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XAttribute attr in firstParticipant.Attributes())
{
 Console.WriteLine(attr);
}

Notice we had to change more than just the property or method of the first BookParticipant

element that we were accessing. We also had to change the enumeration variable type to XAttribute,
because XAttribute doesn’t inherit from XNode. Here are the results:

type="Author"

Down with XContainer.Elements()
Because the LINQ to XML API is so focused on elements and that is what we are working with most,
Microsoft provides a quick way to get just the elements of an element’s child nodes using the Elements
method. It is the equivalent of calling the OfType<XElement> method on the sequence returned by the
Nodes method.

Listing 7-51 is an example that is logically the same as Listing 7-48.

Listing 7-51. Accessing an Element’s Child Elements Using the Elements Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first

CHAPTER 7 ■ THE LINQ TO XML API

265

 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Elements())
{
 Console.WriteLine(node);
}

This code produces the same results as Listing 7-48:

<FirstName>Joe</FirstName>
<LastName>Rattz</LastName>

The Elements method also has an overloaded version that allows you to pass the name of the
element you are looking for, as in Listing 7-52.

Listing 7-52. Accessing Named Child Elements Using the Elements Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we aresaving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),

CHAPTER 7 ■ THE LINQ TO XML API

266

 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XNode node in firstParticipant.Elements("FirstName"))
{
 Console.WriteLine(node);
}

This code produces the following:

<FirstName>Joe</FirstName>

Down with XContainer.Element()
You may obtain the first child element matching a specified name using the Element method. Instead of
a sequence being returned requiring a foreach loop, we will have a single element returned, as shown in
Listing 7-53.

Listing 7-53. Accessing the First Child Element with a Specified Name

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(firstParticipant.Element("FirstName"));

This code outputs the following:

CHAPTER 7 ■ THE LINQ TO XML API

267

<FirstName>Joe</FirstName>

Up Recursively with XNode.Ancestors()
Although you can obtain the single parent element using a node’s Parent property, you can get a
sequence of the ancestor elements using the Ancestors method. This is different in that it recursively
traverses up the XML tree instead of stopping one level up, and it returns only elements, as opposed to
nodes.

To make this demonstration clearer, we will add some child nodes to the first book participant’s
FirstName element. Also, instead of enumerating through the ancestors of the first BookParticipant
element, we use the Element method to reach down two levels to the newly added NickName element.
This provides more ancestors to provide greater clarity. Listing 7-54 shows the code.

Listing 7-54. Traversing Up from an XElement Object via the Ancestors Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName",
 new XText("Joe"),
 new XElement("NickName", "Joey")),

 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XElement element in firstParticipant.
 Element("FirstName").Element("NickName").Ancestors())

{
 Console.WriteLine(element.Name);
}

CHAPTER 7 ■ THE LINQ TO XML API

268

Again, please notice we add some child nodes to the first book participant’s FirstName element.
This causes the first book participant’s FirstName element to have contents that include an XText
object equal to the string "Joe" and to have a child element, NickName. We retrieve the first book
participant’s FirstName element’s NickName element for which to retrieve the ancestors. In addition,
notice we used a XElement type variable instead of an XNode type for enumerating through the sequence
returned from the Ancestors method. This is so we can access the Name property of the element. Instead
of displaying the element’s XML as we have done in past examples, we are only displaying the name of
each element in the ancestor’s sequence. We do this because it would be confusing to display each
ancestor’s XML, because each would include the previous, and it would get very recursive, thereby
obscuring the results. That all said, here they are:

FirstName
BookParticipant
BookParticipants

Just as expected, the code recursively traverses up the XML tree.

Up Recursively with XElement.AncestorsAndSelf()
This method works just like the Ancestors method, except it includes itself in the returned sequence of
ancestors. Listing 7-55 is the same example as before, except it calls the AncestorsAndSelf method.

Listing 7-55. Traversing Up from an XElement Object via the AncestorsAndSelf Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName",
 new XText("Joe"),
 new XElement("NickName", "Joey")),

 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),

CHAPTER 7 ■ THE LINQ TO XML API

269

 new XElement("LastName", "Buckingham"))));

foreach (XElement element in firstParticipant.
 Element("FirstName").Element("NickName").AncestorsAndSelf())

{
 Console.WriteLine(element.Name);
}

The results should be the same as when calling the Ancestors method, except we should also see

the NickName element’s name at the beginning of the output:

NickName
FirstName
BookParticipant
BookParticipants

Down Recursively with XContainer.Descendants()
In addition to recursively traversing up, you can recursively traverse down with the Descendants
method. Again, this method only returns elements. There is an equivalent method named
DescendantNodes that will return all descendant nodes. Listing 7-56 is the same code as the previous,
except we call the Descendants method on the first book participant element.

Listing 7-56. Traversing Down from an XElement Object via the Descendants Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName",
 new XText("Joe"),
 new XElement("NickName", "Joey")),

 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",

CHAPTER 7 ■ THE LINQ TO XML API

270

 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XElement element in firstParticipant.Descendants())

{
 Console.WriteLine(element.Name);
}

The results are the following:

FirstName
NickName
LastName

As you can see, it traverses all the way to the end of every branch in the XML tree.

Down Recursively with XElement.DescendantsAndSelf()
Just as the Ancestors method has an AncestorsAndSelf method variation, so too does the
Descendants method. The DescendantsAndSelf method works just like the Descendants method,
except it also includes the element itself in the returned sequence. Listing 7-57 is the same example that
we used for the Descendants method call, with the exception that now it calls the DescendantsAndSelf
method.

Listing 7-57. Traversing Down from an XElement Object via the DescendantsAndSelf Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XProcessingInstruction("AuthorHandler", "new"),
 new XAttribute("type", "Author"),
 new XElement("FirstName",
 new XText("Joe"),
 new XElement("NickName", "Joey")),

 new XElement("LastName", "Rattz")),

CHAPTER 7 ■ THE LINQ TO XML API

271

 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XElement element in firstParticipant.DescendantsAndSelf())

{
 Console.WriteLine(element.Name);
}

So, does the output also include the firstParticipant element’s name?

BookParticipant
FirstName
NickName
LastName

Of course it does.

Forward with XNode.NodesAfterSelf()
For this example, in addition to changing the foreach call, we add a couple of comments to the
BookParticipants element to make the distinction between retrieving nodes and elements more
evident, since XComment is a node but not an element. Listing 7-58 is what the code looks like for this
example.

Listing 7-58. Traversing Forward from the Current Node Using the NodesAfterSelf Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants",
 new XComment("Begin Of List"), firstParticipant =

 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),

CHAPTER 7 ■ THE LINQ TO XML API

272

 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")),
 new XComment("End Of List")));

foreach (XNode node in firstParticipant.NodesAfterSelf())
{
 Console.WriteLine(node);
}

Notice that we added two comments that are siblings of the two BookParticipant elements. This

modification to the constructed XML document will be made for the NodesAfterSelf,
ElementsAfterSelf, NodesBeforeSelf, and ElementsBeforeSelf examples.

This causes all sibling nodes after the first BookParticipant node to be enumerated. Here are the
results:

<BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipant>
<!--End Of List-->

As you can see, the last comment is included in the output because it is a node. Don’t let that output
fool you. The NodesAfterSelf method returns only two nodes: the BookParticipant element whose
type attribute is Editor and the End Of List comment. Those other nodes, FirstName and LastName,
are merely displayed because the ToString method is being called on the BookParticipant node.

Keep in mind that this method returns nodes, not just elements. If you want to limit the type of
nodes returned, you could use the TypeOf operator as we have demonstrated in previous examples. But
if the type you are interested in is elements, there is a method just for that called ElementsAfterSelf.

Forward with XNode.ElementsAfterSelf()
This example uses the same modifications to the XML document made in Listing 7-58 concerning the
addition of two comments.

To get a sequence of just the sibling elements after the referenced node, you call the
ElementsAfterSelf method, as shown in Listing 7-59.

Listing 7-59. Traversing Forward from the Current Node Using the ElementsAfterSelf Method

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),

CHAPTER 7 ■ THE LINQ TO XML API

273

 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants",
 new XComment("Begin Of List"), firstParticipant =

 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")),
 new XComment("End Of List")));

foreach (XNode node in firstParticipant.ElementsAfterSelf())
{
 Console.WriteLine(node);
}

The example code with these modifications produces the following results:

<BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipant>

Notice that the comment is excluded this time because it is not an element. Again, the FirstName
and LastName elements are displayed only because they are the content of the BookParticipant
element that was retrieved and because the ToString method was called on the element.

Backward with XNode.NodesBeforeSelf()
This example uses the same modifications to the XML document made in Listing 7-58 concerning the
addition of two comments.

This method works just like NodesAfterSelf except it retrieves the sibling nodes before the
referenced node. In the example code, since the initial reference into the document is the first
BookParticipant node, we obtain a reference to the second BookParticipant node using the
NextNode property of the first BookParticipant node so that there are more nodes to return, as shown
in Listing 7-60.

Listing 7-60. Traversing Backward from the Current Node

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(

CHAPTER 7 ■ THE LINQ TO XML API

274

 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants",
 new XComment("Begin Of List"), firstParticipant =

 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")),
 new XComment("End Of List")));

foreach (XNode node in firstParticipant.NextNode.NodesBeforeSelf())
{
 Console.WriteLine(node);
}

This modification should result in the return of the first BookParticipant node and the first

comment. Here are the results:

<!--Begin Of List-->
<BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>

Interesting! We were expecting the two nodes that were returned, the comment and the first
BookParticipant, to be in the reverse order. We expected the method to start with the referenced node
and build a sequence via the PreviousNode property. Perhaps it did indeed do this but then called the
Reverse or InDocumentOrder operator. We cover the InDocumentOrder operator in the next chapter.
Again, don’t let the FirstName and LastName nodes confuse you. The NodesBeforeSelf method did not
return those. It is only because the ToString method was called on the first BookParticipant node, by
the Console.WriteLine method, that they are displayed.

Backward with XNode.ElementsBeforeSelf()
This example uses the same modifications to the XML document made in Listing 7-58 concerning the
addition of two comments.

CHAPTER 7 ■ THE LINQ TO XML API

275

Just like the NodesAfterSelf method has a companion method named ElementsAfterSelf to
return only the elements, so too does the NodesBeforeSelf method. The ElementsBeforeSelf method
returns only the sibling elements before the referenced node, as shown in Listing 7-61.

Listing 7-61. Traversing Backward from the Current Node

XElement firstParticipant;

// A full document with all the bells and whistles.
XDocument xDocument = new XDocument(
 new XDeclaration("1.0", "UTF-8", "yes"),
 new XDocumentType("BookParticipants", null, "BookParticipants.dtd", null),
 new XProcessingInstruction("BookCataloger", "out-of-print"),
 // Notice on the next line that we are saving off a reference to the first
 // BookParticipant element.
 new XElement("BookParticipants",
 new XComment("Begin Of List"), firstParticipant =

 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")),
 new XComment("End Of List")));

foreach (XNode node in firstParticipant.NextNode.ElementsBeforeSelf())
{
 Console.WriteLine(node);
}

Notice that again we obtain a reference to the second BookParticipant node via the NextNode

property. Will the output contain the comment?

<BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>

Of course not, because it is not an element.

CHAPTER 7 ■ THE LINQ TO XML API

276

XML Modification
Modifying XML data is easier than ever with the LINQ to XML API. With just a handful of methods, you
can perform all the modifications you could want. Whether it is adding, changing, or deleting nodes or
elements, there is a method to get the job done.

As has been stated time and time again, with the LINQ to XML API, you will be working with
XElement objects most of the time. Because of this, the majority of these examples are with elements.
The LINQ to XML API classes inheriting from XNode are covered first, followed by a section on attributes.

Adding Nodes
In this section on adding nodes to an XML tree, we start with a base example of the code in Listing 7-62.

Listing 7-62. A Base Example with a Single Book Participant

// A document with one book participant.
XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(xDocument);

This code produces an XML tree with a single book participant. Here is the code’s output:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

For the different methods to add nodes, we will start with this basic code.

■ NNote Although the following examples all add elements, the techniques used to add the elements work for all

LINQ to XML classes that inherit from the XNode class.

In addition to the following ways to add nodes, be sure to check out the section
“XElement.SetElementValue() on Child XElement Objects” later in this chapter.

CHAPTER 7 ■ THE LINQ TO XML API

277

XContainer.Add() (AddLast)
The method you will use most to add nodes to an XML tree is the Add method. It appends a node to the
end of the specified node’s child nodes. Listing 7-63 is an example.

Listing 7-63. Adding a Node to the End of the Specified Node’s Child Nodes with Add

// A document with one book participant.
XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

xDocument.Element("BookParticipants").Add(
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")));

Console.WriteLine(xDocument);

In the previous code, you can see we start with the base code and then add a BookParticipant

element to the document’s BookParticipants element. You can see we use the Element method of the
document to obtain the BookParticipants element and add the element to its child nodes using the
Add method. This causes the newly added element to be appended to the child nodes:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

The Add method adds the newly constructed BookParticipant element to the end of the
BookParticipants element’s child nodes. As you can see, the Add method is every bit as flexible as the
XElement constructor and follows the same rules for its arguments, allowing for functional construction.

CHAPTER 7 ■ THE LINQ TO XML API

278

XContainer.AddFirst()
To add a node to the beginning of a node’s child nodes, use the AddFirst method. Using the same code
as before, except calling the AddFirst method, gives you the code in Listing 7-64.

Listing 7-64. Adding a Node to the Beginning of the Specified Node’s Child Nodes with AddFirst

// A document with one book participant.
XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

xDocument.Element("BookParticipants").AddFirst(
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")));

Console.WriteLine(xDocument);

As one would expect, the newly added BookParticipant element will be added to the head of the

BookParticipants element’s child nodes:

<BookParticipants>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

Can XML manipulation get any easier than this? We submit that it cannot.

XNode.AddBeforeSelf()
To insert a node into a node’s list of child nodes in a specific location, obtain a reference to either the
node before or the node after where you want to insert, and call either the AddBeforeSelf method or
the AddAfterSelf method.

CHAPTER 7 ■ THE LINQ TO XML API

279

We will use the XML tree produced by the Add method example, Listing 7-63, as a starting point and
add a new node between the two already existing BookParticipant elements. To do this, we must get a
reference to the second BookParticipant element, as shown in Listing 7-65.

Listing 7-65. Adding a Node in the Specified Node’s Child Nodes with AddBeforeSelf

// A document with one book participant.
XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

xDocument.Element("BookParticipants").Add(
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")));

xDocument.Element("BookParticipants").
 Elements("BookParticipant").
 Where(e => ((string)e.Element("FirstName")) == "Ewan").
 Single<XElement>().AddBeforeSelf(
 new XElement("BookParticipant",
 new XAttribute("type", "Technical Reviewer"),
 new XElement("FirstName", "Fabio"),
 new XElement("LastName", "Ferracchiati")));

Console.WriteLine(xDocument);

As a refresher of the Standard Query Operators in Part 2 of this book, “LINQ to Objects,” and to

integrate some of what you have learned in this chapter, we have chosen to find the BookParticipant
element we want to insert before using a plethora of LINQ operators. Notice that we are using the
Element method to reach down into the document to select the BookParticipants element. Then, we
select the BookParticipants child elements named BookParticipant where the BookParticipant
element has a child element named FirstName whose value is "Ewan". Since we know there will be only
a single BookParticipant element matching this search criterion and because we want an XElement
type object back that we can call the AddBeforeSelf method on, we call the Single operator to return
the XElement BookParticipant object. This gives us a reference to the BookParticipant element in
front of which we want to insert the new XElement.

Also notice that in the call to the Where operator, we cast the FirstName element to a string to use
the node value extraction feature to obtain the FirstName element’s value for the equality comparison
to "Ewan".

Once we have a reference to the proper BookParticipant element, we merely call the
AddBeforeSelf method, and voilà:

CHAPTER 7 ■ THE LINQ TO XML API

280

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Technical Reviewer">
 <FirstName>Fabio</FirstName>
 <LastName>Ferracchiati</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Just as we wanted, we inserted the new BookParticipant before the BookParticipant element
whose FirstName element’s value is "Ewan".

XNode.AddAfterSelf()
After all that finagling to get the reference of the second BookParticipant element in the previous
example, the example in Listing 7-66 is sure to be anticlimactic. We will just get a reference to the first
BookParticipant element using the Element method and add the new BookParticipant element after
it using the AddAfterSelf method.

Listing 7-66. Adding a Node in a Specific Location of the Specified Node’s Child Nodes with

AddAfterSelf

// A document with one book participant.
XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

xDocument.Element("BookParticipants").Add(
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham")));

xDocument.Element("BookParticipants").
 Element("BookParticipant").AddAfterSelf(

CHAPTER 7 ■ THE LINQ TO XML API

281

 new XElement("BookParticipant",
 new XAttribute("type", "Technical Reviewer"),
 new XElement("FirstName", "Fabio"),
 new XElement("LastName", "Ferracchiati")));

Console.WriteLine(xDocument);

This example just seems trivial after the previous one:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Technical Reviewer">
 <FirstName>Fabio</FirstName>
 <LastName>Ferracchiati</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Deleting Nodes
Deleting nodes is accomplished with either of two methods: Remove or RemoveAll.

In addition to reading about the following ways to delete nodes, be sure to check out the section
“XElement.SetElementValue() on Child XElement Objects” later in this chapter.

XNode.Remove()
The Remove method removes any node, as well as its child nodes and attributes, from an XML tree. In the
first example, we construct an XML tree and save off a reference to the first book participant element as
we did in some of the previous examples. We display the XML tree after the construction but before
deleting any nodes. We then delete the first book participant element and display the resulting XML tree,
as shown in Listing 7-67.

Listing 7-67. Deleting a Specific Node with Remove

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

Console.WriteLine(System.Environment.NewLine + "Before node deletion");

CHAPTER 7 ■ THE LINQ TO XML API

282

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(xDocument);

firstParticipant.Remove();

Console.WriteLine(System.Environment.NewLine + "After node deletion");

Console.WriteLine(xDocument);

If all goes as planned, we should get the XML tree initially with the first book participant element

and subsequently without it:

Before node deletion
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

After node deletion
<BookParticipants>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

As you can see, the first BookParticipant element is gone after the node deletion.

CHAPTER 7 ■ THE LINQ TO XML API

283

IEnumerable<T>.Remove()
In the previous case, we call the Remove method on a single XNode object. We can also call Remove on a
sequence (IEnumerable<T>). Listing 7-68 is an example where we use the Descendants method of the
document to recursively traverse all the way down the XML tree, returning only those elements whose
name is FirstName by using the Where operator. We then call the Remove method on the resulting
sequence.

Listing 7-68. Deleting a Sequence of Nodes with Remove

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

xDocument.Descendants().Where(e => e.Name == "FirstName").Remove();

Console.WriteLine(xDocument);

We like this example because we really start to tie all the elements of LINQ together with it. We are

using the XDocument.Descendants method to get all the child nodes returned in a sequence, and then
we call the Where Standard Query Operator to filter just the ones matching the search criteria, which in
this case are elements named FirstName. This returns a sequence that we then call the Remove method
on. Sweet! Here are the results:

<BookParticipants>
 <BookParticipant type="Author">
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Notice that we no longer have any FirstName nodes.

CHAPTER 7 ■ THE LINQ TO XML API

284

XElement.RemoveAll()
Sometimes, you may want to delete the content of an element but not the element itself. This is what the
RemoveAll method is for. Listing 7-69 is an example.

Listing 7-69. Removing a Node’s Content with RemoveAll

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine(System.Environment.NewLine + "Before removing the content.");
Console.WriteLine(xDocument);

xDocument.Element("BookParticipants").RemoveAll();

Console.WriteLine(System.Environment.NewLine + "After removing the content.");
Console.WriteLine(xDocument);

Here we display the document first before removing the content of the BookParticipants node.

Then, we remove the content of the BookParticipants node and display the document again. Since
you could be from Missouri, we had better show you the results:

Before removing the content.
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

After removing the content.
<BookParticipants />

CHAPTER 7 ■ THE LINQ TO XML API

285

Updating Nodes
Several of the subclasses of XNode, such as XElement, XText, and XComment, have a Value property that
can be directly updated. Others, such as XDocumentType and XProcessingInstruction, have specific
properties that each can be updated. For elements, in addition to modifying the Value property, you can
change its value by calling the XElement.SetElementValue or XContainer.ReplaceAll methods
covered later in this chapter.

XElement.Value on XElement Objects, XText.Value on XText Objects, and
XComment.Value on XComment Objects
Each of these subclasses of XNode has a Value property that can be set to update the node’s value.
Listing 7-70 demonstrates all of them.

Listing 7-70. Updating a Node’s Value

// we will use this to reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XComment("This is a new author."),
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine("Before updating nodes:");
Console.WriteLine(xDocument);

// Now, lets update an element, a comment, and a text node.
firstParticipant.Element("FirstName").Value = "Joey";
firstParticipant.Nodes().OfType<XComment>().Single().Value =
 "Author of Pro LINQ: Language Integrated Query in C# 2008.";
((XElement)firstParticipant.Element("FirstName").NextNode)
 .Nodes().OfType<XText>().Single().Value = "Rattz, Jr.";

Console.WriteLine("After updating nodes:");
Console.WriteLine(xDocument);

In this example, we update the FirstName element first, using its Value property, followed by the

comment using its Value property, finally followed by updating the LastName element by accessing its
value through its child XText object’s Value property. Notice the flexibility LINQ to XML provides for
getting references to the different objects we want to update. Just remember that it isn’t necessary for us
to access the LastName element’s value by getting the XText object from its child nodes. We did that

CHAPTER 7 ■ THE LINQ TO XML API

286

merely for demonstration purposes. Other than that, we would have directly accessed its Value
property. Here are the results:

Before updating nodes:
<BookParticipants>
 <BookParticipant type="Author">
 <!--This is a new author.-->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>
After updating nodes:
<BookParticipants>
 <BookParticipant type="Author">
 <!--Author of Pro LINQ: Language Integrated Query in C# 2008.-->
 <FirstName>Joey</FirstName>
 <LastName>Rattz, Jr.</LastName>
 </BookParticipant>
</BookParticipants>

As you can see, all of the node’s values are updated.

XDocumentType.Name, XDocumentType.PublicId, XDocumentType.SystemId,
and XDocumentType.InternalSubset on XDocumentType Objects
To update a document type node, the XDocumentType class provides four properties for updating its
values. Listing 7-71 is some sample code demonstrating this.

Listing 7-71. Updating the Document Type

// we will use this to store a reference to the DocumentType for later access.
XDocumentType docType;

XDocument xDocument = new XDocument(
 docType = new XDocumentType("BookParticipants", null,
 "BookParticipants.dtd", null),
 new XElement("BookParticipants"));

Console.WriteLine("Before updating document type:");
Console.WriteLine(xDocument);

docType.Name = "MyBookParticipants";
docType.SystemId = "http://www.somewhere.com/DTDs/MyBookParticipants.DTD";
docType.PublicId = "-//DTDs//TEXT Book Participants//EN";

http://www.somewhere.com/DTDs/MyBookParticipants.DTD

CHAPTER 7 ■ THE LINQ TO XML API

287

Console.WriteLine("After updating document type:");
Console.WriteLine(xDocument);

Here are the results of this code:

Before updating document type:
<!DOCTYPE BookParticipants SYSTEM "BookParticipants.dtd">
<BookParticipants />
After updating document type:
<!DOCTYPE MyBookParticipants PUBLIC "-//DTDs//TEXT Book Participants//EN"
"http://www.somewhere.com/DTDs/MyBookParticipants.DTD">
<BookParticipants />

XProcessingInstruction.Target on XProcessingInstruction Objects and
XProcessingInstruction.Data on XProcessingInstruction Objects
To update the value of a processing instruction, simply modify the Target and Data properties of the
XProcessingInstruction object. Listing 7-72 is an example.

Listing 7-72. Updating a Processing Instruction

// we will use this to store a reference for later access.
XProcessingInstruction procInst;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants"),
 procInst = new XProcessingInstruction("BookCataloger", "out-of-print"));

Console.WriteLine("Before updating processing instruction:");
Console.WriteLine(xDocument);

procInst.Target = "BookParticipantContactManager";
procInst.Data = "update";

Console.WriteLine("After updating processing instruction:");
Console.WriteLine(xDocument);

Now let’s take a look at the output:

Before updating processing instruction:
<BookParticipants />

http://www.somewhere.com/DTDs/MyBookParticipants.DTD

CHAPTER 7 ■ THE LINQ TO XML API

288

<?BookCataloger out-of-print?>
After updating processing instruction:
<BookParticipants />
<?BookParticipantContactManager update?>

XElement.ReplaceAll()
The ReplaceAll method is useful for replacing an element’s entire subtree of XML. You can pass a
simple value, such as a new string or a numeric type; or because there is an overloaded method that
accepts multiple objects via the params keyword, an entire subtree can be changed. The ReplaceAll
method also replaces attributes. Listing 7-73 is some sample code.

Listing 7-73. Using ReplaceAll to Change an Element’s Subtree

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine + "Before updating elements:");
Console.WriteLine(xDocument);

firstParticipant.ReplaceAll(
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"));

Console.WriteLine(System.Environment.NewLine + "After updating elements:");
Console.WriteLine(xDocument);

Notice that, when we replaced the content with the ReplaceAll method, we omitted specifying an

attribute. As you would expect, the content is replaced:

Before updating elements:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>

CHAPTER 7 ■ THE LINQ TO XML API

289

</BookParticipants>

After updating elements:
<BookParticipants>
 <BookParticipant>
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Notice that the BookParticipant type attribute is now gone. This is interesting in that attributes
are not child nodes of an element. But the ReplaceAll method replaces them as well.

XElement.SetElementValue() on Child XElement Objects
Don’t let this simply named method fool you; it’s a powerhouse. It has the ability to add, change, and
remove elements. Furthermore, it performs these operations on the child elements of the element you
call it on. Stated differently, you call the SetElementValue method on a parent element to affect its
content, meaning its child elements.

When calling the SetElementValue method, you pass it the name of the child element you want to
set and the value you want to set it to. If a child element is found by that name, its value is updated, as
long as the passed value is not null. If the passed value is null, that found child element will be
removed. If an element by that name is not found, it will be added with the passed value. Wow, what a
method!

Also, the SetElementValue method will only affect the first child element it finds with the specified
name. Any subsequent elements with the same name will not be affected, either by the value being
changed to the one passed in or the element being removed, because that passed value is null.

Listing 7-74 is an example demonstrating all uses: update, add, and delete.

Listing 7-74. Using SetElementValue to Update, Add, and Delete Child Elements

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine + "Before updating elements:");
Console.WriteLine(xDocument);

// First, we will use XElement.SetElementValue to update the value of an element.
// Since an element named FirstName is there, its value will be updated to Joseph.

CHAPTER 7 ■ THE LINQ TO XML API

290

firstParticipant.SetElementValue("FirstName", "Joseph");

// Second, we will use XElement.SetElementValue to add an element.
// Since no element named MiddleInitial exists, one will be added.
firstParticipant.SetElementValue("MiddleInitial", "C");

// Third, we will use XElement.SetElementValue to remove an element.
// Setting an element's value to null will remove it.
firstParticipant.SetElementValue("LastName", null);

Console.WriteLine(System.Environment.NewLine + "After updating elements:");
Console.WriteLine(xDocument);

As you can see, first we call the SetElementValue method on the firstParticipant element’s

child element named FirstName. Since an element already exists by that name, its value will be
updated. Next, we call the SetElementValue method on the firstParticipant element’s child
element named MiddleInitial. Since no element exists by that name, the element will be added.
Lastly, we call the SetElementValue method on the firstParticipant element’s child element named
LastName and pass a null. Since a null is passed, the LastName element will be removed. Look at the
flexibility that the SetElementValue method provides. We know you can’t wait to see the results:

Before updating elements:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

After updating elements:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joseph</FirstName>
 <MiddleInitial>C</MiddleInitial>
 </BookParticipant>
</BookParticipants>

How cool is that? The FirstName element’s value was updated; the MiddleInitial element was
added, and the LastName element was removed.

CHAPTER 7 ■ THE LINQ TO XML API

291

■ CCaution Just because calling the SetElementValue method with a value of null removes the node, don’t
make the mistake of thinking that manually setting an element’s value to null is the same as removing it in the
LINQ to XML API. This is merely the behavior of the SetElementValue method. If you attempt to set an element’s

value to null using its Value property, an exception will be thrown.

XML Attributes
As we previously mentioned, with the LINQ to XML API, attributes are implemented with the
XAttribute class, and unlike the W3C XML DOM API, they do not inherit from a node. Therefore, they
have no inheritance relationship with elements. However, in the LINQ to XML API, they are every bit as
easy to work with as elements. Let’s take a look.

Attribute Creation
Attributes are created just like elements and most other LINQ to XML classes. This topic is covered in the
“Creating Attributes with XAttribute” section previously in this chapter.

Attribute Traversal
Attributes can be traversed using the XElement.FirstAttribute, XElement.LastAttribute,
XAttribute.NextAttribute, and XAttribute.PreviousAttribute properties and the
XElement.Attribute and XElement.Attributes methods. These are described in the following
sections

Forward with XElement.FirstAttribute
You can gain access to an element’s attributes by accessing its first attribute using the element’s
FirstAttribute property. Listing 7-75 is an example.

Listing 7-75. Accessing an Element’s First Attribute with the FirstAttribute Property

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

CHAPTER 7 ■ THE LINQ TO XML API

292

Console.WriteLine(firstParticipant.FirstAttribute);

This code outputs the following:

type="Author"

Forward with XAttribute.NextAttribute
To traverse forward through an element’s attributes, reference the NextAttribute property on an
attribute. Listing 7-76 is an example.

Listing 7-76. Accessing the Next Attribute with the NextAttribute Property

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(firstParticipant.FirstAttribute.NextAttribute);

Notice we use the FirstAttribute property to obtain a reference to the first attribute and then

reference the NextAttribute property on it. Here are the results:

experience="first-time"

If an attribute’s NextAttribute property is null, the attribute is the last attribute of the element.

Backward with XAttribute.PreviousAttribute
To traverse backward through an element’s attributes, reference the PreviousAttribute property on
an attribute. Listing 7-77 is an example.

Listing 7-77. Accessing the Previous Attribute with the PreviousAttribute Property

// we will use this to store a reference to one of the elements in the XML tree.

CHAPTER 7 ■ THE LINQ TO XML API

293

XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(firstParticipant.FirstAttribute.NextAttribute.PreviousAttribute);

Notice we chain the FirstAttribute and NextAttribute properties to get a reference to the

second attribute from which to go backward. This should take us back to the first attribute. Here are the
results:

type="Author"

And it does! If an attribute’s PreviousAttribute property is null, the attribute is the first attribute
of the element.

Backward with XElement.LastAttribute
To get access to the very last attribute of an element so that you can traverse backward through the
attributes, use the LastAttribute property, as shown in Listing 7-78.

Listing 7-78. Accessing the Last Attribute with the LastAttribute Property

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(firstParticipant.LastAttribute);

This should output the language attribute. Let’s see:

CHAPTER 7 ■ THE LINQ TO XML API

294

language="English"

Groovy! We have never actually written the word groovy before. We had to let the spelling checker
spell it for us.

XElement.Attribute()
This method takes the name of an attribute and returns the first attribute with the specified name, if one
is found. Listing 7-79 is an example.

Listing 7-79. Accessing an Attribute with the Attribute Method

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(firstParticipant.Attribute("type").Value);

Here we use the Attribute method to return a reference to the type attribute. We then display the

attribute’s value using its Value property. If all goes as expected, the output should be the following:

Author

Remember, though, instead of obtaining the attribute’s value via its Value property, we could have
just cast the attribute to a string.

XElement.Attributes()
We can gain access to all of an element’s attributes with its Attributes method. This method returns a
sequence of XAttribute objects. Listing 7-80 is an example.

Listing 7-80. Accessing All of an Element’s Attributes with the Attributes Method

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",

CHAPTER 7 ■ THE LINQ TO XML API

295

 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

foreach(XAttribute attr in firstParticipant.Attributes())
{
 Console.WriteLine(attr);
}

The output is this:

type="Author"
experience="first-time"

Attribute Modification
There are several methods and properties that can be used to modify attributes. We cover them in this
section.

Adding Attributes
As we have pointed out, there is a fundamental difference in the way the W3C XML DOM API handles
attributes versus the way the LINQ to XML API handles them. With the W3C API, an attribute is a child
node of the node it is an attribute for. With the LINQ to XML API, attributes are not child nodes of the
node for which they are an attribute. Instead, attributes are name-value pairs that can be accessed via an
element’s Attributes method or its FirstAttribute property. This is important to remember.

However, working with attributes is very similar to working with elements. The methods and
properties for attributes are very symmetrical to those for elements.

The following methods can be used to add an attribute to an element:

XElement.Add()
XElement.AddFirst()
XElement.AddBeforeThis()
XElement.AddAfterThis()

In the examples provided for each of these methods in the “Adding Nodes” section earlier in this
chapter, attributes are added as well. Refer to those examples of adding an attribute. In addition, be sure
to check out the section on the XElement.SetAttributeValue method later in this chapter.

Deleting Attributes
Deleting attributes can be accomplished using either the XAttribute.Remove method or the
IEnumerable<T>.Remove method, depending on whether you are trying to delete a single attribute or a
sequence of attributes.

CHAPTER 7 ■ THE LINQ TO XML API

296

In addition to the following ways to delete attributes, be sure to check out the
“XElement.SetAttributeValue()” section later in this chapter.

XAttribute.Remove()

Just like the XNode class has a remove method, so too does the XAttribute class. Listing 7-81 is an
example.

Listing 7-81. Removing an Attribute

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine + "Before removing attribute:");
Console.WriteLine(xDocument);

firstParticipant.Attribute("type").Remove();

Console.WriteLine(System.Environment.NewLine + "After removing attribute:");
Console.WriteLine(xDocument);

As you can see, we use the Attribute method to obtain a reference to the attribute we want to

remove, and then we call the Remove method on it. Just so you don’t think we are just making this all up,
here are the results:

Before removing attribute:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

After removing attribute:
<BookParticipants>
 <BookParticipant>
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>

CHAPTER 7 ■ THE LINQ TO XML API

297

 </BookParticipant>
</BookParticipants>

Notice that the type attribute is now gone.

IEnumerable<T>.Remove()

Just as you are able to remove a sequence of nodes using the IEnumerable<T>.Remove method, you can
use the same method to remove all attributes of an element, as shown in Listing 7-82.

Listing 7-82. Removing All of an Element’s Attributes

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine + "Before removing attributes:");
Console.WriteLine(xDocument);

firstParticipant.Attributes().Remove();

Console.WriteLine(System.Environment.NewLine + "After removing attributes:");
Console.WriteLine(xDocument);

In the previous example, we call the Attributes method to return the sequence of all attributes of

the element the Attributes method is called on, and then we call the Remove method on that returned
sequence to remove them all. This seems so simple and intuitive, we wonder if we are wasting your time
just covering it. Here are the results:

Before removing attributes:
<BookParticipants>
 <BookParticipant type="Author" experience="first-time">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

After removing attributes:

CHAPTER 7 ■ THE LINQ TO XML API

298

<BookParticipants>
 <BookParticipant>
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

Like magic, the attributes are gone.

Updating Attributes
To update the value of an attribute, use the XAttribute.Value property.

■ NNote In addition to using the XAttribute.Value property to update attributes, be sure to check out the

“XElement.SetAttributeValue()” section later in the chapter.

Updating the value of an attribute is easily accomplished using its Value property. Listing 7-83 is an
example.

Listing 7-83. Changing an Attribute’s Value

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine +
 "Before changing attribute's value:");
Console.WriteLine(xDocument);

firstParticipant.Attribute("experience").Value = "beginner";

Console.WriteLine(System.Environment.NewLine + "After changing attribute's
value:");
Console.WriteLine(xDocument);

CHAPTER 7 ■ THE LINQ TO XML API

299

Notice that we used the Attribute method to obtain a reference to the experience attribute. The
results are the following:

Before changing attribute's value:
<BookParticipants>
 <BookParticipant type="Author" experience="first-time">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

After changing attribute's value:
<BookParticipants>
 <BookParticipant type="Author" experience="beginner">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

As you can see, the value of the experience attribute has changed from "first-time" to
"beginner".

XElement.SetAttributeValue()
To be symmetrical with elements, it’s only fair that attributes get a SetAttributeValue method every
bit as powerful as the SetElementValue method; and they did. The XElement.SetAttributeValue
method has the ability to add, delete, and update an attribute.

Passing an attribute name that does not exist causes an attribute to be added. Passing a name that
exists with a value other than null causes the attribute with that name to have its value updated to the
value passed. Passing a name that exists with a null value causes the attribute to be deleted. Listing 7-84
is an example doing all three.

Listing 7-84. Using SetAttributeValue to Add, Delete, and Update Attributes

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"))));

Console.WriteLine(System.Environment.NewLine + "Before changing the attributes:");

CHAPTER 7 ■ THE LINQ TO XML API

300

Console.WriteLine(xDocument);

// This call will update the type attribute's value because an attribute whose
// name is "type" exists.
firstParticipant.SetAttributeValue("type", "beginner");

// This call will add an attribute because an attribute with the specified name
// does not exist.
firstParticipant.SetAttributeValue("language", "English");

// This call will delete an attribute because an attribute with the specified name
// exists, and the passed value is null.
firstParticipant.SetAttributeValue("experience", null);

Console.WriteLine(System.Environment.NewLine + "After changing the attributes:");
Console.WriteLine(xDocument);

As you can see, in this example, first we update an already existing attribute’s value, then we add an

attribute, and finally we delete an attribute by passing a null value. Here are the results:

Before changing the attributes:
<BookParticipants>
 <BookParticipant type="Author" experience="first-time">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

After changing the attributes:
<BookParticipants>
 <BookParticipant type="beginner" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
</BookParticipants>

XML Annotations
The LINQ to XML API provides the ability to associate a user data object with any class inheriting from
the XObject class via annotations. This allows application developers to assign whatever data type
object they want to an element, document, or any other object whose class is derived from the XObject
class. The object could be additional keys for an element’s data; it could be an object that will parse the
element’s contents into itself or whatever you need.

CHAPTER 7 ■ THE LINQ TO XML API

301

Adding Annotations with XObject.AddAnnotation()
Adding annotations is accomplished using the XObject.AddAnnotation method. Here is the prototype:

void XObject.AddAnnotation(object annotation);

Accessing Annotations with XObject.Annotation() or
XObject.Annotations()
Accessing annotations is accomplished using the XObject.Annotation or XObject.Annotations
methods. Here are the prototypes:

object XObject.Annotation(Type type);
T XObject.Annotation<T>();
IEnumerable<object> XObject.Annotations(Type type);
IEnumerable<T> XObject.Annotations<T>();

■ CCaution When retrieving annotations, you must pass the object’s actual type, not a base class or interface.

Otherwise, the annotation will not be found.

Removing Annotations with XObject.RemoveAnnotations()
Removing annotations is accomplished with the XObject.RemoveAnnotations method. There are two
prototypes:

void XObject.RemoveAnnotations(Type type);
void XObject.RemoveAnnotations<T>();

Annotations Example
To demonstrate annotations, we will create one example that adds, retrieves, and removes annotations.
In this example, we will use our typical BookParticipants XML tree. We want a way to associate a
handler to each BookParticipant based on its type attribute. In this example, the handler will merely
display the element in a type attribute–specific format: one format for authors and another for editors.

First, we need a couple of handler classes, one for authors and another for editors:

public class AuthorHandler
{
 public void Display(XElement element)
 {
 Console.WriteLine("AUTHOR BIO");
 Console.WriteLine("--------------------------");

CHAPTER 7 ■ THE LINQ TO XML API

302

 Console.WriteLine("Name: {0} {1}",
 (string)element.Element("FirstName"),
 (string)element.Element("LastName"));
 Console.WriteLine("Language: {0}", (string)element.Attribute("language"));
 Console.WriteLine("Experience: {0}", (string)element.Attribute("experience"));
 Console.WriteLine("==========================" + System.Environment.NewLine);
 }
}

public class EditorHandler
{
 public void Display(XElement element)
 {
 Console.WriteLine("EDITOR BIO");
 Console.WriteLine("--------------------------");
 Console.WriteLine("Name: {0}", (string)element.Element("FirstName"));
 Console.WriteLine(" {0}", (string)element.Element("LastName"));
 Console.WriteLine("==========================" + System.Environment.NewLine);
 }
}

There is nothing special here. We just need two handlers that behave differently. In this case, they

display the element’s data in a slightly different format. Of course, it wouldn’t have to just display data. It
could do anything you want. Or the annotations might not even be handlers. They might just be some
associated data. But in this example, they are handlers.

Because this example is more complex than typical, we will separate sections of the code with
explanations, as shown in Listing 7-85.

Listing 7-85. Adding, Retrieving, and Removing Annotations

// we will use this to store a reference to one of the elements in the XML tree.
XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("experience", "first-time"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));
// Display the document for reference.
Console.WriteLine(xDocument + System.Environment.NewLine);

CHAPTER 7 ■ THE LINQ TO XML API

303

All we have done at this point is build the typical XML document that we have been using and
display it. For the next section of code, we enumerate through the book participants, and for each, we
instantiate a handler based on its type attribute and add an annotation to the element for the
appropriate handler:

// we'll add some annotations based on their type attribute.
foreach(XElement e in xDocument.Element("BookParticipants").Elements())
{
 if((string)e.Attribute("type") == "Author")
 {
 AuthorHandler aHandler = new AuthorHandler();
 e.AddAnnotation(aHandler);
 }
 else if((string)e.Attribute("type") == "Editor")
 {
 EditorHandler eHandler = new EditorHandler();
 e.AddAnnotation(eHandler);
 }
}

Now each BookParticipant element has a handler added as an annotation depending on its type

attribute. Now that each element has a handler added via an annotation, we will enumerate through the
elements calling the handler by retrieving the element’s annotation:

AuthorHandler aHandler2;
EditorHandler eHandler2;
foreach(XElement e in xDocument.Element("BookParticipants").Elements())
{
 if((string)e.Attribute("type") == "Author")
 {
 aHandler2 = e.Annotation<AuthorHandler>();
 if(aHandler2 != null)
 {
 aHandler2.Display(e);
 }
 }
 else if((string)e.Attribute("type") == "Editor")
 {
 eHandler2 = e.Annotation<EditorHandler>();
 if(eHandler2 != null)
 {
 eHandler2.Display(e);
 }
 }
}

At this point, a display handler will have been called for each element. The display handler called is

dependent on the type attribute. Next, we just remove the annotations for each element:

CHAPTER 7 ■ THE LINQ TO XML API

304

foreach(XElement e in xDocument.Element("BookParticipants").Elements())
{
 if((string)e.Attribute("type") == "Author")
 {
 e.RemoveAnnotation<AuthorHandler>();
 }
 else if((string)e.Attribute("type") == "Editor")
 {
 e.RemoveAnnotation<EditorHandler>();
 }
}

That is a fairly long piece of sample code, but it has only four main sections. In the first section, we

build the XML document and display it. You have seen this done many times by now. In the second
section, we enumerate through the BookParticipant elements, and based on their type attribute, add
a handler. In the third section, we enumerate through the BookParticipant elements, and based on
their type attribute, retrieve the handler and call the Display method of the handler object. In the
fourth section, we enumerate through the BookParticipant elements, removing the annotations.

Also, notice that when accessing the attributes, we cast them as a string to get the value out of the
attributes.

The thing to remember is that these annotations can be any data object you want to associate with
the element.

Finally, here are the results:

<BookParticipants>
 <BookParticipant type="Author" experience="first-time" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

AUTHOR BIO

Name: Joe Rattz
Language: English
Experience: first-time
==========================

EDITOR BIO

Name: Ewan
 Buckingham
==========================

CHAPTER 7 ■ THE LINQ TO XML API

305

What is important to notice in the results is that the different handlers are called based on the
element’s type attribute, using annotations. Of course, the objects you add as annotations could be for
any purpose, not just handlers.

XML Events
The LINQ to XML API makes it possible for you to register for events so that you can be notified any time
any object inheriting from XObject is about to be, or has been, modified.

The first thing you should know is that when you register for an event on an object, the event will be
raised on the object if that object, or any descendant object, is changed. This means if you register for an
event on the document or root element, any change in the tree will cause your registered method to be
called. Because of this, don’t make any assumptions about the data type of the object causing the event
to be raised. When your registered method is called, the object causing the event to be raised will be
passed as the sender of the event, and its data type will be object. Be very careful when casting it,
accessing properties on it, or calling its methods. It may not be the type of object you are expecting. We
will demonstrate this in Listing 7-86 where the object is actually an XText object when we were
expecting it to be a XElement object.

Lastly, please be aware that constructing XML will not cause events to get raised. How could it? No
events could have been registered prior to the construction. Only modifying or deleting already existing
XML can cause an event to be raised and then only if an event has been registered.

XObject.Changing
This event is raised when an object inheriting from XObject is about to be changed but prior to the
change. You register for the event by adding an object of type EventHandler to the object’s Changing
event like this:

 myobject.Changing += new
EventHandler<XObjectChangeEventArgs>(MyHandler);

where your method delegate must match this signature:

void MyHandler(object sender, XObjectChangeEventArgs cea)

The sender object is the object that is about to be changed, which is causing the event to be raised.

The change event arguments, cea, contain a property named ObjectChange of type XObjectChange
indicating the type of change about to take place: XObjectChange.Add, XObjectChange.Name,
XObjectChange.Remove, or XObjectChange.Value.

XObject.Changed
This event is raised after an object inheriting from XObject has been changed. You register for the event
by adding an object of type EventHandler to the object’s Changed event like this:

myobject.Changed += new EventHandler<XObjectChangeEventArgs>(MyHandler);

CHAPTER 7 ■ THE LINQ TO XML API

306

where your method delegate must match this signature:
void MyHandler(object sender, XObjectChangeEventArgs cea)

The sender object is the object that has changed, which caused the event to be raised. The change

event arguments, cea, contain a property named ObjectChange of type XObjectChange indicating the
type of change that has taken place: XObjectChange.Add, XObjectChange.Name,
XObjectChange.Remove, or XObjectChange.Value.

A Couple of Event Examples
To see all the pieces that go together to handle XObject events, an example is necessary. However,
before we can show the code to do that, some event handlers are needed, as follows.

This Meth od Wi ll Be R egi stered for the Ch anging E vent f or an Element

public static void MyChangingEventHandler(object sender, XObjectChangeEventArgs
cea)
{
 Console.WriteLine("Type of object changing: {0}, Type of change: {1}",
 sender.GetType().Name, cea.ObjectChange);
}

We will register the previous method as the event handler for when an element is about to be

changed. Now, we need a handler method for after the object has been changed, as follows.

This Meth od Wi ll Be R egi stered for the Ch anged Ev ent f or an Element

public static void MyChangedEventHandler(object sender, XObjectChangeEventArgs cea)
{
 Console.WriteLine("Type of object changed: {0}, Type of change: {1}",
 sender.GetType().Name, cea.ObjectChange);
}

We will register the previous method as the event handler for when an element has been changed.

Earlier, we mentioned that the event will get raised if any descendant object of a registered object is
changed. To better demonstrate this, we will also have one additional method that we will register for
when the document is changed. Its only purpose is to make it more apparent that the document is also
getting a Changed event raised, despite that it is a descendant object several levels down that was
changed. That method follows.

This Meth od Wi ll be Regist ered f or the Ch anged Ev ent f or th e XML D ocument

public static void DocumentChangedHandler(object sender, XObjectChangeEventArgs
cea)
{
 Console.WriteLine("Doc: Type of object changed: {0}, Type of change: {1}{2}",
 sender.GetType().Name, cea.ObjectChange, System.Environment.NewLine);
}

CHAPTER 7 ■ THE LINQ TO XML API

307

The only significant change between the DocumentChangedHandler method and the

MyChangedEventHandler method is that the DocumentChangedHandler method begins the screen
output with the prefix "Doc:" to make it clear that it is the handler method being called by the
document’s Changed event, as opposed to the element’s Changed event handler.

Now, let’s take a look at the example code shown in Listing 7-86.

Listing 7-86. XObject Event Handling

XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("{0}{1}", xDocument, System.Environment.NewLine);

There is nothing new so far. As we have done many times, we have created an XML document using

functional construction and displayed the XML document. Notice that also, like many previous
examples, we have saved a reference to the first BookParticipant element. This is the element whose
events we will register for:

firstParticipant.Changing += new
EventHandler<XObjectChangeEventArgs>(MyChangingEventHandler);
firstParticipant.Changed += new
EventHandler<XObjectChangeEventArgs>(MyChangedEventHandler);
xDocument.Changed += new
EventHandler<XObjectChangeEventArgs>(DocumentChangedHandler);

Now we have registered with the first BookParticipant element to receive the Changing and

Changed events. Additionally, we have registered with the document to receive its Changed event. We are
registering for the document’s Changed event to demonstrate that you receive events even when it is a
descendant object that is changing or changed. Now, it’s time to make a change:

firstParticipant.Element("FirstName").Value = "Seph";

Console.WriteLine("{0}{1}", xDocument, System.Environment.NewLine);

All we did was change the value of the first BookParticipant element’s FirstName element’s value.

Then, we displayed the resulting XML document. Let’s examine the results:

CHAPTER 7 ■ THE LINQ TO XML API

308

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Type of object changing: XText, Type of change: Remove
Type of object changed: XText, Type of change: Remove
Doc: Type of object changed: XText, Type of change: Remove

Type of object changing: XText, Type of change: Add
Type of object changed: XText, Type of change: Add
Doc: Type of object changed: XText, Type of change: Add

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Seph</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

You can see the document at the beginning and end of the results, and the FirstName element’s
value has been changed just as you would expect. What you are interested in here is the output caused
by events being raised, which is between the two displays of the XML document. Notice that the type of
object being changed is XText. Were you anticipating that? We weren’t. We were expecting to see the
type as XElement. It is easy to forget that when you set an element’s value to a string literal that an object
of type XText is being created automatically in the background for you.

Looking at the event output, it is a little clearer exactly what is happening when you change the
element’s value. You can see that first, the element’s XText value is about to be changed by being
removed, and that it is then removed. Next, you see that the document’s Changed event is raised as well.
This makes it apparent that the order of the events being raised flows upstream.

Next, you see the same progression of events being raised, except this time an XText object is being
added. So now you know that when you change the string value of an element, an XText object is
removed and then added back.

In the previous example, we use named methods, but that doesn’t mean that is what you have to do.
We could have used anonymous methods, or even lambda expressions. Listing 7-87 is the same example
as the previous, except instead of registering the already implemented handler methods, we use lambda
expressions to define the code the events call on the fly.

CHAPTER 7 ■ THE LINQ TO XML API

309

Listing 7-87. XObject Event Handling Using Lambda Expressions

XElement firstParticipant;

XDocument xDocument = new XDocument(
 new XElement("BookParticipants", firstParticipant =
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("{0}{1}", xDocument, System.Environment.NewLine);

firstParticipant.Changing += new EventHandler<XObjectChangeEventArgs>(
 (object sender, XObjectChangeEventArgs cea) =>
 Console.WriteLine("Type of object changing: {0}, Type of change: {1}",
 sender.GetType().Name, cea.ObjectChange));

firstParticipant.Changed += (object sender, XObjectChangeEventArgs cea) =>
 Console.WriteLine("Type of object changed: {0}, Type of change: {1}",
 sender.GetType().Name, cea.ObjectChange);

xDocument.Changed += (object sender, XObjectChangeEventArgs cea) =>
 Console.WriteLine("Doc: Type of object changed: {0}, Type of change: {1}{2}",
 sender.GetType().Name, cea.ObjectChange, System.Environment.NewLine);

xDocument.Changed += new XObjectChangeEventHandler((sender, cea) =>
 Console.WriteLine("Doc: Type of object changed: {0}, Type of change: {1}{2}",
 sender.GetType().Name, cea.ObjectChange, System.Environment.NewLine));

firstParticipant.Element("FirstName").Value = "Seph";

Console.WriteLine("{0}{1}", xDocument, System.Environment.NewLine);

Now the code is totally self-contained and is no longer dependent on previously written handler

methods. Let’s check the results:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>

CHAPTER 7 ■ THE LINQ TO XML API

310

 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Type of object changing: XText, Type of change: Remove
Type of object changed: XText, Type of change: Remove
Doc: Type of object changed: XText, Type of change: Remove

Type of object changing: XText, Type of change: Add
Type of object changed: XText, Type of change: Add
Doc: Type of object changed: XText, Type of change: Add

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Seph</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

That output looks the same to us. After looking at this example, how can you not like lambda
expressions? We have seen many developers post about their first impressions of LINQ. Most like various
aspects, but the common factor we see is that many do not like lambda expressions. Perhaps it is
because they are so new and different. But when you see an example like that, what is not to like? We
hope you agree.

Trick or Treat, or Undefined?
Do you remember the Halloween problem we discussed earlier in this chapter? Please resist the urge to
make changes to the area of the XML tree containing the object for which the current event is raised in
your event handlers. Doing so will have an undefined effect on your XML tree and the events that are
raised.

Summary
In this chapter, we covered how to use LINQ to XML to create, modify, and traverse XML documents, as
well as how to perform LINQ queries on a single XML object. In this demonstration, we hope you saw
that the new API for creating and modifying XML data is not just a luxury but instead is a necessity for
performing LINQ queries. You can’t very well project data into an XML structure if you can’t create an
XML element on the fly, initialize its value, and place it in the XML tree in a single statement. The W3C

CHAPTER 7 ■ THE LINQ TO XML API

311

DOM XML API is totally incapable of the flexibility needed to perform a LINQ query, which, as it turns
out, is lucky for us because we got an entirely new XML API because of it.

Although this chapter was useful for demonstrating how to perform basic LINQ queries on XML
data, there was a fairly serious limitation in the LINQ queries that you saw. That is, the queries we
performed were always performing the query on a single XML object, such as an element. We were
querying the descendants of an element or the ancestors of an element. What do you do if you need to
perform a LINQ query on a sequence of elements, such as the descendants of a sequence of elements,
which are perhaps the descendants of a single element? For this, you need an additional set of XML
operators. In the next chapter, we cover the new LINQ to XML operators that were added for just this
purpose.

C H A P T E R 8

■ ■ ■

313

LINQ to XML Operators

At this point, we are deep into LINQ to XML, and you are probably starting to wonder, “When are we
going to get to the part about queries?” If so, then we say, “Hold on to your null reference there,
Shortcake, you have been seeing them.” Throughout the previous chapter, we were performing LINQ to
XML queries whether they were merely returning all the child elements of an element or obtaining all of
the ancestors of a node. Do you remember seeing the XContainer.Elements method? Do you recall any
examples where we called the XContainer.Elements method? If so, you saw a LINQ to XML query. As
evidence yet again to the seamless integration of LINQ queries into the language, it is sometimes easy to
overlook that you are performing a query.

Because many of the class methods we have covered up to this point return a sequence of XML class
objects, that is, IEnumerable<T>, where T is one of the LINQ to XML API classes, you can call the
Standard Query Operators on the returned sequence, giving you even more power and flexibility.

So, there are ways to get a sequence of XML objects from a single XML object, such as the
descendants or ancestors of any given element, but what is missing are ways to perform LINQ to XML
operations on each object in those sequences. For example, there is no simple way to get a sequence of
elements and perform another XML-specific operation on each element in the sequence, such as
returning each sequence element’s child elements. In other words, thus far, you can obtain a sequence
of an element’s child elements by calling that element’s Elements method, but you cannot obtain a
sequence of an element’s child elements’ child elements. This is because the Elements method must be
called on an XContainer, such as XElement or XDocument, but cannot be called on a sequence of
XContainer objects. This is where the LINQ to XML operators come in handy.

Introduction to LINQ to XML Operators
The LINQ to XML API extends the LINQ to Objects Standard Query Operators with XML-specific
operators. These XML operators are extension methods that are defined in the
System.Xml.Linq.Extensions class, which itself is nothing more than a container class for these
extension methods.

Each of these XML operators is called on a sequence of some LINQ to XML data type and performs
some action on each entry in that sequence, such as returning all the ancestors or descendants of the
entry.

Virtually every XML operator in this chapter has an equivalent method we covered in the previous
chapter. The difference is that the method covered in the previous chapter is called on a single object,
and the operator in this chapter is called on a sequence of objects. For example, in the previous chapter,
we covered the XContainer.Elements method. Its prototype looks like this:

CHAPTER 8 ■ LINQ TO XML OPERATORS

314

IEnumerable<XElement> XContainer.Elements()

In this chapter, we cover the Extensions.Elements operator, and its prototype looks like this:

IEnumerable<XElement> Elements<T> (this IEnumerable<T> source) where T : XContainer

There is a significant difference between the two methods. The first prototype is called on a single

object derived from XContainer, while the second prototype is called on a sequence of objects, where
each object in the sequence must be derived from XContainer. Please be cognizant of the difference.

In this chapter, to distinguish between the methods covered in the previous chapter and the
extension methods covered in this chapter, we typically refer to the extension methods as operators.

Now, let’s examine each of these operators.

Ancestors
The Ancestors operator can be called on a sequence of nodes and returns a sequence containing the
ancestor elements of each source node.

Prototypes
The Ancestors operator has two prototypes.

The Fi rst Ancestors Prot otype

public static IEnumerable<XElement> Ancestors<T> (
 this IEnumerable<T> source
) where T : XNode

This version of the operator can be called on a sequence of nodes, or objects derived from XNode. It

returns a sequence of elements containing the ancestor elements of each node in the source sequence.

The Second Ancestors Prot otype

public static IEnumerable<XElement> Ancestors<T> (
 this IEnumerable<T> source,
 XName name
) where T : XNode

This version is like the first, except a name is passed, and only those ancestor elements matching the

specified name are returned in the output sequence.

Examples
Listing 8-1 is an example of calling the first Ancestors prototype.

CHAPTER 8 ■ LINQ TO XML OPERATORS

315

Listing 8-1. An Example of Calling the First Ancestors Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Descendants("FirstName");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display the ancestor elements for each source element.
foreach (XElement element in elements.Ancestors())
{
 Console.WriteLine("Ancestor element: {0}", element.Name);
}

In the previous example, first we create an XML document. Next, we generate a sequence of

FirstName elements. Remember, this Ancestors method is called on a sequence of nodes, not on a
single node, so we need a sequence on which to call it. Because we want to be able to display the names
of the nodes for identification purposes, we actually build a sequence of elements because elements
have names but nodes do not. We then enumerate through the sequence displaying the source elements
just so we can see the source sequence. Then, we enumerate on the elements returned from the
Ancestors method and display them. Here are the results:

Source element: FirstName : value = Joe
Source element: FirstName : value = Ewan
Ancestor element: BookParticipant
Ancestor element: BookParticipants
Ancestor element: BookParticipant
Ancestor element: BookParticipants

As you can see, it displays the two source sequence elements, the two FirstName elements. It then
displays the ancestors for each of those two elements.

CHAPTER 8 ■ LINQ TO XML OPERATORS

316

So, using the Ancestors operator, we are able to retrieve all the ancestor elements for each node in
a sequence of nodes. In this case, our sequence is a sequence of elements, but that is OK because an
element is derived from a node. Remember, do not confuse the Ancestors operator that is called on a
sequence of nodes, which we just demonstrated, with the Ancestors method we covered in the previous
chapter.

Now, this example is not quite as impressive as it could be because we needed to expand the code
for demonstration purposes. For example, we wanted to capture the sequence of FirstName elements,
because we wanted to display them so you could see the source elements in the output. So, the
statement containing the call to the Descendants method and the subsequent foreach block are for this
purpose. Then in the second foreach loop, we call the Ancestors operator and display each ancestor
element. In reality, in that second foreach loop, we could have called the Ancestors method from the
previous chapter on each element in the sequence of FirstName elements and not even called the
Ancestors operator we are demonstrating. Listing 8-2 is an example demonstrating what we could have
done, which would have accomplished the same result without even using the Ancestors operator.

Listing 8-2. The Same Results as Listing 8-1 but Without Calling the Ancestors Operator

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Descendants("FirstName");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

foreach (XElement element in elements)
{
 // Call the Ancestors method on each element.
 foreach(XElement e in element.Ancestors())

 // Now, we will display the ancestor elements for each source element.
 Console.WriteLine("Ancestor element: {0}", e.Name);
}

CHAPTER 8 ■ LINQ TO XML OPERATORS

317

The difference between this example and the previous is that instead of calling the Ancestors
operator on the elements sequence in the foreach loop, we just loop on each element in the sequence
and call the Ancestors method on it. In this example, we never call the Ancestors operator; we merely
call the Ancestors method from the previous chapter. This code produces the same output, though:

Source element: FirstName : value = Joe
Source element: FirstName : value = Ewan
Ancestor element: BookParticipant
Ancestor element: BookParticipants
Ancestor element: BookParticipant
Ancestor element: BookParticipants

However, thanks to the Ancestors operator and the conciseness of LINQ, this query can be
combined into a single, more concise statement, as demonstrated in Listing 8-3.

Listing 8-3. A More Concise Example of Calling the First Ancestors Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

foreach (XElement element in
 xDocument.Element("BookParticipants").Descendants("FirstName").Ancestors())
{
 Console.WriteLine("Ancestor element: {0}", element.Name);
}

In this example, we cut right to the chase and call the Ancestors operator on the sequence of

elements returned by the Descendants method. So, the Descendants method returns a sequence of
elements, and the Ancestors operator will return a sequence of elements containing all ancestors of
every element in the sequence it is called on.

Since this code is meant to be more concise, it does not display the FirstName elements as the two
previous examples did. However, the ancestor elements should be the same. Let’s verify that they are:

Ancestor element: BookParticipant
Ancestor element: BookParticipants
Ancestor element: BookParticipant
Ancestor element: BookParticipants

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 8 ■ LINQ TO XML OPERATORS

318

And they are! In your production code, you would probably opt for a more concise query like the
one we just presented. However, in this chapter, the examples will be more verbose, like Listing 8-1, for
demonstration purposes.

To demonstrate the second Ancestors prototype, we will use the same basic code as Listing 8-1,
except we will change the call to the Ancestors operator so that it includes the parameter
BookParticipant so that we only get the elements matching that name. That code looks like Listing 8-4.

Listing 8-4. Calling the Second Ancestors Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Descendants("FirstName");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display the ancestor elements for each source element.
foreach (XElement element in elements.Ancestors("BookParticipant"))
{
 Console.WriteLine("Ancestor element: {0}", element.Name);
}

The results now should only include the BookParticipant elements and of course the source

elements, but the two BookParticipants elements that are displayed in the first prototype’s example
should now be gone:

Source element: FirstName : value = Joe
Source element: FirstName : value = Ewan
Ancestor element: BookParticipant
Ancestor element: BookParticipant

And they are.

CHAPTER 8 ■ LINQ TO XML OPERATORS

319

AncestorsAndSelf
The AncestorsAndSelf operator can be called on a sequence of elements and returns a sequence
containing the ancestor elements of each source element and the source element itself. This operator is
just like the Ancestors operator except that it can be called only on elements, as opposed to on nodes,
and it also includes each source element in the returned sequence of ancestor elements.

Prototypes
The AncestorsAndSelf operator has two prototypes.

The Fi rst AncestorsA ndSelf Prot otype

public static IEnumerable<XElement> AncestorsAndSelf (
 this IEnumerable<XElement> source
)

This version of the operator can be called on a sequence of elements and returns a sequence of

elements containing each source element itself and its ancestor elements.

The Second AncestorsAndSelf Prot otype

public static IEnumerable<XElement> AncestorsAndSelf<T> (
 this IEnumerable<XElement> source,
 XName name
)

This version is like the first, except a name is passed, and only those source elements and its

ancestors matching the specified name are returned in the output sequence.

Examples
For an example of the first AncestorsAndSelf prototype, we will use the same basic example we used
for the first Ancestors prototype, except we will call the AncestorsAndSelf operator instead of the
Ancestors operator, as shown in Listing 8-5.

Listing 8-5. Calling the First AncestorsAndSelf Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),

CHAPTER 8 ■ LINQ TO XML OPERATORS

320

 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Descendants("FirstName");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display the ancestor elements for each source element.
foreach (XElement element in elements.AncestorsAndSelf())
{
 Console.WriteLine("Ancestor element: {0}", element.Name);
}

Just as with the first Ancestors prototype, first we create an XML document. Next, we generate a

sequence of FirstName elements. Remember, this AncestorsAndSelf method is called on a sequence
of elements, not on a single element, so we need a sequence on which to call it. We then enumerate
through the sequence displaying the source elements just so we can see the source sequence. Then, we
enumerate on the elements returned from the AncestorsAndSelf method and display them.

If this works as we expect, the results should be the same as the results from the first Ancestors
prototype’s example, except now the FirstName elements should be included in the output. Here are
the results:

Source element: FirstName : value = Joe
Source element: FirstName : value = Ewan
Ancestor element: FirstName
Ancestor element: BookParticipant
Ancestor element: BookParticipants
Ancestor element: FirstName
Ancestor element: BookParticipant
Ancestor element: BookParticipants

For an example of the second AncestorsAndSelf prototype, we will use the same basic example
that we used in the example for the second Ancestors prototype, except, of course, we will change the
call from the Ancestors method to the AncestorsAndSelf method, as shown in Listing 8-6.

Listing 8-6. Calling the Second AncestorsAndSelf Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",

CHAPTER 8 ■ LINQ TO XML OPERATORS

321

 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Descendants("FirstName");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display the ancestor elements for each source element.
foreach (XElement element in elements.AncestorsAndSelf("BookParticipant"))
{
 Console.WriteLine("Ancestor element: {0}", element.Name);
}

Now, we should receive only the elements named BookParticipant. Here are the results:

Source element: FirstName : value = Joe
Source element: FirstName : value = Ewan
Ancestor element: BookParticipant
Ancestor element: BookParticipant

Notice that the displayed output from the AncestorsAndSelf method is just the BookParticipant
elements, because they are the only elements matching the name we passed. We didn’t even get the
source elements themselves, because they didn’t match the name. So, the function worked as defined.

Call us crazy, but this prototype of the operator seems fairly useless to us. How many levels of
elements are you going to have in an XML tree with the same name? If you don’t answer at least two,
how will this method ever return the self elements and any ancestor elements? It just doesn’t seem likely
to us. Yes, we know; we like symmetrical APIs too.

Attributes
The Attributes operator can be called on a sequence of elements and returns a sequence containing
the attributes of each source element.

CHAPTER 8 ■ LINQ TO XML OPERATORS

322

Prototypes
The Attributes operator has two prototypes.

The Fi rst Attri butes Prot otype

public static IEnumerable<XAttribute> Attributes (
 this IEnumerable<XElement> source
)

This version of the operator can be called on a sequence of elements and returns a sequence of

attributes containing all the attributes for each source element.

The Second Attri butes Prot otype

public static IEnumerable<XAttribute> Attributes (
 this IEnumerable<XElement> source,
 XName name
)

This version of the operator is like the first, except only those attributes matching the specified

name will be returned in the sequence of attributes.

Examples
For an example of the first Attributes prototype, we will build the same XML tree we have been
building for the previous examples. However, the sequence of source elements we generate will be a
little different because we need a sequence of elements with attributes. So, I’ll generate a sequence of the
BookParticipant elements and work from there, as shown in Listing 8-7.

Listing 8-7. Calling the First Attributes Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.

CHAPTER 8 ■ LINQ TO XML OPERATORS

323

foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's attributes.
foreach (XAttribute attribute in elements.Attributes())
{
 Console.WriteLine("Attribute: {0} : value = {1}",
 attribute.Name, attribute.Value);
}

Once we obtain the sequence of BookParticipant elements, we display the source sequence. Then,

we call the Attributes operator on the source sequence and display the attributes in the sequence
returned by the Attributes operator. Here are the results:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Attribute: type : value = Author
Attribute: type : value = Editor

As you can see, the attributes are retrieved. For an example of the second Attributes prototype, we
will use the same basic example as the previous, except we will specify a name that the attributes must
match to be returned by the Attributes operator, as shown in Listing 8-8.

Listing 8-8. Calling the Second Attributes Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{

CHAPTER 8 ■ LINQ TO XML OPERATORS

324

 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's attributes.
foreach (XAttribute attribute in elements.Attributes("type"))
{
 Console.WriteLine("Attribute: {0} : value = {1}",
 attribute.Name, attribute.Value);
}

In the previous code, we specify that the attributes must match the name type. So, this should

return the same output as the previous example. Pressing Ctrl+F5 returns the following:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Attribute: type : value = Author
Attribute: type : value = Editor

We did get the results we expected. Had we specified the name as Type so that the first letter is
capitalized, the two attributes would not have been displayed because the Attributes operator would
not have returned those attributes from the source sequence. That demonstrates the case of when the
name doesn’t match, as well as that the name is case-sensitive, which isn’t that surprising since XML is
case-sensitive.

DescendantNodes
The DescendantNodes operator can be called on a sequence of elements and returns a sequence
containing the descendant nodes of each element or document.

Prototypes
The DescendantNodes operator has one prototype.

The Only DescendantNodes Prototyp e

public static IEnumerable<XNode> DescendantNodes<T> (
 this IEnumerable<T> source
) where T : XContainer

This version can be called on a sequence of elements or documents and returns a sequence of nodes

containing each source element’s or document’s descendant nodes.
This is different from the XContainer.DescendantNodes method in that this method is called on a

sequence of elements or documents, as opposed to a single element or document.

CHAPTER 8 ■ LINQ TO XML OPERATORS

325

Examples
For this example, we will build the same XML tree we have used for the previous examples, except we
will also add a comment to the first BookParticipant element. This is to have at least one node get
returned that is not an element. When we build our source sequence of elements, we want some
elements that have some descendants, so we will build our source sequence with the BookParticipant
elements since they have some descendants, as shown in Listing 8-9.

Listing 8-9. Calling the Only DescendantNodes Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant nodes.
foreach (XNode node in elements.DescendantNodes())
{
 Console.WriteLine("Descendant node: {0}", node);
}

As is typical with the examples in this section, we built our XML tree and a source sequence of

elements. In this case, the source sequence contains the BookParticipant elements. We then call the
DescendantNodes operator on the source sequence and display the results:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant node: <!--This is a new author.-->
Descendant node: <FirstName>Joe</FirstName>
Descendant node: Joe

CHAPTER 8 ■ LINQ TO XML OPERATORS

326

Descendant node: <LastName>Rattz</LastName>
Descendant node: Rattz
Descendant node: <FirstName>Ewan</FirstName>
Descendant node: Ewan
Descendant node: <LastName>Buckingham</LastName>
Descendant node: Buckingham

Notice that not only did we get our descendant elements, but we got our comment node as well.
Also notice that for each element in the XML document, we ended up with two nodes. For example,
there is a node whose value is "<FirstName>Joe</FirstName>" and a node whose value is "Joe". The
first node in the pair is the FirstName element. The second node is the XText node for that element. We
bet you had forgotten about those automatically created XText objects. We know we did, but there they
are.

DescendantNodesAndSelf
The DescendantNodesAndSelf operator can be called on a sequence of elements and returns a
sequence containing each source element itself and each source element’s descendant nodes.

Prototypes
The DescendantNodesAndSelf operator has one prototype.

The Only DescendantNodesAndSelf Prot otype

public static IEnumerable<XNode> DescendantNodesAndSelf (
 this IEnumerable<XElement> source
)

This version is called on a sequence of elements and returns a sequence of nodes containing each

source element itself and each source element’s descendant nodes.

Examples
For this example, we will use the same example used for the DescendantNodes operator, except we will
call the DescendantNodesAndSelf operator, as shown in Listing 8-10.

Listing 8-10. Calling the Only DescendantNodesAndSelf Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),

CHAPTER 8 ■ LINQ TO XML OPERATORS

327

 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant nodes.
foreach (XNode node in elements.DescendantNodesAndSelf())
{
 Console.WriteLine("Descendant node: {0}", node);
}

The question is, will the output be the same as the output for the DescendantNodes example except

that the source elements will be included too? You bet:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant node: <BookParticipant type="Author">
 <!--This is a new author.-->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>
Descendant node: <!--This is a new author.-->
Descendant node: <FirstName>Joe</FirstName>
Descendant node: Joe
Descendant node: <LastName>Rattz</LastName>
Descendant node: Rattz
Descendant node: <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipant>
Descendant node: <FirstName>Ewan</FirstName>
Descendant node: Ewan
Descendant node: <LastName>Buckingham</LastName>
Descendant node: Buckingham

CHAPTER 8 ■ LINQ TO XML OPERATORS

328

Not only did we get the BookParticipant elements themselves and their descendants, but we got
the single node that is not an element, the comment. This is in contrast to the Descendants and
DescendantsAndSelf operators we cover next, which will omit the nodes that are not elements.

Descendants
The Descendants operator can be called on a sequence of elements or documents and returns a
sequence of elements containing each source element’s or document’s descendant elements.

Prototypes
The Descendants operator has two prototypes.

The Fi rst Descendants Prot otype

public static IEnumerable<XElement> Descendants<T> (
 this IEnumerable<T> source
) where T : XContainer

This version is called on a sequence of elements or documents and returns a sequence of elements

containing each source element’s or document’s descendant elements.
This is different from the XContainer.Descendants method in that this method is called on a

sequence of elements or documents, as opposed to a single element or document.

The Second D escendants Prot otype

public static IEnumerable<XElement> Descendants<T> (
 this IEnumerable<T> source,
 XName name
) where T : XContainer

This version is like the first, except only those elements matching the specified name are returned in

the output sequence.

Examples
For the example of the first prototype, we will basically use the same example we used for the
DescendantNodes operator, except we will call the Descendants operator instead. The output should be
the same, except there should not be any nodes that are not elements. This means you should not see
the comment in the output. Listing 8-11 shows the code.

CHAPTER 8 ■ LINQ TO XML OPERATORS

329

Listing 8-11. Calling the First Descendants Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant elements.
foreach (XElement element in elements.Descendants())
{
 Console.WriteLine("Descendant element: {0}", element);
}

This example is basically like all of the previous except you should only see the descendant elements

of the two BookParticipant elements. The results of this example are the following:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant element: <FirstName>Joe</FirstName>
Descendant element: <LastName>Rattz</LastName>
Descendant element: <FirstName>Ewan</FirstName>
Descendant element: <LastName>Buckingham</LastName>

Comparing these results to that of the DescendantNodes operator example, we notice some
differences we did not initially anticipate. Sure, the descendants are labeled as elements instead of
nodes, and the comment is not there, but additionally, the descendant nodes such as Joe and Rattz are
missing as well. Oh yeah, those nodes are not elements either; they are XText objects. The LINQ to XML
API handles the text nodes so seamlessly that it is easy to forget about them.

CHAPTER 8 ■ LINQ TO XML OPERATORS

330

For an example of the second prototype, we will use the same code as the first example except
specify a name that the descendant elements must match to be returned by the second prototype of the
Descendants operator, as shown in Listing 8-12.

Listing 8-12. Calling the Second Descendants Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant elements.
foreach (XElement element in elements.Descendants("LastName"))
{
 Console.WriteLine("Descendant element: {0}", element);
}

The results of this example are the following:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant element: <LastName>Rattz</LastName>
Descendant element: <LastName>Buckingham</LastName>

As you would expect, only the LastName elements are returned.

CHAPTER 8 ■ LINQ TO XML OPERATORS

331

DescendantsAndSelf
The DescendantsAndSelf operator can be called on a sequence of elements and returns a sequence
containing each source element and its descendant elements.

Prototypes
The DescendantsAndSelf operator has two prototypes.

The Fi rst DescendantsA ndSelf Prot otype

public static IEnumerable<XElement> DescendantsAndSelf (
 this IEnumerable<XElement> source
)

This version is called on a sequence of elements and returns a sequence of elements containing

each source element and its descendant elements.

The Second D escendantsA ndSelf Prot otype

public static IEnumerable<XElement> DescendantsAndSelf (
 this IEnumerable<XElement> source,
 XName name
)

This version is like the first, except only those elements matching the specified name are returned in

the output sequence.

Examples
For this example, we will use the same code as the example for the first prototype of the Descendants
operator, except we will call the DescendantsAndSelf operator, as shown in Listing 8-13.

Listing 8-13. Calling the First DescendantsAndSelf Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

CHAPTER 8 ■ LINQ TO XML OPERATORS

332

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant elements.
foreach (XElement element in elements.DescendantsAndSelf())
{
 Console.WriteLine("Descendant element: {0}", element);
}

Now, you should see all the descendant elements and the source elements themselves. The results

of this example are the following:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant element: <BookParticipant type="Author">
 <!--This is a new author.-->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>
Descendant element: <FirstName>Joe</FirstName>
Descendant element: <LastName>Rattz</LastName>
Descendant element: <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipant>
Descendant element: <FirstName>Ewan</FirstName>
Descendant element: <LastName>Buckingham</LastName>

The output is the same as the first prototype for the Descendants operator, except it does include
the source elements themselves, the BookParticipant elements. Don’t let the existence of the
comment in the results fool you. It is not there because the comment was returned by the
DescendantsAndSelf operator; it is there because we display the BookParticipant element, which was
returned by the operator.

For the second DescendantsAndSelf prototype, we will use the same example as the first
prototype, except specify a name the element must match to be returned, as shown in Listing 8-14.

CHAPTER 8 ■ LINQ TO XML OPERATORS

333

Listing 8-14. Calling the Second DescendantsAndSelf Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's descendant elements.
foreach (XElement element in elements.DescendantsAndSelf("LastName"))
{
 Console.WriteLine("Descendant element: {0}", element);
}

The results of this example are the following:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Descendant element: <LastName>Rattz</LastName>
Descendant element: <LastName>Buckingham</LastName>

The results only include the descendant elements that match the name we specified. There isn’t
much evidence that we called the DescendantsAndSelf operator, as opposed to the Descendants
operator, since the source elements were not returned because of their name not matching the specified
name. Again, as with all the operators that return elements from multiple levels of the XML tree, it is
unlikely that you will need the AndSelf versions of the operators. You probably won’t have that many
levels of elements having the same name.

CHAPTER 8 ■ LINQ TO XML OPERATORS

334

Elements
The Elements operator can be called on a sequence of elements or documents and returns a sequence
of elements containing each source element’s or document’s child elements.

This operator is different from the Descendants operator, because the Elements operator returns
only the immediate child elements of each element in the source sequence of elements, whereas the
Descendants operator recursively returns all child elements until the end of each tree is reached.

Prototypes
The Elements operator has two prototypes.

The Fi rst Elements Prot otype

public static IEnumerable<XElement> Elements<T> (
 this IEnumerable<T> source
) where T : XContainer

This version is called on a sequence of elements or documents and returns a sequence of elements

containing each source element’s or document’s child elements.
This is different from the XContainer.Elements method in that this method is called on a sequence

of elements or documents, as opposed to a single element or document.

The Second Element s Prot otype

public static IEnumerable<XElement> Elements<T> (
 this IEnumerable<T> source,
 XName name
) where T : XContainer

This version is like the first, except only those elements matching the specified name are returned in

the output sequence.

Examples
By now, you probably know the drill. For an example of the first prototype, we will use the same basic
example as the DescendantsAndSelf operator used, except we will call the Elements operator instead,
as shown in Listing 8-15.

Listing 8-15. Calling the First Elements Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),

CHAPTER 8 ■ LINQ TO XML OPERATORS

335

 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's elements.
foreach (XElement element in elements.Elements())
{
 Console.WriteLine("Child element: {0}", element);
}

As in the previous examples, we build our XML tree, obtain a sequence of source elements, display

each source element, retrieve a sequence of each source element’s child elements, and display the child
elements:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Child element: <FirstName>Joe</FirstName>
Child element: <LastName>Rattz</LastName>
Child element: <FirstName>Ewan</FirstName>
Child element: <LastName>Buckingham</LastName>

That example returns all child elements. To retrieve just those matching a specific name, we use the
second prototype of the Elements operator, as shown in Listing 8-16.

Listing 8-16. Calling the Second Elements Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),

CHAPTER 8 ■ LINQ TO XML OPERATORS

336

 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's elements.
foreach (XElement element in elements.Elements("LastName"))
{
 Console.WriteLine("Child element: {0}", element);
}

Now, we should get only the child elements matching the name LastName:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Child element: <LastName>Rattz</LastName>
Child element: <LastName>Buckingham</LastName>

That works just as expected.

InDocumentOrder
The InDocumentOrder operator can be called on a sequence of nodes and returns a sequence
containing each source node sorted in document order.

Prototypes
The InDocumentOrder operator has one prototype.

The Only InD ocument Order Prototyp e

public static IEnumerable<T> InDocumentOrder<T> (
 this IEnumerable<T> source
) where T : XNode

CHAPTER 8 ■ LINQ TO XML OPERATORS

337

This version is called on a sequence of a specified type, which must be nodes or some type derived

from nodes, and returns a sequence of that same type containing each source node in document order.

Examples
This is a fairly odd operator. For this example, we need a source sequence of nodes. Since we want to see
some nodes that are not elements in addition to elements, we will build a sequence of nodes that are the
child nodes of the BookParticipant elements. We do this because one of them has a comment, which is
a node but not an element. Listing 8-17 shows the source.

Listing 8-17. Calling the Only InDocumentOrder Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XNode> nodes =
 xDocument.Element("BookParticipants").Elements("BookParticipant").
 Nodes().Reverse();

// First, we will display the source nodes.
foreach (XNode node in nodes)
{
 Console.WriteLine("Source node: {0}", node);
}

// Now, we will display each source node's child nodes.
foreach (XNode node in nodes.InDocumentOrder())
{
 Console.WriteLine("Ordered node: {0}", node);
}

As you can see in the previous code, we build our XML tree. When we retrieve our source sequence,

we get the BookParticipant element’s child nodes by calling the Nodes operator, and then we call the
Reverse Standard Query Operator. If you recall from Part 2 of this book about LINQ to Objects, the
Reverse operator will return a sequence where entries in the input sequence have had their order
reversed. So, now we have a sequence of nodes that are not in the original order. We take this additional
step of altering the order so that when we call the InDocumentOrder operator, a difference can be

CHAPTER 8 ■ LINQ TO XML OPERATORS

338

detected. Then we display the disordered source nodes, call the InDocumentOrder operator, and display
the results. Here they are:

Source node: <LastName>Buckingham</LastName>
Source node: <FirstName>Ewan</FirstName>
Source node: <LastName>Rattz</LastName>
Source node: <FirstName>Joe</FirstName>
Source node: <!--This is a new author.-->
Ordered node: <!--This is a new author.-->
Ordered node: <FirstName>Joe</FirstName>
Ordered node: <LastName>Rattz</LastName>
Ordered node: <FirstName>Ewan</FirstName>
Ordered node: <LastName>Buckingham</LastName>

As you can see, the source nodes are in the reverse order that we built them in, and the ordered
nodes are back in the original order. Cool, but odd.

Nodes
The Nodes operator can be called on a sequence of elements or documents and returns a sequence of
nodes containing each source element’s or document’s child nodes.

This operator is different from the DescendantNodes operator in that the Nodes operator returns
only the immediate child elements of each element in the source sequence of elements, whereas the
DescendantNodes operator recursively returns all child nodes until the end of each tree is reached.

Prototypes
The Nodes operator has one prototype.

The Only Nodes Prot otyp e

public static IEnumerable<XNode> Nodes<T> (
 this IEnumerable<T> source
) where T : XContainer

This version is called on a sequence of elements or documents and returns a sequence of nodes

containing each source element’s or document’s child nodes.
This is different from the XContainer.Nodes method in that this method is called on a sequence of

elements or documents, as opposed to a single element or document.

CHAPTER 8 ■ LINQ TO XML OPERATORS

339

Examples
For this example, we will build our typical XML tree and build a source sequence of BookParticipant
elements. We will display each of them, and then we will return the child nodes of each source element
and display them, as shown in Listing 8-18.

Listing 8-18. Calling the Only Nodes Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

// First, we will display the source elements.
foreach (XElement element in elements)
{
 Console.WriteLine("Source element: {0} : value = {1}",
 element.Name, element.Value);
}

// Now, we will display each source element's child nodes.
foreach (XNode node in elements.Nodes())
{
 Console.WriteLine("Child node: {0}", node);
}

Since this operator returns the child nodes, as opposed to elements, the output should have the

comment of the first BookParticipant element in the results:

Source element: BookParticipant : value = JoeRattz
Source element: BookParticipant : value = EwanBuckingham
Child node: <!--This is a new author.-->
Child node: <FirstName>Joe</FirstName>
Child node: <LastName>Rattz</LastName>
Child node: <FirstName>Ewan</FirstName>
Child node: <LastName>Buckingham</LastName>

CHAPTER 8 ■ LINQ TO XML OPERATORS

340

The results display each source element’s child nodes. Notice that because only the immediate child
nodes are retrieved, we didn’t get the XText nodes that are children of each FirstName and LastName
element, as we did in the DescendantNodes operator example.

Remove
The Remove operator can be called on a sequence of nodes or attributes to remove them. This method
will cache a copy of the nodes or attributes in a List to eliminate the Halloween problem discussed in
the previous chapter.

Prototypes
The Remove operator has two prototypes.

The Fi rst Remove Prot otype

public static void Remove (
 this IEnumerable<XAttribute> source
)

This version is called on a sequence of attributes and removes all attributes in the source sequence.

The Second Remove Prot otype

public static void Remove<T> (
 this IEnumerable<T> source
) where T : XNode

This version is called on a sequence of a specified type, which must be nodes or some type derived

from nodes, and removes all nodes in the source sequence.

Examples
Since the first prototype is for removing attributes, we need a sequence of attributes. So, we will build
our standard XML tree and retrieve a sequence of the BookParticipant element’s attributes. We will
display each source attribute and then call the Remove operator on the sequence of source attributes.
Then, just to prove it worked, we will display the entire XML document, and the attributes will be gone,
as shown in Listing 8-19.

Listing 8-19. Calling the First Remove Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),

CHAPTER 8 ■ LINQ TO XML OPERATORS

341

 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XAttribute> attributes =
 xDocument.Element("BookParticipants").Elements("BookParticipant").Attributes();

// First, we will display the source attributes.
foreach (XAttribute attribute in attributes)
{
 Console.WriteLine("Source attribute: {0} : value = {1}",
 attribute.Name, attribute.Value);
}

attributes.Remove();

// Now, we will display the XML document.
Console.WriteLine(xDocument);

Will it work? Let’s see:

Source attribute: type : value = Author
Source attribute: type : value = Editor
<BookParticipants>
 <BookParticipant>
 <!--This is a new author.-->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant>
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

So far, all is good. Now, we’ll try the second prototype. For this example, instead of merely obtaining
a sequence of nodes and removing them, we’ll show something that might be a little more interesting.
We’ll get a sequence of the comments of some particular elements and remove just them, as shown in
Listing 8-20.

CHAPTER 8 ■ LINQ TO XML OPERATORS

342

Listing 8-20. Calling the Second Remove Prototype

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XComment("This is a new author."),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XComment> comments =
 xDocument.Element("BookParticipants").Elements("BookParticipant").
 Nodes().OfType<XComment>();

// First, we will display the source comments.
foreach (XComment comment in comments)
{
 Console.WriteLine("Source comment: {0}", comment);
}

comments.Remove();

// Now, we will display the XML document.
Console.WriteLine(xDocument);

In this example, when building our source sequence, we retrieve the child nodes of each

BookParticipant element. We could just call the Remove operator on that sequence, and then all the
child nodes of each BookParticipant element would be gone. But instead, to spice it up, we call the
OfType Standard Query Operator. If you recall from Part 2 of this book on LINQ to Objects, this operator
will return only the objects in the input sequence matching the type specified. By calling the OfType
operator and specifying a type of XComment, we get a sequence of just the comments. Then, we call the
Remove method on the comments. The results should be that the original document is missing the one
comment that it initially had:

Source comment: <!--This is a new author.-->
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>

CHAPTER 8 ■ LINQ TO XML OPERATORS

343

 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

That worked like a charm. Look how handy the OfType operator is and how we can integrate it into
the LINQ to XML query. That seems like it could be very useful.

Summary
In the previous chapter, we covered the new LINQ to XML API that allows you to create, modify, save,
and load XML trees. Notice we said trees as opposed to documents, because with LINQ to XML,
documents are no longer a requirement. In that chapter, we demonstrated how to query a single node or
element for nodes and elements hierarchically related to it. In this chapter, we covered doing the same
thing with sequences of nodes or elements using the LINQ to XML operators. We hope we have made it
clear how to perform elementary queries on XML trees using LINQ to XML. We believe that this new
XML API will prove to be quite useful for querying XML data. In particular, the way the Standard Query
Operators can be mingled with LINQ to XML operators lends itself to quite elegant and powerful queries.

At this point, we have covered just about all there is to know about the building blocks needed for
performing LINQ to XML queries. In the next chapter, we provide some slightly more complex queries
and cover some of the remaining XML necessities such as validation and transformation.

C H A P T E R 9

■ ■ ■

345

Additional XML Capabilities

In the previous two chapters, we demonstrated how to create, modify, and traverse XML data with the
LINQ to XML API. We also demonstrated the building blocks for creating powerful XML queries. We
hope by now you would agree that LINQ to XML will handle about 90 percent of your XML needs, but
what about the remaining 10 percent? Let’s see whether we can get that percentage higher. If Microsoft
added schema validation, transformations, and XPath query capability, what percentage of your use
cases would that achieve?

Although we have covered the LINQ to XML API and how to perform the most basic of queries with
it, we have yet to demonstrate slightly more complex, real-world queries. In this chapter, we provide
some examples that will make querying XML with the LINQ to XML API seem trivial, including some that
use the query expression syntax for those of you who prefer it.

Additionally, the new LINQ to XML API just wouldn’t be complete without a few additional
capabilities such as transformation and validation. In this chapter, we cover these LINQ to XML
leftovers, as well as any other good-to-know information.

Specifically, we cover how to perform transformations with XSLT and without. We demonstrate how
to validate an XML document against a schema, and we even present an example performing an XPath-
style query.

Referenced Namespaces
Examples in this chapter reference the System.Xml, System.Xml.Schema, System.Xml.Xsl, and
System.Xml.XPath namespaces, in addition to the typical LINQ and LINQ to XML namespaces,
System.Linq and System.Xml.Linq. Therefore, you will want to add using directives for these if they
are not already present:

using System.Linq;
using System.Xml;
using System.Xml.Linq;
using System.Xml.Schema;
using System.Xml.XPath;
using System.Xml.Xsl;

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

346

Queries
In the previous LINQ to XML chapters, we demonstrated the core principles needed to perform XML
queries using LINQ to XML. However, most of the examples are specifically designed to demonstrate an
operator or a property. In this section, we provide some examples that are more solution-oriented.

No Reaching
In the previous chapters, many of the examples would reach down into the XML hierarchy to obtain a
reference to a particular element by calling the Element or Elements operator recursively until the
desired element was reached.

For instance, many of the examples contained lines such as this:

IEnumerable<XElement> elements =
 xDocument.Element("BookParticipants").Elements("BookParticipant");

In this statement, we start at the document level, then obtain its child element named

BookParticipants, and then obtain its child elements named BookParticipant. However, it is not
necessary to reach down through each level like that. Instead, we could simply write the code as shown
in Listing 9-1.

Listing 9-1. Obtaining Elements Without Reaching

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements = xDocument.Descendants("BookParticipant");

foreach (XElement element in elements)
{
 Console.WriteLine("Element: {0} : value = {1}",
 element.Name, element.Value);
}

In this example, we obtain every descendant element in the document named BookParticipant.

Since we are not reaching into a specific branch of the XML tree, it is necessary that we know the schema
because we could get back elements from a branch we do not want. However, in many cases, including
this one, it works just fine. Here are the results:

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

347

Element: BookParticipant : value = JoeRattz
Element: BookParticipant : value = EwanBuckingham

However, we might not want all of the BookParticipant elements; perhaps we need to restrict the
returned elements? Listing 9-2 is an example returning just the elements whose FirstName element’s
value is "Ewan":

Listing 9-2. Obtaining Restricted Elements Without Reaching

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements = xDocument
 .Descendants("BookParticipant")
 .Where(e => ((string)e.Element("FirstName")) == "Ewan");

foreach (XElement element in elements)
{
 Console.WriteLine("Element: {0} : value = {1}",
 element.Name, element.Value);
}

This time we appended a call to the Where operator. Notice that we cast the FirstName element to a

string to get its value for the comparison to "Ewan". Here are the results:

Element: BookParticipant : value = EwanBuckingham

Of course, sometimes you need to control the order. This time, so that we have more than one
returned element so the order matters, we will change the Where operator lambda expression so that
both elements will be returned. To make it interesting, we will query on the type attribute, and we will
try this one in query expression syntax, as shown in Listing 9-3.

Listing 9-3. Obtaining Restricted Elements Without Reaching While Ordering and Using Query

Expression Syntax

XDocument xDocument = new XDocument(

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

348

 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

IEnumerable<XElement> elements =
 from e in xDocument.Descendants("BookParticipant")
 where ((string)e.Attribute("type")) != "Illustrator"
 orderby ((string)e.Element("LastName"))
 select e;

foreach (XElement element in elements)
{
 Console.WriteLine("Element: {0} : value = {1}",
 element.Name, element.Value);
}

In this example, we still query for the document’s BookParticipant elements but retrieve only the

ones whose type attribute is not Illustrator. In this case, that is all of the BookParticipant elements.
We then order them by each element’s LastName element. Again, notice that we cast both the type
attribute and the LastName element to get their values. Here are the results:

Element: BookParticipant : value = EwanBuckingham
Element: BookParticipant : value = JoeRattz

A Complex Query
So far, all the example queries have been very trivial, so before we leave the topic of queries, we want to
provide one complex query. For this example, we will use sample data suggested by the W3C specifically
for XML query use case testing.

The example in Listing 9-4 contains data from three different XML documents. In our example code,
we create each document by parsing a text representation of each of the W3C’s suggested XML
documents. Since this is a complex example, we will explain as we go.

The first step is to create the documents from the XML.

Listing 9-4. A Complex Query Featuring a Three-Document Join with Query Expression Syntax

XDocument users = XDocument.Parse(
 @"<users>
 <user_tuple>
 <userid>U01</userid>
 <name>Tom Jones</name>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

349

 <rating>B</rating>
 </user_tuple>
 <user_tuple>
 <userid>U02</userid>
 <name>Mary Doe</name>
 <rating>A</rating>
 </user_tuple>
 <user_tuple>
 <userid>U03</userid>
 <name>Dee Linquent</name>
 <rating>D</rating>
 </user_tuple>
 <user_tuple>
 <userid>U04</userid>
 <name>Roger Smith</name>
 <rating>C</rating>
 </user_tuple>
 <user_tuple>
 <userid>U05</userid>
 <name>Jack Sprat</name>
 <rating>B</rating>
 </user_tuple>
 <user_tuple>
 <userid>U06</userid>
 <name>Rip Van Winkle</name>
 <rating>B</rating>
 </user_tuple>
 </users>");

XDocument items = XDocument.Parse(
 @"<items>
 <item_tuple>
 <itemno>1001</itemno>
 <description>Red Bicycle</description>
 <offered_by>U01</offered_by>
 <start_date>1999-01-05</start_date>
 <end_date>1999-01-20</end_date>
 <reserve_price>40</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1002</itemno>
 <description>Motorcycle</description>
 <offered_by>U02</offered_by>
 <start_date>1999-02-11</start_date>
 <end_date>1999-03-15</end_date>
 <reserve_price>500</reserve_price>
 </item_tuple>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

350

 <item_tuple>
 <itemno>1003</itemno>
 <description>Old Bicycle</description>
 <offered_by>U02</offered_by>
 <start_date>1999-01-10</start_date>
 <end_date>1999-02-20</end_date>
 <reserve_price>25</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1004</itemno>
 <description>Tricycle</description>
 <offered_by>U01</offered_by>
 <start_date>1999-02-25</start_date>
 <end_date>1999-03-08</end_date>
 <reserve_price>15</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1005</itemno>
 <description>Tennis Racket</description>
 <offered_by>U03</offered_by>
 <start_date>1999-03-19</start_date>
 <end_date>1999-04-30</end_date>
 <reserve_price>20</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1006</itemno>
 <description>Helicopter</description>
 <offered_by>U03</offered_by>
 <start_date>1999-05-05</start_date>
 <end_date>1999-05-25</end_date>
 <reserve_price>50000</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1007</itemno>
 <description>Racing Bicycle</description>
 <offered_by>U04</offered_by>
 <start_date>1999-01-20</start_date>
 <end_date>1999-02-20</end_date>
 <reserve_price>200</reserve_price>
 </item_tuple>
 <item_tuple>
 <itemno>1008</itemno>
 <description>Broken Bicycle</description>
 <offered_by>U01</offered_by>
 <start_date>1999-02-05</start_date>
 <end_date>1999-03-06</end_date>
 <reserve_price>25</reserve_price>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

351

 </item_tuple>
 </items>");

XDocument bids = XDocument.Parse(
 @"<bids>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1001</itemno>
 <bid>35</bid>
 <bid_date>1999-01-07</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U04</userid>
 <itemno>1001</itemno>
 <bid>40</bid>
 <bid_date>1999-01-08</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1001</itemno>
 <bid>45</bid>
 <bid_date>1999-01-11</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U04</userid>
 <itemno>1001</itemno>
 <bid>50</bid>
 <bid_date>1999-01-13</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1001</itemno>
 <bid>55</bid>
 <bid_date>1999-01-15</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U01</userid>
 <itemno>1002</itemno>
 <bid>400</bid>
 <bid_date>1999-02-14</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1002</itemno>
 <bid>600</bid>
 <bid_date>1999-02-16</bid_date>
 </bid_tuple>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

352

 <bid_tuple>
 <userid>U03</userid>
 <itemno>1002</itemno>
 <bid>800</bid>
 <bid_date>1999-02-17</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U04</userid>
 <itemno>1002</itemno>
 <bid>1000</bid>
 <bid_date>1999-02-25</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U02</userid>
 <itemno>1002</itemno>
 <bid>1200</bid>
 <bid_date>1999-03-02</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U04</userid>
 <itemno>1003</itemno>
 <bid>15</bid>
 <bid_date>1999-01-22</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U05</userid>
 <itemno>1003</itemno>
 <bid>20</bid>
 <bid_date>1999-02-03</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U01</userid>
 <itemno>1004</itemno>
 <bid>40</bid>
 <bid_date>1999-03-05</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U03</userid>
 <itemno>1007</itemno>
 <bid>175</bid>
 <bid_date>1999-01-25</bid_date>
 </bid_tuple>
 <bid_tuple>
 <userid>U05</userid>
 <itemno>1007</itemno>
 <bid>200</bid>
 <bid_date>1999-02-08</bid_date>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

353

 </bid_tuple>
 <bid_tuple>
 <userid>U04</userid>
 <itemno>1007</itemno>
 <bid>225</bid>
 <bid_date>1999-02-12</bid_date>
 </bid_tuple>
 </bids>");

This sample data is basically meant to represent an Internet auction-type site and the data it would

have. We just created three XML documents by calling the XDocument.Parse method on string
representations of the XML data. There are documents for users, items, and bids.

For our query, we want to produce a list of each bid greater than $50. In the results, we want to see
the date and price of the bid as well as the user placing the bid and the item number and item
description. Here is the query:

var biddata = from b in bids.Descendants("bid_tuple")
 where ((double)b.Element("bid")) > 50
 join u in users.Descendants("user_tuple")
 on ((string)b.Element("userid")) equals
 ((string)u.Element("userid"))
 join i in items.Descendants("item_tuple")
 on ((string)b.Element("itemno")) equals
 ((string)i.Element("itemno"))
 select new { Item = ((string)b.Element("itemno")),
 Description = ((string)i.Element("description")),
 User = ((string)u.Element("name")),
 Date = ((string)b.Element("bid_date")),
 Price = ((double)b.Element("bid"))};

OK, that is a complex query. The first step is that we query for the descendants named bid_tuple in

the bids document using the Descendants method. Next, we perform a where statement for elements
that have a child element named bid whose value is greater than 50. This is so we only retrieve the bids
that are greater than $50. It may seem a little unusual that we are performing a where statement this
soon in the query. We actually could have called the where statement further down in the query, just
before the select statement call. However, this means we would have retrieved and performed a join
against the users and items XML documents even for bids not greater than $50, which is not necessary.
By filtering the results set as soon as possible, we have reduced the workload for the remainder of the
query, thereby leading to better performance.

Once we have filtered the results set to just the bids that are greater than $50, we join those bids on
the users XML document by the commonly named userid element so that we can obtain the user’s
name. At this point, we have the bids and users joined for the bids greater than $50.

Next, we join the results on the items XML document by the commonly named itemno element so
that we can obtain the item’s description. At this point, we have the bids, users, and items joined.

Notice again that we have cast all elements to the data type we are interested in to get the element’s
value. Especially interesting is that we obtain the bid price by casting the bid element to a double. Even
though the actual input bid value is just a string, because the bid value could be successfully converted
to a double, we were able to cast it to a double to get its value as a double. How cool is that?

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

354

The next step is to simply select an anonymous class containing the joined element’s child elements
we are interested in.

Our next step is to display a header:

Console.WriteLine("{0,-12} {1,-12} {2,-6} {3,-14} {4,10}",
 "Date",
 "User",
 "Item",
 "Description",
 "Price");

Console.WriteLine("==");

There is nothing special about that. All that is left is to enumerate the sequence and display each

bid:

foreach (var bd in biddata)
{
 Console.WriteLine("{0,-12} {1,-12} {2,-6} {3,-14} {4,10:C}",
 bd.Date,
 bd.User,
 bd.Item,
 bd.Description,
 bd.Price);
}

That part is trivial. Actually, all but the query itself is trivial. Are you ready to see the results? We

know we are:

Date User Item Description Price
==
1999-01-15 Mary Doe 1001 Red Bicycle $55.00
1999-02-14 Tom Jones 1002 Motorcycle $400.00
1999-02-16 Mary Doe 1002 Motorcycle $600.00
1999-02-17 Dee Linquent 1002 Motorcycle $800.00
1999-02-25 Roger Smith 1002 Motorcycle $1,000.00
1999-03-02 Mary Doe 1002 Motorcycle $1,200.00
1999-01-25 Dee Linquent 1007 Racing Bicycle $175.00
1999-02-08 Jack Sprat 1007 Racing Bicycle $200.00
1999-02-12 Roger Smith 1007 Racing Bicycle $225.00

OK, come on, you have to admit that is pretty spectacular, don’t you think? We just joined three
XML documents in a single query.

Surely you now see the power of LINQ to XML. Are you starting to see why LINQ to XML is our
favorite part of LINQ? Now how much would you pay? But wait, there’s more!

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

355

Transformations
With LINQ to XML, you can perform XML transformations using two completely different approaches.
The first approach is to use XSLT via the bridge classes, XmlReader and XmlWriter. The second
approach is to use LINQ to XML to perform the transformation itself by functionally constructing the
target XML document and embedding a LINQ to XML query on the source XML document.

Using XSLT provides the benefit that it is a standard XML technology. Tools already exist to assist
with writing, debugging, and testing XSLT transformations. Additionally, because it already exists, you
may have XSLT documents and can leverage them in new code using LINQ to XML. There is a world full
of existing XSLT documents from which to choose. Additionally, using XSLT for your transformations is
just more dynamic. Unlike using the LINQ to XML functional construction approach, you do not have to
recompile code to change the transformation. Merely changing the XSLT document allows you to
modify the transformation at runtime. Lastly, XSLT is a known technology with many developers having
expertise that may be able to assist you. At least in the early days of LINQ, this may not be available if you
take the functional construction approach.

Using the functional construction approach does not really buy you much. It does allow you to
perform XML transformations knowing nothing more than LINQ to XML. So if you do not already know
XSLT and your transformation needs are modest, this may be a fine approach for you. Also, although
functional construction is less convenient than merely modifying an XSLT document, having to
recompile code to modify a transformation could add security. Someone cannot simply muck with an
outside document to modify the transformation. So for those times when you think you are pushing the
limits by using Sarbanes-Oxley as the excuse for not doing something, blame it on the fact that you
cannot simply change the transformation without a code overhaul. Or if you are in the medical field and
you don’t think you can get away with blaming HIPAA one more time, transformation via functional
construction may just be the obstacle you need on which to blame a lack of agility.

Transformations Using XSLT
To perform an XML transformation using XSLT, you will utilize the XmlWriter and XmlReader bridge
classes that you will obtain from the XDocument classes’ CreateWriter and CreateReader methods,
respectively.

Because the example shown in Listing 9-5 requires a bit of explanation, we will explain it as we go.
First, we will specify the transformation style sheet.

Listing 9-5. Transforming an XML Document with XSLT

string xsl =
 @"<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match='//BookParticipants'>
 <html>
 <body>
 <h1>Book Participants</h1>
 <table>
 <tr align='left'>
 <th>Role <th>First Name
<th>Last Name </tr>
 <xsl:apply-templates></xsl:apply-templates>
 </table>
 </body>

http://www.w3.org/1999/XSL/Transform

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

356

 </html>
 </xsl:template>
 <xsl:template match='BookParticipant'>
 <tr>
 <td><xsl:value-of select='@type'/></td>
 <td><xsl:value-of select='FirstName'/></td>
 <td><xsl:value-of select='LastName'/></td>
 </tr>
 </xsl:template>
 </xsl:stylesheet>";

There is nothing earth-shattering here. We are just specifying some XSL to create some HTML to

display our typical book participant XML as an HTML table. Next, we will create our XML document with
the book participants:

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

This is just our typical XML. Now is where the magic happens. We need to create a new XDocument

for the transformed version. Then, from that document, we will create an XmlWriter, instantiate an
XslCompiledTransform object, load the transform object with the transformation style sheet, and
transform our input XML document into the output XmlWriter:

XDocument transformedDoc = new XDocument();
using (XmlWriter writer = transformedDoc.CreateWriter())
{
 XslCompiledTransform transform = new XslCompiledTransform();
 transform.Load(XmlReader.Create(new StringReader(xsl)));
 transform.Transform(xDocument.CreateReader(), writer);
}
Console.WriteLine(transformedDoc);

Of course, after all that, we display the transformed version of the document. As you can see, we use

both bridge classes, XmlWriter and XmlReader, to perform the transformation. Here are the results:

<html>
 <body>
 <h1>Book Participants</h1>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

357

 <table>
 <tr align="left">
 <th>Role <th>First Name <th>Last Name </tr>
 <tr>
 <td>Author</td>
 <td>Joe</td>
 <td>Rattz</td>
 </tr>
 <tr>
 <td>Editor</td>
 <td>Ewan</td>
 <td>Buckingham</td>
 </tr>
 </table>
 </body>
</html>

Transformations Using Functional Construction
Although the LINQ to XML API does support XSLT transformations, there are some very effective ways to
produce transformations using the LINQ to XML API. Logically speaking, a transformation can be as
simple as combining a functionally constructed XML tree with an embedded XML query.

■ TTip Combine functional construction with an embedded XML LINQ query to perform a transformation.

We will explain XML transformations via an example. In many of the examples in the LINQ to XML
chapters, we have worked with the following XML tree:

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Let’s pretend that we need to transform this XML tree to this:

<MediaParticipants type="book">
 <Participant Role="Author" Name="Joe Rattz" />

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

358

 <Participant Role="Editor" Name="Ewan Buckingham" / >
</MediaParticipants>

To accomplish this transformation, we will use functional construction with an embedded query.

With this approach, you basically functionally construct a new document matching the desired output
XML tree structure while obtaining the needed data from the original source XML document by
performing a LINQ to XML query. It is the desired output XML tree structure that drives your functional
construction and query logic.

Because this task is slightly more complex than some of the previous LINQ to XML examples, we will
explain this one as we go. Listing 9-6 shows the code.

Listing 9-6. Transforming an XML Document

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the original XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

The previous code simply creates the original source XML document that we are going to transform

and displays it. Next, we need to build the new document and root element:

XDocument xTransDocument = new XDocument(
 new XElement("MediaParticipants",

Remember, our desired output XML tree structure is driving our functional construction. At this

point, we have the document and root element, MediaParticipants. Next, we need to add the type
attribute to the root element:

 new XAttribute("type", "book"),

The type attribute and its value do not exist in the source XML document. This would be hard-

coded, or possibly configured, in our program logic, which is safe because we already know this code is
for a book; otherwise, this code would not be getting called.

Now, we have the MediaParticipants type attribute handled. Next up, we need to generate a
Participant element for each BookParticipant element in the original XML. To do this, we will query
the original XML document for its BookParticipant elements:

 xDocument.Element("BookParticipants")
 .Elements("BookParticipant")

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

359

Now, we have a returned sequence of the BookParticipant elements. Next, we need to generate a
Participant element for each BookParticipant element and populate its attributes. We will use
projection via the Select operator to construct the Participant elements:

 .Select(e => new XElement("Participant",

Next, we construct the two attributes, Role and Name, for the Participant element by getting their

values from the BookParticipant element:

 new XAttribute("Role", (string)e.Attribute("type")),
 new XAttribute("Name", (string)e.Element("FirstName") + " " +
 (string)e.Element("LastName"))))));

Last, we display the transformed XML document:

Console.WriteLine("Here is the transformed XML document:");
Console.WriteLine(xTransDocument);

Let’s see whether this outputs what we are looking for:

Here is the original XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Here is the transformed XML document:
<MediaParticipants type="book">
 <Participant Role="Author" Name="Joe Rattz" />
 <Participant Role="Editor" Name="Ewan Buckingham" />
</MediaParticipants>

Wow, that went great! We got the exact output we were looking for. That’s not bad for using nothing
more than LINQ to XML.

Tips
There are a few tips to pass on when it comes to performing XML transformations with the LINQ to XML
API. Although you may not have a need for these, there is no reason not to point them out.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

360

Simplify Complex Tasks with Helper Methods
There is no requirement that every bit of code needed to perform a transformation or query actually
exist in the transformation code itself. It is possible to create helper methods that carry out more
complex transformation chores.

Here is some code demonstrating how you can create a helper method to break up a more complex
task:

A Help er Meth od to Transform an XML D ocument

static IEnumerable<XElement> Helper()
{
 XElement[] elements = new XElement[] {
 new XElement("Element", "A"),
 new XElement("Element", "B")};

 return(elements);
}

In Listing 9-7, we begin the construction of an XML tree. It creates the root node, named

RootElement, in the call to the constructor. To create the child nodes, it calls a helper method named
Helper. It isn’t important what the helper method is doing specifically; it just matters that it is helping us
build some part of our XML tree and that the call to the method can be embedded in the functional
construction of the XML tree.

Listing 9-7. Using a Helper Method to Transform an XML Document

XElement xElement = new XElement("RootElement", Helper());
Console.WriteLine(xElement);

Here are the results of this code:

<RootElement>
 <Element>A</Element>
 <Element>B</Element>
</RootElement>

Remember, as we discussed in Chapter 7, the XElement constructor knows how to handle
IEnumerable<T>, which happens to be the returned data type of our Helper method. How cool is that?

Suppressing Node Construction with null
There may be times when you want to suppress some nodes from being constructed for one reason or
another. Perhaps some essential data is missing from the source that causes you to want to omit an
element from being created, or perhaps the data is such that you want to skip it.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

361

Back in the “Creating Elements with XElement” section of Chapter 7 when we described the
constructor for XElement, we mentioned that you could pass null as an object value for an element’s
content and that this can be handy when performing transformations. Suppressing node construction is
what it is handy for.

As an example, we will first build a sequence of elements. We will then begin constructing a new
XML tree based on that sequence. However, if an input element’s value is "A", then we don’t want to
create an output element for that input element. We will pass its value as null to make that happen. The
code is in Listing 9-8.

Listing 9-8. Suppressing Node Construction with null

IEnumerable<XElement> elements =
 new XElement[] {
 new XElement("Element", "A"),
 new XElement("Element", "B")};

XElement xElement = new XElement("RootElement",
 elements.Select(e => (string)e != "A" ? new XElement(e.Name, (string)e) : null));

Console.WriteLine(xElement);

As you can see in the previous code, we do build an input source sequence of elements. We then

construct the root element and enumerate through the input source sequence. Then, using the Select
operator, as long as the input element’s value is not equal to "A", we construct an XElement object using
the input element. If the input element’s value is equal to "A", we return null. The XElement
constructor knows how to handle null; it ignores it. The result is that any element whose value is equal
to "A" is eliminated from the output XML tree. We can see we are using the new node value extraction
feature by casting the element e as a string in the Select operator’s lambda expression.

Here are the results:

<RootElement>
 <Element>B</Element>
</RootElement>

Notice that the element "A" is missing. Of course, there are other ways to implement this same logic
without using null. For example, we could have just used the Where operator to filter out the elements
whose value is equal to "A". But we wanted to show you the effect of using null in a very simple example.

There are other ways to use this same concept. Perhaps we have some XML to generate that would
cause me to have an empty element in some instances that we would prefer not exist. Consider the code
in Listing 9-9.

Listing 9-9. An Example That Generates an Empty Element

IEnumerable<XElement> elements =
 new XElement[] {
 new XElement("BookParticipant",

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

362

 new XElement("Name", "Joe Rattz"),
 new XElement("Book", "Pro LINQ: Language Integrated Query in C# 2008")),
 new XElement("BookParticipant",
 new XElement("Name", "John Q. Public"))};

XElement xElement =
 new XElement("BookParticipants",
 elements.Select(e =>
 new XElement(e.Name,
 new XElement(e.Element("Name").Name, e.Element("Name").Value),
 new XElement("Books", e.Elements("Book")))));

Console.WriteLine(xElement);

In the previous code, in the first statement, we generate a sequence of BookParticipant elements,

two to be precise. Notice that some of the BookParticipant elements have Book child elements, such as
the BookParticipant with the Name child element whose value is "Joe Rattz", and some have no Book
elements, such as the BookParticipant whose Name child element is "John Q. Public".

In the second statement, we build an XML tree using the sequence of elements we obtained. In the
XML tree, we create an element with the same name as the source sequence, which will be
BookParticipant. We then make the participant’s name a child element, and then we create a list of
Books for each participant. Here is the output from this code:

<BookParticipants>
 <BookParticipant>
 <Name>Joe Rattz</Name>
 <Books>
 <Book>Pro LINQ: Language Integrated Query in C# 2008</Book>
 </Books>
 </BookParticipant>
 <BookParticipant>
 <Name>John Q. Public</Name>
 <Books />
 </BookParticipant>
</BookParticipants>

The XML is just as we would expect based on the code, but notice that the Books element for the
second BookParticipant is empty. What if you didn’t want an empty Books element if there were no
Book elements? You could use null to suppress the Books element as well, with the correct operator. In
Listing 9-10, we make a slight change to the code that produces the XML.

Listing 9-10. An Example That Prevents an Empty Element

IEnumerable<XElement> elements =
 new XElement[] {
 new XElement("BookParticipant",

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

363

 new XElement("Name", "Joe Rattz"),
 new XElement("Book", "Pro LINQ: Language Integrated Query in C# 2008")),
 new XElement("BookParticipant",
 new XElement("Name", "John Q. Public"))};

XElement xElement =
 new XElement("BookParticipants",
 elements.Select(e =>
 new XElement(e.Name,
 new XElement(e.Element("Name").Name, e.Element("Name").Value),
 e.Elements("Book").Any() ?
 new XElement("Books", e.Elements("Book")) : null)));

Console.WriteLine(xElement);

The significant change in the previous code is in bold. Instead of just creating a Books element and

specifying all the existing Book elements as its content, we use the Any Standard Query Operator
combined with the ternary operator (if ? then : else) to create the Books element only if there are
in fact any Book elements. If there are no Book elements, the ternary operator returns null, and the
XElement constructor knows to just ignore null, thereby eliminating the creation of the Books element.
This can be very handy. Here are the results after the modification:

<BookParticipants>
 <BookParticipant>
 <Name>Joe Rattz</Name>
 <Books>
 <Book>Pro LINQ: Language Integrated Query in C# 2008</Book>
 </Books>
 </BookParticipant>
 <BookParticipant>
 <Name>John Q. Public</Name>
 </BookParticipant>
</BookParticipants>

As you can see, the second BookParticipant element no longer has an empty Books element, as it
did in the previous example.

Handling Multiple Peer Nodes While Remaining Flat
Sometimes when making an XML transformation, you know exactly how many of each type of output
element you are going to want. But what happens if there are several known elements as well as a
variable number of repeating elements all at the same level in the tree for each entry in the source XML?
Let’s say we have the following XML:

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

364

What We W ant Ou r Source XML t o Look Like

<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 <Nickname>Joey</Nickname>
 <Nickname>Null Pointer</Nickname>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

What if we want to flatten the structure so that the BookParticipants root node contains only

repeating sets of FirstName, LastName, and Nickname elements, instead of those elements being
contained in a child BookParticipant element? We would like for the target XML to look like this:

What We W ant the XML to Look Li ke Aft er Transf ormati on

<BookParticipants>
 <!— BookParticipant -->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 <Nickname>Joey</Nickname>
 <Nickname>Null Pointer</Nickname>
 <!— BookParticipant -->
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipants>

The comments are not necessary, but they make it easier for a human to know what they are looking

at. Plus, without them, if you looked further down in the list, it might be confusing as to whether the
FirstName or LastName comes first, causing a human to think that there is a BookParticipant named
Ewan Rattz when there really isn’t.

Because this example is more complex, we will explain it as we go. Let’s take a look at the example
code in Listing 9-11 to make this transformation.

Listing 9-11. Handling Multiple Peer Nodes While Maintaining a Flat Structure

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz"),

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

365

 new XElement("Nickname", "Joey"),
 new XElement("Nickname", "Null Pointer")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the original XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

At this point, we have built the source XML tree and displayed it. It does indeed match the XML we

specified previously as the source. Now we just have to transform the source XML:

XDocument xTransDocument = new XDocument(
 new XElement("BookParticipants",
 xDocument.Element("BookParticipants")
 .Elements("BookParticipant")

Here is where the challenge occurs. We are about to use projection via the Select operator to create

an object in which we will contain the comment, first name, last name, and any nicknames. But what
object type should we create? We could create an element and make the comment, first name, and the
remainder child elements of it, but that would expand the XML tree by adding a level. So, we must create
something that will not add a level to the XML tree. An array of objects will work for this, because in C#,
an array implements IEnumerable<T>, thereby making the array of objects work just like a sequence. As
you probably recall from Chapter 7, when an IEnumerable is passed into a XElement constructor as its
content, the sequence is enumerated, and each object in the sequence is applied to the element being
constructed. We will use the C# collection initialization features to populate that array with the
comment, first name, last name, and any nicknames:

 .Select(e => new object[] {
 new XComment(" BookParticipant "),
 new XElement("FirstName", (string)e.Element("FirstName")),
 new XElement("LastName", (string)e.Element("LastName")),
 e.Elements("Nickname")})));

Console.WriteLine("Here is the transformed XML document:");
Console.WriteLine(xTransDocument);

At this point, we have projected an array containing a comment, a FirstName element, a LastName

element, and however many Nickname elements there are in the source XML. Finally, we display the
transformed XML document.

This example is actually quite complex. Notice that our array of objects includes an XComment
object, two XElement objects, and an IEnumerable<XElement>. By projecting a newly instantiated array
as the return value of the Select operator, a sequence of object[], IEnumerable<object[]>, is being
returned as the content of the newly constructed BookParticipants element.

In this case, each object in that sequence is an array of objects, where the array contains the
comment, the FirstName and LastName elements, and the sequence of Nickname elements. Because, as
we just mentioned, an array of objects does not inject a level into the XML tree, the array adds its
elements directly into the BookParticipants element.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

366

This may be confusing; let’s take a look at the results:

Here is the original XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 <Nickname>Joey</Nickname>
 <Nickname>Null Pointer</Nickname>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Here is the transformed XML document:
<BookParticipants>
 <!-- BookParticipant -->
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 <Nickname>Joey</Nickname>
 <Nickname>Null Pointer</Nickname>
 <!-- BookParticipant -->
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
</BookParticipants>

The transformed XML matches the specification exactly. Bravo! The real nifty part of this example is
how we project an array of objects, a non-XML class, to create peer XML elements without inflicting a
level of XML to the tree.

Validation
An XML API would just not be complete without the ability to validate XML. So, LINQ to XML has the
ability to validate an XML document against an XML schema.

The Extension Methods
LINQ to XML has addressed the need for validation by creating the System.Xml.Schema.Extensions
static class, which contains the validation methods. These validation methods are implemented as
extension methods.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

367

Prototypes
Here is a list of some of the validation method prototypes available in the
System.Xml.Schema.Extensions class:

void Extensions.Validate(this XDocument source, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler)

void Extensions.Validate(this XDocument source, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler, bool addSchemaInfo)

void Extensions.Validate(this XElement source,
 XmlSchemaObject partialValidationType, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler)

void Extensions.Validate(this XElement source,
 XmlSchemaObject partialValidationType, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler, bool addSchemaInfo)

void Extensions.Validate(this XAttribute source,
 XmlSchemaObject partialValidationType, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler)

void Extensions.Validate(this XAttribute source,
 XmlSchemaObject partialValidationType, XmlSchemaSet schemas,
 ValidationEventHandler validationEventHandler, bool addSchemaInfo)

There are two prototypes for each object type the method can be called on. These object types are

XDocument, XElement, and XAttribute. The second prototype for each object type merely adds a bool
argument specifying whether schema information should be added to the XElement and XAttribute
objects after validation. The first method for each object type, the ones without the bool argument, are
the same as passing false for the addSchemaInfo argument. In this case, no schema information would
be added to the LINQ to XML objects after validation.

To obtain the schema information for an XElement or XAttribute object, call the GetSchemaInfo
method on the object. If the schema information is not added because either the first prototype is called
or the second prototype is called and false is passed for the addSchemaInfo argument, the
GetSchemaInfo method will return null. Otherwise, it will return an object that implements
IXmlSchemaInfo. That object will contain properties named SchemaElement, which will return an
XmlSchemaElement object, and SchemaAttribute, which will return an XmlSchemaAttribute object,
assuming the element or attribute is valid. These objects can be used to obtain additional information
about the schema.

It is important to note that the schema information is not available during validation, only after
validation has completed. This means you cannot obtain the schema information in your validation
event handler. Calling the GetSchemaInfo method will return null in your validation event handler.
This also means that the validation must complete and that you must not throw an exception in your
validation event handler.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

368

■ TTip Schema information is not available during validation, only after. Calling the GetSchemaInfo method in

your validation event handling code will return null.

Notice that the Validate method prototypes for elements and attributes require that you pass an
XmlSchemaObject as one of the arguments. This means that you must have already validated the
document that they are in.

Lastly, if you pass null for the ValidationEventHandler argument, an exception of type
XmlSchemaValidationException will be thrown should a validation error occur. This will be the
simplest approach to validate an XML document.

Obtaining an XML Schema
Odds are good that if you are interested in validating your XML document, you either have, or know how
to produce, an XSD schema file. Just in case you don’t, we will demonstrate how to let the .NET
Framework do it for you. Let’s examine the example in Listing 9-12.

Listing 9-12. Creating an XSD Schema by Inferring It from an XML Document

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

xDocument.Save("bookparticipants.xml");

XmlSchemaInference infer = new XmlSchemaInference();
XmlSchemaSet schemaSet =
 infer.InferSchema(new XmlTextReader("bookparticipants.xml"));

XmlWriter w = XmlWriter.Create("bookparticipants.xsd");
foreach (XmlSchema schema in schemaSet.Schemas())
{
 schema.Write(w);
}
w.Close();

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

369

XDocument newDocument = XDocument.Load("bookparticipants.xsd");
Console.WriteLine("Here is the schema:");
Console.WriteLine("{0}{1}{1}", newDocument, System.Environment.NewLine);

In the previous code, we first create our typical XML document that we have been using in many of

the examples and display it for inspection. Then, we save the XML document to disk. Next, we
instantiate an XmlSchemaInference object and create an XmlSchemaSet by calling the InferSchema
method on the XmlSchemaInference object. We create a writer and enumerate through the set of
schemas, writing each to the bookparticipants.xsd file. Last, we load in the generated XSD schema
file and display it. Here are the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Here is the schema:
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="BookParticipants">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="BookParticipant">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string" />
 <xs:element name="LastName" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

http://www.w3.org/2001/XMLSchema

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

370

Obtaining the schema this way is not too painful. We will use this generated XSD schema file named
bookparticipants.xsd in the validation examples. Also, you should notice that we use the
XmlSchemaSet class in that example, which is used in the validation examples as well.

Examples
For the first example, we will demonstrate the simplest means of validating an XML document, which
will be the approach many developers will take. To do this, we merely specify null as the
ValidationEventHandler argument, as shown in Listing 9-13.

Listing 9-13. Validating an XML Document with Default Validation Event Handling

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("MiddleInitial", "C"),

 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add(null, "bookparticipants.xsd");

try
{
 xDocument.Validate(schemaSet, null);

 Console.WriteLine("Document validated successfully.");
}
catch (XmlSchemaValidationException ex)
{
 Console.WriteLine("Exception occurred: {0}", ex.Message);
 Console.WriteLine("Document validated unsuccessfully.");
}

In this example, we construct our typical XML document, except we add a MiddleInitial element

to intentionally make the document invalid. We are using the schema we inferred in the previous
example. Notice that for the ValidationEventHandler argument for the Validate method that we
passed a null. This means that if a validation error occurs, an exception of type
XmlSchemaValidationException will automatically be thrown. Here are the results:

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

371

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <MiddleInitial>C</MiddleInitial>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Exception occurred: The element 'BookParticipant' has invalid child element
'MiddleInitial'. List of possible elements expected: 'LastName'.
Document validated unsuccessfully.

That worked like a charm. It was also very simple. Not too bad.
For the next example, we will validate our typical XML document, the one we used to infer the

schema, against the schema we obtained by inference. Of course, since the schema was inferred from
this very XML document, it should work. However, for this example, we will need a
ValidationEventHandler method. Let’s take a look at the one we are going to use.

My V ali dationEventH andler

static void MyValidationEventHandler(object o, ValidationEventArgs vea)
{

 Console.WriteLine("A validation error occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine(vea.Message);
 throw (new Exception(vea.Message));
}

In that handler, we really don’t do much except display the problem and throw an exception. Of

course, the handling is completely up to our handler. It isn’t required to throw an exception. We could
choose to implement it so that it handles validation errors more gracefully, perhaps choosing to ignore
any or specific errors.

Let’s examine an example using that handler, as shown in Listing 9-14.

Listing 9-14. Successfully Validating an XML Document Against an XSD Schema

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

372

 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add(null, "bookparticipants.xsd");

try
{
 xDocument.Validate(schemaSet, MyValidationEventHandler);
 Console.WriteLine("Document validated successfully.");
}
catch (Exception ex)
{
 Console.WriteLine("Exception occurred: {0}", ex.Message);
 Console.WriteLine("Document validated unsuccessfully.");
}

In the example, we create our typical XML document and display it to the console. Next, we

instantiate an XmlSchemaSet object and add the inferred schema file we created using the Add method.
Next, we merely call the Validate extension method on the XML document passing it the schema set
and our validation event handling method. Notice that we wrap the call to the Validate method in a
try/catch block for safety’s sake. Let’s look at the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Document validated successfully.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

373

As you can see, the XML document is successfully validated. Now, let’s try an example, shown in
Listing 9-15, where the document is invalid.

Listing 9-15. Unsuccessfully Validating an XML Document Against an XSD Schema

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("language", "English"),

 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add(null, "bookparticipants.xsd");

try
{
 xDocument.Validate(schemaSet, MyValidationEventHandler);
 Console.WriteLine("Document validated successfully.");
}
catch (Exception ex)
{
 Console.WriteLine("Exception occurred: {0}", ex.Message);
 Console.WriteLine("Document validated unsuccessfully.");
}

This code is identical to the previous example, except we added an additional attribute, language.

Since the schema doesn’t specify this attribute, the XML document is not valid. Here are the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

374

 </BookParticipant>
</BookParticipants>

A validation error occurred processing object type XAttribute.
The 'language' attribute is not declared.
Exception occurred: The 'language' attribute is not declared.
Document validated unsuccessfully.

As you can see, the XML document did not validate successfully. In the two previous examples, we
create a named method, named MyValidationEventHandler, to handle the validation. Listing 9-16 is
the same example as the previous except this time we use a lambda expression for the
ValidationEventHandler instead of using the named method.

Listing 9-16. Unsuccessfully Validating an XML Document Against an XSD Schema Using a Lambda

Expression

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XAttribute("language", "English"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add(null, "bookparticipants.xsd");

try
{
 xDocument.Validate(schemaSet, (o, vea) =>
 {
 Console.WriteLine(
 "A validation error occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine(vea.Message);

 throw (new Exception(vea.Message));

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

375

 });

 Console.WriteLine("Document validated successfully.");
}
catch (Exception ex)
{
 Console.WriteLine("Exception occurred: {0}", ex.Message);
 Console.WriteLine("Document validated unsuccessfully.");
}

Check that out. An entire method specified as a lambda expression. Do lambda expressions rock or

what? Here are the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author" language="English">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

A validation error occurred processing object type XAttribute.
The 'language' attribute is not declared.
Exception occurred: The 'language' attribute is not declared.
Document validated unsuccessfully.

Now, we’ll try an example specifying to add the schema information, as shown in Listing 9-17.

Listing 9-17. Unsuccessfully Validating an XML Document Against an XSD Schema Using a Lambda

Expression and Specifying to Add Schema Information

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("MiddleName", "Carson"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

376

 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add(null, "bookparticipants.xsd");

xDocument.Validate(schemaSet, (o, vea) =>
 {
 Console.WriteLine("An exception occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine("{0}{1}", vea.Message, System.Environment.NewLine);
 },
 true);

foreach(XElement element in xDocument.Descendants())
{
 Console.WriteLine("Element {0} is {1}", element.Name,
 element.GetSchemaInfo().Validity);

 XmlSchemaElement se = element.GetSchemaInfo().SchemaElement;
 if (se != null)
 {
 Console.WriteLine(
 "Schema element {0} must have MinOccurs = {1} and MaxOccurs = {2}{3}",
 se.Name, se.MinOccurs, se.MaxOccurs, System.Environment.NewLine);
 }
 else
 {
 // Invalid elements will not have a SchemaElement.
 Console.WriteLine();
 }
}

This example starts like the previous. It creates an XML document. This time, though, we added an

additional element for the first BookParticipant: MiddleName. This is invalid because it is not specified
in the schema we are validating against. Unlike the previous example, we specify for the Validate
method to add the schema information. Also, unlike the previous example, we are not throwing an
exception in our validation event handling code. As you may recall, we mentioned previously that the
validation must complete to have the schema information added, so your handler must not throw an
exception. Therefore, we also removed the try/catch block as well.

After the validation completes, we are enumerating all the elements in the document and displaying
whether they are valid. Additionally, we obtain the SchemaElement object from the added schema
information. Notice that we make sure the SchemaElement property is not null, because if the element
is not valid, the SchemaElement property may be null. After all, the element may not be valid because it

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

377

is not in the schema, so how could there be schema information? The same applies to the
SchemaAttribute property for invalid attributes. Once we have a SchemaElement object, we display its
Name, MinOccurs, and MaxOccurs properties.

Here are the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <MiddleName>Carson</MiddleName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

An exception occurred processing object type XElement.
The element 'BookParticipant' has invalid child element 'MiddleName'. List of
possible elements expected: 'LastName'.

Element BookParticipants is Invalid
Schema element BookParticipants must have MinOccurs = 1 and MaxOccurs = 1

Element BookParticipant is Invalid
Schema element BookParticipant must have MinOccurs = 1 and MaxOccurs =
79228162514264337593543950335

Element FirstName is Valid
Schema element FirstName must have MinOccurs = 1 and MaxOccurs = 1

Element MiddleName is Invalid

Element LastName is NotKnown

Element BookParticipant is Valid
Schema element BookParticipant must have MinOccurs = 1 and MaxOccurs =
79228162514264337593543950335

Element FirstName is Valid
Schema element FirstName must have MinOccurs = 1 and MaxOccurs = 1

Element LastName is Valid
Schema element LastName must have MinOccurs = 1 and MaxOccurs = 1

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

378

There are no real surprises in this output. Notice that the MaxOccurs property value for the
BookParticipant element is a very large number. This is because in the schema, the maxOccurs
attribute is specified to be "unbounded".

For the final pair of validation examples, we will use one of the Validate method prototypes that
apply to validating elements. The first thing you will notice about it is that it has an argument that
requires an XmlSchemaObject to be passed. This means the document must have already been
validated. This seems odd. This is for a scenario where we have already validated once and need to
revalidate a portion of the XML tree.

For this scenario, imagine we load an XML document and validate it to start. Next, we have allowed
a user to update the data for one of the book participants and now need to update the XML document to
reflect the user’s changes, and we want to validate that portion of the XML tree again, after the updates.
This is where the Validate method prototypes of the elements and attributes can come in handy.

Because this example, shown in Listing 9-18, is more complex than some of the previous examples,
we will explain it as we go. First, to be a little different, and because we need an expanded schema to
facilitate an edit to the XML tree, we will define the schema programmatically instead of loading it from
a file, as we have in the previous examples.

Listing 9-18. Successfully Validating an XML Element

string schema =
 @"<?xml version='1.0' encoding='utf-8'?>
 <xs:schema attributeFormDefault='unqualified' elementFormDefault='qualified'
 xmlns:xs='http://www.w3.org/2001/XMLSchema'>
 <xs:element name='BookParticipants'>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs='unbounded' name='BookParticipant'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='FirstName' type='xs:string' />
 <xs:element minOccurs='0' name='MiddleInitial'
 type='xs:string' />

 <xs:element name='LastName' type='xs:string' />
 </xs:sequence>
 <xs:attribute name='type' type='xs:string' use='required' />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>";

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add("", XmlReader.Create(new StringReader(schema)));

In the previous code, we merely copied the schema from the file that we have been using. We did a

search on the double quotes and replaced them with single quotes. We also added a MiddleInitial
element between the FirstName and LastName elements. Notice that we specify the minOccurs

http://www.w3.org/2001/XMLSchema

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

379

attribute as 0, so the element is not required. Next, we create a schema set from the schema. Next, it’s
time to create an XML document:

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

There is nothing new here. We just created the same document we usually do for the examples and

displayed it. Now we will validate the document:

bool valid = true;

xDocument.Validate(schemaSet, (o, vea) =>
 {
 Console.WriteLine("An exception occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine(vea.Message);

 valid = false;

 }, true);

Console.WriteLine("Document validated {0}.{1}",
 valid ? "successfully" : "unsuccessfully",
 System.Environment.NewLine);

Notice that we validate a little differently than we have in previous examples. We initialize a bool to

true, representing whether the document is valid. Inside the validation handler, we set it to false. So if
a validation error occurs, valid will be set to false. We then check the value of valid after validation to
determine whether the document is valid and display its validity. In this example, the document is valid
at this point.

Now, it’s time to imagine that we are allowing a user to edit any particular book participant. The
user has edited the book participant whose first name is "Joe". So, we obtain a reference for that
element, update it, and revalidate it after the update:

XElement bookParticipant = xDocument.Descendants("BookParticipant").
 Where(e => ((string)e.Element("FirstName")).Equals("Joe")).First();

bookParticipant.Element("FirstName").

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

380

 AddAfterSelf(new XElement("MiddleInitial", "C"));

valid = true;

bookParticipant.Validate(bookParticipant.GetSchemaInfo().SchemaElement, schemaSet,
 (o, vea) =>
 {
 Console.WriteLine("An exception occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine(vea.Message);

 valid = false;

 }, true);

Console.WriteLine("Element validated {0}.{1}",
 valid ? "successfully" : "unsuccessfully",
 System.Environment.NewLine);

As you can see, we initialize valid to true and call the Validate method, this time on the

bookParticipant element instead of the entire document. Inside the validation event handler, we set
valid to false. After validation of the book participant element, we display its validity. Here are the
results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

Document validated successfully.

Element validated successfully.

As you can see, the validation of the element is successful. For the final example, we have the same
code, except this time when we update the BookParticipant element we will create a MiddleName
element, as opposed to MiddleInitial, which is not valid. Listing 9-19 is the code.

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

381

Listing 9-19. Unsuccessfully Validating an XML Element

string schema =
 @"<?xml version='1.0' encoding='utf-8'?>
 <xs:schema attributeFormDefault='unqualified' elementFormDefault='qualified'
 xmlns:xs='http://www.w3.org/2001/XMLSchema'>
 <xs:element name='BookParticipants'>
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs='unbounded' name='BookParticipant'>
 <xs:complexType>
 <xs:sequence>
 <xs:element name='FirstName' type='xs:string' />
 <xs:element minOccurs='0' name='MiddleInitial' type='xs:string'
/>
 <xs:element name='LastName' type='xs:string' />
 </xs:sequence>
 <xs:attribute name='type' type='xs:string' use='required' />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>";

XmlSchemaSet schemaSet = new XmlSchemaSet();
schemaSet.Add("", XmlReader.Create(new StringReader(schema)));

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

Console.WriteLine("Here is the source XML document:");
Console.WriteLine("{0}{1}{1}", xDocument, System.Environment.NewLine);

bool valid = true;
xDocument.Validate(schemaSet, (o, vea) =>
 {
 Console.WriteLine("An exception occurred processing object type {0}.",
 o.GetType().Name);

http://www.w3.org/2001/XMLSchema

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

382

 Console.WriteLine(vea.Message);

 valid = false;
 }, true);

Console.WriteLine("Document validated {0}.{1}",
 valid ? "successfully" : "unsuccessfully",
 System.Environment.NewLine);

XElement bookParticipant = xDocument.Descendants("BookParticipant").
 Where(e => ((string)e.Element("FirstName")).Equals("Joe")).First();

bookParticipant.Element("FirstName").
 AddAfterSelf(new XElement("MiddleName", "Carson"));

valid = true;
bookParticipant.Validate(bookParticipant.GetSchemaInfo().SchemaElement, schemaSet,
 (o, vea) =>
 {
 Console.WriteLine("An exception occurred processing object type {0}.",
 o.GetType().Name);

 Console.WriteLine(vea.Message);

 valid = false;
 }, true);

Console.WriteLine("Element validated {0}.{1}",
 valid ? "successfully" : "unsuccessfully",
 System.Environment.NewLine);

This code is identical to the previous example except instead of adding a MiddleInitial element,

we added a MiddleName element that is invalid. Here are the results:

Here is the source XML document:
<BookParticipants>
 <BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
 </BookParticipant>
 <BookParticipant type="Editor">
 <FirstName>Ewan</FirstName>
 <LastName>Buckingham</LastName>
 </BookParticipant>
</BookParticipants>

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

383

Document validated successfully.

An exception occurred processing object type XElement.
The element 'BookParticipant' has invalid child element 'MiddleName'. List of
possible elements expected: 'MiddleInitial, LastName'.

Element validated unsuccessfully.

As you can see, the element is no longer valid. Now, this example may seem a little hokey because
we said to imagine a user is editing the document. No developer in their right mind would create a user
interface that would intentionally allow a user to create edits that would be invalid. But imagine if that
user is in reality some other process on the XML document. Perhaps you passed the XML document to
someone else’s program to make some update and you know they personally have it in for you and are
seeking your personal destruction. Now it may make sense to revalidate. You know you can’t trust them.

XPath
If you are accustomed to using XPath, you can also gain some XPath query capabilities thanks to the
System.Xml.XPath.Extensions class in the System.Xml.XPath namespace. This class adds XPath
search capability via extension methods.

Prototypes
Here is a list of some of the method prototypes available in the System.Xml.XPath.Extensions class:
XPathNavigator Extensions.CreateNavigator(this XNode node);
XPathNavigator Extensions.CreateNavigator(this XNode node, XmlNameTable nameTable);

object Extensions.XPathEvaluate(this XNode node, string expression);
object Extensions.XPathEvaluate(this XNode node, string expression,
 IXmlNamespaceResolver resolver);

XElement Extensions.XPathSelectElement(this XNode node, string expression);
XElement Extensions.XPathSelectElement(this XNode node, string expression,
 IXmlNamespaceResolver resolver);

IEnumerable<XElement> Extensions.XPathSelectElements(this XNode node,
 string expression);
IEnumerable<XElement> Extensions.XPathSelectElements(this XNode node,
 string expression, IXmlNamespaceResolver resolver);

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

384

Examples
Using these extension methods, it is possible to query a LINQ to XML document using XPath search
expressions. Listing 9-20 is an example.

Listing 9-20. Querying XML with XPath Syntax

XDocument xDocument = new XDocument(
 new XElement("BookParticipants",
 new XElement("BookParticipant",
 new XAttribute("type", "Author"),
 new XElement("FirstName", "Joe"),
 new XElement("LastName", "Rattz")),
 new XElement("BookParticipant",
 new XAttribute("type", "Editor"),
 new XElement("FirstName", "Ewan"),
 new XElement("LastName", "Buckingham"))));

XElement bookParticipant = xDocument.XPathSelectElement(
 "//BookParticipants/BookParticipant[FirstName='Joe']");

Console.WriteLine(bookParticipant);

As you can see, we created our typical XML document. We didn’t display the document this time,

though. We called the XPathSelectElement method on the document and provided an XPath search
expression to find the BookParticipant element whose FirstName element’s value is "Joe". Here are
the results:

<BookParticipant type="Author">
 <FirstName>Joe</FirstName>
 <LastName>Rattz</LastName>
</BookParticipant>

Using the XPath extension methods, you can obtain a reference to a
System.Xml.XPath.XPathNavigator object to navigate your XML document, perform an XPath query
to return an element or sequence of elements, or evaluate an XPath query expression.

Summary
At this point, if you came into this chapter without any knowledge of XML, we can only assume you are
overwhelmed. If you did have a basic understanding of XML, but not of LINQ to XML, we hope we have
made this understandable for you. The power and flexibility of the LINQ to XML API is quite intoxicating.

Having written the many examples in this chapter and the previous LINQ to XML chapters, we can’t
tell you how useful we find the LINQ to XML API in real production code. The fact is that with LINQ to
XML, because XML creation is largely based on elements rather than documents coupled with the
capability of functional construction, creating XML is painless. It might even be fun. Combine the easy

CHAPTER 9 ■ ADDITIONAL XML CAPABILITIES

385

creation with the intuitive traversal and modification, and it becomes a joy to work with—especially
considering the alternatives.

Having all this ease of use working with XML piled on top of a powerfully flexible query language
makes LINQ to XML our personal favorite part of LINQ. If you find yourself dreading XML or intimidated
to work with it, we think you will find the LINQ to XML API quite pleasant.

P A R T 4

■ ■ ■

387

LINQ to DataSet

388

C H A P T E R 10

■ ■ ■

389

LINQ to DataSet Operators

Allthough we haven’t covered LINQ to SQL yet, let us mention at this time that to utilize LINQ to SQL for
a given database, source code classes must be generated for that database and compiled, or a mapping
file must be created. This means that performing LINQ queries with LINQ to SQL on a database that is
unknown until runtime is not possible. Additionally, LINQ to SQL works only with Microsoft SQL Server.
What is a developer to do?

The LINQ to DataSet operators allow a developer to perform LINQ queries on a DataSet, and since
a DataSet can be obtained using normal ADO.NET SQL queries, LINQ to DataSet allows LINQ queries
over any database that can be queried with ADO.NET. This provides a far more dynamic database-
querying interface than LINQ to SQL.

You may be wondering, under what circumstances would you not know the database until runtime?
It is true that for the typical application, the database is known while the application is being developed,
and therefore LINQ to DataSet is not as necessary. But what about a database utility type application?
For example, consider an application such as SQL Server Enterprise Manager. It doesn’t know what
databases are going to be installed on the server until runtime. The Enterprise Manager application
allows you to examine whatever databases are installed on the server, with whatever tables are in a
specified database. There is no way the Enterprise Manager application developer could generate the
LINQ to SQL classes at compile time for your database. This is when LINQ to DataSet becomes a
necessity.

Although this part of the book is named “LINQ to DataSet,” you will find that the added operators
really pertain to DataTable, DataRow, and DataColumn objects. Don’t be surprised that you don’t see
DataSet objects referenced often in this chapter. We understand that in real-life circumstances, your
DataTable objects will almost always come from DataSet objects. However, for the purpose of database
independence, brevity, and clarity, we have intentionally created simple DataTable objects
programmatically, rather than retrieved them from a database, for most of the examples.

The LINQ to DataSet operators consist of several special operators from multiple assemblies and
namespaces that allow the developer to do the following:

• Perform set operations on sequences of DataRow objects

• Retrieve and set DataColumn values

• Obtain a LINQ standard IEnumerable<T> sequence from a DataTable so Standard Query
Operators may be called

• Copy modified sequences of DataRow objects to a DataTable

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

390

In addition to these LINQ to DataSet operators, once you have called the AsEnumerable operator,
you can call the LINQ to Objects Standard Query Operators on the returned sequence of DataRow
objects, resulting in even more power and flexibility.

Assembly References
For the examples in this chapter, you will need to add references to your project for the
System.Data.dll and System.Data.DataSetExtensions.dll assembly DLLs, if they have not already
been added.

Referenced Namespaces
To use the LINQ to DataSet operators, add a using directive to the top of your code for the System.Linq
and System.Data namespaces if they are not already there:

using System.Data;
using System.Linq;

This will allow your code to find the LINQ to DataSet operators.

Common Code for the Examples
Virtually every example in this chapter will use a DataTable object on which to perform LINQ to DataSet
queries. In production code, you would typically obtain these DataTable objects by querying a
database. However, for some of these examples, we present situations where the data conditions in a
typical database table will not suffice. For example, we need duplicate records to demonstrate the
Distinct method. Rather than jump through hoops trying to manipulate the database to contain the
data we may need, we programmatically create a DataTable containing the specific data we need for
each example. This also relieves you of the burden of having a database for testing the majority of these
examples.

Since we will not actually be querying a database for the DataTable objects (and to make creating
the DataTable objects easy), we generate them from an array of objects of a predefined class. For the
predefined class, we use the Student class.

A Si mple Class with Tw o Publi c Members

class Student
{
 public int Id;
 public string Name;
}

You should just imagine that we are querying a table named Students where each record is a

student, and the table contains two columns: Id and Name.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

391

To make creating the DataTable simple and to prevent obscuring the relevant details of each
example, we use a common method to convert an array of Student objects into a DataTable object.
This allows the data to easily vary from example to example. Here is that common method:

Converting an A rray of Stu dent Objects t o a D ataTable

static DataTable GetDataTable(Student[] students)
{
 DataTable table = new DataTable();

 table.Columns.Add("Id", typeof(Int32));
 table.Columns.Add("Name", typeof(string));

 foreach (Student student in students)
 {
 table.Rows.Add(student.Id, student.Name);
 }

 return (table);
}

There isn’t anything complex in this method. We just instantiate a DataTable object, add two

columns, and add a row for each element in the passed students array.
For many of the examples of the LINQ to DataSet operators, we need to display a DataTable for the

results of the code to be clear. Although the data in the DataTable varies, the code needed to display the
DataTable object’s header will not. Instead of repeating this code throughout all the examples, we
create the following method and call it in any example needing to display a DataTable header:

The OutputD ataTableHeader Meth od

static void OutputDataTableHeader(DataTable dt, int columnWidth)
{
 string format = string.Format("{0}0,-{1}{2}", "{", columnWidth, "}");

 // Display the column headings.
 foreach(DataColumn column in dt.Columns)
 {
 Console.Write(format, column.ColumnName);
 }
 Console.WriteLine();
 foreach(DataColumn column in dt.Columns)
 {
 for(int i = 0; i < columnWidth; i++)
 {
 Console.Write("=");
 }
 }

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

392

 Console.WriteLine();
}

The purpose of the method is to output the header of a DataTable in a tabular form.

DataRow Set Operators
As you may recall, in the LINQ to Objects API, there are a handful of Standard Query Operators that exist
for the purpose of making sequence set-type comparisons. We are referring to the Distinct, Except,
Intersect, Union, and SequenceEqual operators. Each of these operators performs a set operation on
two sequences.

For these set-type operators, determining sequence element equality is necessary to perform the set
operation. These operators perform comparisons by calling the GetHashCode and Equals methods on
the elements. For a DataRow, this results in a reference comparison, which is not the desired behavior.
This will result in the wrong determination of element equality, causing the operators to return
unexpected results. Because of this, each of these operators has an additional prototype that we omitted
in the LINQ to Objects chapters; this additional prototype allows an IEqualityComparer object to be
provided as an argument. Conveniently, a comparer object has been provided for us specifically for
these versions of the operators, System.Data.DataRowComparer.Default. This comparer class is in the
System.Data namespace in the System.Data.Entity.dll assembly. This comparer determines
element equality by comparing the number of columns and the static data type of each column and
using the IComparable interface on the column’s dynamic data type if that type implements the
interface; otherwise, it calls the System.Object’s static Equals method.

Each of these additional operator prototypes is defined in the System.Linq.Enumerable static class
just as the other prototypes of these operators are.

In this section, we provide some examples to illustrate the incorrect and, more importantly, correct
way to make these sequence comparisons when working with DataSet objects.

Distinct
The Distinct operator removes duplicate rows from a sequence of objects. It returns an object that,
when enumerated, enumerates a source sequence of objects and returns a sequence of objects with the
duplicate rows removed. Typically, this operator determines duplicates by calling each element’s data
type’s GetHashCode and Equals methods. However, for DataRow type objects, this would cause an
incorrect result.

Because we are going to call the additional prototype and provide the
System.Data.DataRowComparerDefault comparer object, the element equality will be properly
determined. With it, a row is deemed to be a duplicate by comparing DataRow objects using the number
of columns in a row and the static data type of each column and then using the IComparable interface
on each column if its dynamic data type implements the IComparable interface, or calling the static
Equals method in System.Object if it does not.

Prototypes
The Distinct operator has one prototype we will cover.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

393

The Distinct Protot ype

public static IEnumerable<T> Distinct<T> (
 this IEnumerable<T> source,
 IEqualityComparer<T> comparer);

Examples
In the first example, we create a DataTable from an array of Student objects using our common
GetDataTable method, and the array will have one duplicate in it. The record whose Id is equal to 1 is
repeated in the array. We then display the DataTable. This shows that the record is in the DataTable
twice. Then we remove any duplicate rows by calling the Distinct operator and display the DataTable
again, showing that the duplicate row has been removed. Listing 10-1 shows the code.

Listing 10-1. The Distinct Operator with an Equality Comparer

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },

 new Student { Id = 6, Name = "Ulyses Hutchens" },
 new Student { Id = 19, Name = "Bob Tanko" },
 new Student { Id = 45, Name = "Erin Doutensal" },
 new Student { Id = 1, Name = "Joe Rattz" },

 new Student { Id = 12, Name = "Bob Mapplethorpe" },
 new Student { Id = 17, Name = "Anthony Adams" },
 new Student { Id = 32, Name = "Dignan Stephens" }
};

DataTable dt = GetDataTable(students);

Console.WriteLine("{0}Before calling Distinct(){0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt, 15);

foreach (DataRow dataRow in dt.Rows)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

IEnumerable<DataRow> distinct =
 dt.AsEnumerable().Distinct(DataRowComparer.Default);

Console.WriteLine("{0}After calling Distinct(){0}",
 System.Environment.NewLine);

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

394

OutputDataTableHeader(dt, 15);

foreach (DataRow dataRow in distinct)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

Notice that we use the AsEnumerable method to get a sequence of DataRow objects from the

DataTable because that is what we must call the Distinct operator on. Also notice that, in the
students array, the record with an Id equal to 1 is repeated.

You no doubt noticed that we call a method named Field on the DataRow object. For now, just
understand that this is a convenient helper method that obtains a DataColumn object’s value from a
DataRow. We cover the Field<T> operator in depth later in the “DataRow Field Operators” section of
this chapter.

Here are the results:

Before calling Distinct()

Id Name
==============================
1 Joe Rattz
6 Ulyses Hutchens
19 Bob Tanko
45 Erin Doutensal
1 Joe Rattz
12 Bob Mapplethorpe
17 Anthony Adams
32 Dignan Stephens

After calling Distinct()

Id Name
==============================
1 Joe Rattz
6 Ulyses Hutchens
19 Bob Tanko
45 Erin Doutensal
12 Bob Mapplethorpe
17 Anthony Adams
32 Dignan Stephens

Notice that in the results, before we call the Distinct operator, the record whose Id is 1 is repeated
and that after calling the Distinct operator, the second occurrence of that record has been removed.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

395

For a second example, we are going to demonstrate the results if we had called the Distinct
operator without specifying the comparer object. Listing 10-2 shows the code.

Listing 10-2. The Distinct Operator Without an Equality Comparer

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },

 new Student { Id = 6, Name = "Ulyses Hutchens" },
 new Student { Id = 19, Name = "Bob Tanko" },
 new Student { Id = 45, Name = "Erin Doutensal" },
 new Student { Id = 1, Name = "Joe Rattz" },

 new Student { Id = 12, Name = "Bob Mapplethorpe" },
 new Student { Id = 17, Name = "Anthony Adams" },
 new Student { Id = 32, Name = "Dignan Stephens" }
};

DataTable dt = GetDataTable(students);

Console.WriteLine("{0}Before calling Distinct(){0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt, 15);

foreach (DataRow dataRow in dt.Rows)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

IEnumerable<DataRow> distinct = dt.AsEnumerable().Distinct();

Console.WriteLine("{0}After calling Distinct(){0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt, 15);

foreach (DataRow dataRow in distinct)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

The difference between this code and the previous example is that the call to the Distinct operator
does not have an equality comparer provided. Will it remove the duplicate row? Let’s take a look:

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

396

Before calling Distinct()

Id Name
==============================
1 Joe Rattz
6 Ulyses Hutchens
19 Bob Tanko
45 Erin Doutensal
1 Joe Rattz
12 Bob Mapplethorpe
17 Anthony Adams
32 Dignan Stephens

After calling Distinct()

Id Name
==============================
1 Joe Rattz
6 Ulyses Hutchens
19 Bob Tanko
45 Erin Doutensal
1 Joe Rattz
12 Bob Mapplethorpe
17 Anthony Adams
32 Dignan Stephens

No, it did not remove the duplicate—these two examples are comparing rows differently.

Except
The Except operator produces a sequence of DataRow objects that are in the first sequence of DataRow
objects that do not exist in the second sequence of DataRow objects. The operator returns an object that,
when enumerated, enumerates the second sequence of DataRow objects collecting the unique
elements, followed by enumerating the first sequence of DataRow objects removing those elements
from the collection that also occur in the second sequence and returning the results as they are
generated.

To determine that elements from the same sequence are unique and that one element in one
sequence is or is not equal to an element in the other sequence, the operator must be able to determine
whether two elements are equal. Typically, this operator determines element equality by calling each
element’s data type’s GetHashCode and Equals methods. However, for DataRow type objects, this would
cause an incorrect result.

Because we are going to call the additional prototype and provide the
System.Data.DataRowComparer.Default comparer object, the element equality will be properly
determined. With it, a row is deemed to be a duplicate by comparing DataRow objects using the number
of columns in a row and the static data type of each column and then using the IComparable interface

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

397

on each column if its dynamic data type implements the IComparable interface, or calling the static
Equals method in System.Object if it does not.

Prototypes
The Except operator has one prototype we will cover.

The Except Prot otype

public static IEnumerable<T> Except<T> (
 this IEnumerable<T> first,
 IEnumerable<T> second,
 IEqualityComparer<T> comparer);

Examples
In this example, we call the Except operator twice. The first time, we pass the
System.Data.DataRowComparer.Default comparer object, so the results of the first query with the
Except operator should be correct. The second time we call the Except operator, we will not pass the
comparer object. This causes the results of that query to be incorrect. Listing 10-3 shows the code.

Listing 10-3. The Except Operator with and Without the Comparer Object

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

Student[] students2 = {
 new Student { Id = 5, Name = "Abe Henry" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 29, Name = "Future Man" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable(students2);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

IEnumerable<DataRow> except =
 seq1.Except(seq2, System.Data.DataRowComparer.Default);

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

398

Console.WriteLine("{0}Results of Except() with comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in except)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

except = seq1.Except(seq2);

Console.WriteLine("{0}Results of Except() without comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in except)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

We create two DataTable objects that are populated from the Student arrays. We create sequences

from each DataTable object by calling the AsEnumerable method. We then call the Except operator on
the two sequences and display the results of each. As you can see, the first time we call the Except
operator, we pass the System.Data.DataRowComparer.Default comparer object. The second time we
do not.

Let’s look at the results of that code by pressing Ctrl+F5:

Results of Except() with comparer

Id Name
==============================
1 Joe Rattz
13 Stacy Sinclair

Results of Except() without comparer

Id Name
==============================
1 Joe Rattz

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

399

7 Anthony Adams
13 Stacy Sinclair
72 Dignan Stephens

As you can see, the Except operator called with the System.Data.DataRowComparer.Default
comparer object is able to properly determine the element equality for the two sequences, whereas the
Except operator without the comparer object does not.

Intersect
The Intersect operator produces a sequence of DataRow objects that is the intersection of two
sequences of DataRow objects. It returns an object that when enumerated enumerates the second
sequence of DataRow objects collecting the unique elements, followed by enumerating the first sequence
of DataRow objects, returning those elements occurring in both sequences as they are generated.

To determine that elements from the same sequence are unique and that one element in one
sequence is or is not equal to an element in the other sequence, the operator must be able to determine
whether two elements are equal. Typically, this operator determines element equality by calling each
element’s data type’s GetHashCode and Equals methods. However, for DataRow type objects, this would
cause an incorrect result.

 Because we are going to call the additional prototype and provide the
System.Data.DataRowComparer.Default comparer object, the element equality will be properly
determined. With it, a row is deemed to be a duplicate by comparing DataRow objects using the number
of columns in a row and the static data type of each column and then using the IComparable interface
on each column if its dynamic data type implements the IComparable interface, or calling the static
Equals method in System.Object if it does not.

Prototypes
The Intersect operator has one prototype we will cover.

The Intersect Prot otype

public static IEnumerable<T> Intersect<T> (
 this IEnumerable<T> first,
 IEnumerable<T> second,
 IEqualityComparer<T> comparer);

Examples
In this example, we use the same basic code we use in the Except example but change the operator calls
from Except to Intersect. Listing 10-4 shows that code.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

400

Listing 10-4. The Intersect Operator with and Without the Comparer Object

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

Student[] students2 = {
 new Student { Id = 5, Name = "Abe Henry" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 29, Name = "Future Man" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable(students2);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

IEnumerable<DataRow> intersect =
 seq1.Intersect(seq2, System.Data.DataRowComparer.Default);

Console.WriteLine("{0}Results of Intersect() with comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in intersect)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

intersect = seq1.Intersect(seq2);

Console.WriteLine("{0}Results of Intersect() without comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in intersect)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

401

 dataRow.Field<string>(1));
}

There is nothing new here. We create a couple of DataTable objects from the two Student arrays

and obtain sequences from them. We then call the Intersect operator first with the comparer object
and then without. We display the results after each Intersect call. Let’s look at the results of that code
by pressing Ctrl+F5:

Results of Intersect() with comparer

Id Name
==============================
7 Anthony Adams
72 Dignan Stephens

Results of Intersect() without comparer

Id Name
==============================

As you can see, the Intersect operator with the comparer is able to properly determine the
element equality from the two sequences, whereas the Intersect operator without the comparer is not.

Union
The Union operator produces a sequence of DataRow objects that is the union of two sequences of
DataRow objects. It returns an object that, when enumerated, enumerates the first sequence of DataRow
objects, followed by the elements of the second sequence of DataRow that were not contained in the first
sequence.

To determine that elements have already been returned, the operator must be able to determine
whether two elements are equal. Typically, this operator determines element equality by calling each
element’s data type’s GetHashCode and Equals methods. However, for DataRow type objects, this would
cause an incorrect result.

Because we are going to call the additional prototype and provide the
System.Data.DataRowComparer.Default comparer object, the element equality will be properly
determined. With it, a row is deemed to be a duplicate by comparing DataRow objects using the number
of columns in a row and the static data type of each column and then using the IComparable interface
on each column if its dynamic data type implements the IComparable interface, or calling the static
Equals method in System.Object if it does not.

Prototypes
The Union operator has one prototype we will cover.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

402

The Uni on Prot otype

public static IEnumerable<T> Union<T> (
 this IEnumerable<T> first,
 IEnumerable<T> second,
 IEqualityComparer<T> comparer);

Examples
In this example, we use the same basic code we use in the Intersect example, except we will change the
operator calls from Intersect to Union. Listing 10-5 shows that code.

Listing 10-5. The Union Operator with and Without the Comparer Object

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

Student[] students2 = {
 new Student { Id = 5, Name = "Abe Henry" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 29, Name = "Future Man" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable(students2);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

IEnumerable<DataRow> union =
 seq1.Union(seq2, System.Data.DataRowComparer.Default);

Console.WriteLine("{0}Results of Union() with comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in union)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

403

union = seq1.Union(seq2);

Console.WriteLine("{0}Results of Union() without comparer{0}",
 System.Environment.NewLine);

OutputDataTableHeader(dt1, 15);

foreach (DataRow dataRow in union)
{
 Console.WriteLine("{0,-15}{1,-15}",
 dataRow.Field<int>(0),
 dataRow.Field<string>(1));
}

Again, there is nothing new here. We create a couple of DataTable objects from the two Student
arrays and obtain sequences from them. We then call the Union operator first with the comparer object
and then without. We display the results after each Union call. Here are the results:

Results of Union() with comparer

Id Name
==============================
1 Joe Rattz
7 Anthony Adams
13 Stacy Sinclair
72 Dignan Stephens
5 Abe Henry
29 Future Man

Results of Union() without comparer

Id Name
==============================
1 Joe Rattz
7 Anthony Adams
13 Stacy Sinclair
72 Dignan Stephens
5 Abe Henry
7 Anthony Adams
29 Future Man
72 Dignan Stephens

Notice that the results of the Union operator with the comparer object are correct, but the results of
the Union operator without the comparer object are not.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

404

SequenceEqual
The SequenceEqual operator compares two sequences of DataRow objects to determine whether they
are equal. It enumerates two source sequences, comparing the corresponding DataRow objects. If the
two source sequences have the same number of records, and if all the corresponding DataRow objects
are equal, true is returned. Otherwise, false is returned if the two sequences are not equal.

This operator must be able to determine whether two elements are equal. Typically, this operator
determines element equality by calling each element’s data type’s GetHashCode and Equals methods.
However, for DataRow type objects, this would cause an incorrect result.

Because we are going to call the additional prototype and provide the
System.Data.DataRowComparer.Default comparer object, the element equality will be properly
determined. With it, a row is deemed to be a duplicate by comparing DataRow objects using the number
of columns in a row and the static data type of each column and then using the IComparable interface
on each column if its dynamic data type implements the IComparable interface, or calling the static
Equals method in System.Object if it does not.

Prototypes
The SequenceEqual operator has one prototype we will cover.

The SequenceEqu al Protot ype

public static bool SequenceEqual<T> (
 this IEnumerable<T> first,
 IEnumerable<T> second,
 IEqualityComparer<T> comparer);

Examples
In this example of the SequenceEqual operator, we build two identical sequences of DataRow objects
and compare them first with the SequenceEqual operator with a comparer object followed by a
comparison with the SequenceEqual operator without a comparer object. Because of the way equality
comparisons are handled by the two different operator calls, the SequenceEqual operator call with the
comparer object returns that the two sequences are equal, while the SequenceEqual operator call
without the comparer object returns that the two sequences are not equal. Listing 10-6 shows the code.

Listing 10-6. The SequenceEqual Operator with and Without a Comparer Object

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

405

IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable(students);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

bool equal = seq1.SequenceEqual(seq2, System.Data.DataRowComparer.Default);
Console.WriteLine("SequenceEqual() with comparer : {0}", equal);

equal = seq1.SequenceEqual(seq2);
Console.WriteLine("SequenceEqual() without comparer : {0}", equal);

There is not much to discuss here; the first call should indicate that the two sequences are equal,

while the second should indicate that they are not. The results are as expected:

SequenceEqual() with comparer : True
SequenceEqual() without comparer : False

DataRow Field Operators
In addition to the DataRow-specific comparer class for the set-type operators, there is a need for some
DataRow-specific operators. These operators are defined in the System.Data.DataSetExtensions.dll
assembly, in the static System.Data.DataRowExtensions class.

You have no doubt noticed that in virtually every example thus far, we have used the Field<T>
operator to extract a DataColumn object’s value from a DataRow. There are two purposes for this
operator: correct equality comparisons and null value handling.

With DataRow objects, we have a problem. Their DataColumn values do not get compared properly
for equality when they are accessed with the DataRow object’s indexer if the column is a value-type. The
reason is that because the column’s data type could be any type, the indexer returns an object of type
System.Object. This allows the indexer to return an integer, a string, or whatever data type is necessary
for that column. This means that if a column is of type int, it is a value-type, and it must get packaged
into an object of type Object. This packaging is known in the Microsoft .NET Framework as boxing.
Pulling the value-type back out of the object is known as unboxing. This boxing is where the problem
lies.

Let’s take a look at some sample code. First, let’s take the example of comparing an integer literal to
another integer literal of the same value, as shown in Listing 10-7.

Listing 10-7. Comparing 3 to 3

Console.WriteLine("(3 == 3) is {0}.", (3 == 3));

The following is the result of this code:

(3 == 3) is True.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

406

There is absolutely no surprise there. But what happens when an integer gets boxed? Let’s examine
the code in Listing 10-8 and look at the results.

Listing 10-8. Comparing 3 Cast to an Object to Another 3 Cast to an Object

Console.WriteLine("((Object)3 == (Object)3) is {0}.", ((Object)3 == (Object)3));

And the following are the results:

((Object)3 == (Object)3) is False.

Uh-oh, what happened? By casting the literal integer 3 to an Object, two objects were created, and
the references (addresses) of each object were compared, and those are not equal. When you access
DataColumn objects using the DataRow object’s indexer, if any of the columns are a value-type, the
column values will get boxed and will not compare for equality properly.

To demonstrate this, we’ll create a more complex example that uses DataColumn objects. In the
example, we have two arrays, each of a different class type. One is the same basic array of students we
have been using. The other is an array of class designations with foreign keys into the students array.
Here is the StudentClass class.

A Si mple Class with Tw o Publi c Prop erti es

class StudentClass
{
 public int Id;
 public string Class;
}

Now that we have a different class type, we are going to need another method to convert this array
to an object of type DataTable. Here is that method:
static DataTable GetDataTable2(StudentClass[] studentClasses)
{
 DataTable table = new DataTable();

 table.Columns.Add("Id", typeof(Int32));
 table.Columns.Add("Class", typeof(string));

 foreach (StudentClass studentClass in studentClasses)
 {
 table.Rows.Add(studentClass.Id, studentClass.Class);
 }

 return (table);
}

This method is nothing more than a copy of the existing common GetTableData method that has

been modified to work with arrays of StudentClass objects. Obviously, if you were going to be working

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

407

from arrays in real production code, you would want something more abstract than creating a method
for each class type for which you need a DataTable object. Perhaps a generic extension method would
be a nice approach. But as we mentioned at the beginning of the examples, you will typically be
performing LINQ to DataSet queries on data from databases, not arrays, so we won’t worry about that
here.

For the example, we’ll build a sequence of DataRow objects from each array and try to join them
using their common Id column, which we will retrieve by indexing into the DataRow with the column
name, which is Id. Listing 10-9 shows the code.

Listing 10-9. Joining Two Value-Type Columns by Indexing into the DataRow

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

StudentClass[] classDesignations = {
 new StudentClass { Id = 1, Class = "Sophmore" },
 new StudentClass { Id = 7, Class = "Freshman" },
 new StudentClass { Id = 13, Class = "Graduate" },
 new StudentClass { Id = 72, Class = "Senior" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable2(classDesignations);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

string anthonysClass = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 from c in seq2
 where c["Id"] == s["Id"]

 select (string)c["Class"]).
 SingleOrDefault<string>();

Console.WriteLine("Anthony's Class is: {0}",
 anthonysClass != null ? anthonysClass : "null");

There are a couple of things worth pointing out about that query. First notice the line that is bold.

There, we are indexing into the DataRow object to get the columns’ values. Since the column value data
types are strings, they will get boxed, which means there will be a problem determining equality.
Additionally, you can see that we are using the Field<T> operator in this example when we compare the
Name field to the name "Anthony Adams". Ignore this for now. Just realize that we are calling the
Field<T> operator to prevent a boxing problem with the Name field that we are in the midst of
demonstrating with the Id field. Also, notice that this query is combining the query expression syntax

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

408

with the standard dot notation syntax. As you can see, we are performing a join on the two DataTable
objects too. Let’s run the code and see the results:

Anthony's Class is: null

The string anthonysClass is null. That is because the join failed to find a record in seq2 that had
an equal value for the Id field. This is because of the boxing of the Id field when it is retrieved using the
DataRow indexer. Now, you could handle the unboxing yourself by changing the line:

where c["Id"] == s["Id"]

to:

where (int)c["Id"] == (int)s["Id"]

Listing 10-10 is the entire example with that line replaced.

Listing 10-10. Using Casting to Make the Test for Equality Correct

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

StudentClass[] classDesignations = {
 new StudentClass { Id = 1, Class = "Sophmore" },
 new StudentClass { Id = 7, Class = "Freshman" },
 new StudentClass { Id = 13, Class = "Graduate" },
 new StudentClass { Id = 72, Class = "Senior" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable2(classDesignations);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

string anthonysClass = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 from c in seq2
 where (int)c["Id"] == (int)s["Id"]

 select (string)c["Class"]).
 SingleOrDefault<string>();

Console.WriteLine("Anthony's Class is: {0}",
 anthonysClass != null ? anthonysClass : "null");

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

409

If you run that code, you will get this result:

Anthony's Class is: Freshman

That solves the boxing problem. However, there is still one other problem. When you attempt to
retrieve a column’s value using the DataRow object’s indexer, remember, the column’s value gets
returned as an object of type Object. Comparing it to any value or assign it to a variable will require
casting it to another data type as we did previously by casting it to an int. Since DataSet objects use
DBNull.Value as the value for a column that is null, if that column’s value is DBNull.Value, casting it
to another data type will throw an exception.

Fortunately, LINQ to DataSet has made both of these problems—boxed value comparisons and
null handling—disappear, thanks to the Field<T> and SetField<T> operators. Listing 10-11 shows the
previous example using the Field<T> operator.

Listing 10-11. Using the Field Operator

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

StudentClass[] classDesignations = {
 new StudentClass { Id = 1, Class = "Sophmore" },
 new StudentClass { Id = 7, Class = "Freshman" },
 new StudentClass { Id = 13, Class = "Graduate" },
 new StudentClass { Id = 72, Class = "Senior" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();
DataTable dt2 = GetDataTable2(classDesignations);
IEnumerable<DataRow> seq2 = dt2.AsEnumerable();

string anthonysClass = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 from c in seq2
 where c.Field<int>("Id") == s.Field<int>("Id")

 select (string)c["Class"]).
 SingleOrDefault<string>();

Console.WriteLine("Anthony's Class is: {0}",
 anthonysClass != null ? anthonysClass : "null");

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

410

This code is the same as the previous example except we call the Field<T> operator instead of
casting the field as an int. Here are the results:

Anthony's Class is: Freshman

Field<T>
As we demonstrated in Listing 10-11, the Field<T> operator allows you to obtain the value of a column
from a DataRow object and handles the casting of DBNull.Value and boxed value comparison problems
we previously discussed.

Prototypes
The Field operator has six prototypes we cover.

The first prototype returns the column’s value for the DataColumn and version specified.

The Fi rst Fie ld Prot otype

public static T Field (
 this DataRow first,
 System.Data.DataColumn column,
 System.Data.DataRowVersion version);

The second prototype returns the column’s value for the column with the name and version

specified.

The Second Field Prot otype

public static T Field (
 this DataRow first,
 string columnName,
 System.Data.DataRowVersion version);

The third prototype returns the column’s value for the column with the ordinal and version

specified.

The Third Fi eld Prot otype

public static T Field (
 this DataRow first,
 int ordinal,
 System.Data.DataRowVersion version);

The fourth prototype returns the column’s current value only for the DataColumn specified.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

411

The F ourth Field Protot ype

public static T Field (
 this DataRow first,
 System.Data.DataColumn column);

The fifth prototype returns the column’s current value only for the column with the specified name.

The Fifth Field Prototyp e

public static T Field (
 this DataRow first,
 string columnName);

The sixth prototype returns the column’s current value only for the column with the specified

ordinal.

The Sixth Fi eld Prot otype

public static T Field (
 this DataRow first,
 int ordinal);

As you may have noticed, the first three prototypes allow you to specify which DataRowVersion of

the DataColumn object’s value you want to retrieve.

Examples
At this point, you have seen the Field<T> operator called many times and in different ways. But just so
you can see each prototype in action, Listing 10-12 shows a trivial example of each.

Listing 10-12. An Example of Each Field Operator Prototype

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();

int id;

// Using prototype 1.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

412

id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>(dt1.Columns[0], DataRowVersion.Current)).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 1 is: {0}", id);

// Using prototype 2.
id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>("Id", DataRowVersion.Current)).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 2 is: {0}", id);

// Using prototype 3.
id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>(0, DataRowVersion.Current)).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 3 is: {0}", id);

// Using prototype 4.
id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>(dt1.Columns[0])).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 4 is: {0}", id);

// Using prototype 5.
id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>("Id")).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 5 is: {0}", id);

// Using prototype 6.
id = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s.Field<int>(0)).
 Single<int>();
Console.WriteLine("Anthony's Id retrieved with prototype 6 is: {0}", id);

We declare the array of students and create a DataTable object from it just like in most examples in

this chapter. We obtain a sequence of DataRow objects and work our way through each Field<T>
operator prototype using it to obtain the field named Id. Notice that in each query of the Id field, we are
also using the Field<T> operator in the Where operator portion of the query. Here are the results:

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

413

Anthony's Id retrieved with prototype 1 is: 7
Anthony's Id retrieved with prototype 2 is: 7
Anthony's Id retrieved with prototype 3 is: 7
Anthony's Id retrieved with prototype 4 is: 7
Anthony's Id retrieved with prototype 5 is: 7
Anthony's Id retrieved with prototype 6 is: 7

Before moving on to the SetField<T> operator, we want to provide an example demonstrating one
of the prototypes that allows you to specify the DataRowVersion of the DataColumn object’s value to
retrieve. To provide an example, we will have to modify one of the DataColumn object’s values using the
SetField<T> operator. Although we haven’t discussed the SetField<T> operator yet, just ignore it for
now. We will be covering it in the next section.

Also, since this chapter is meant to explain the LINQ to DataSet operators and is not meant to be a
detailed discussion of how the DataSet class works, we will only briefly cover a couple of additional
DataSet methods we are calling in the example. Listing 10-13 is the code.

Listing 10-13. The Field Operator Prototype with a Specified DataRowVersion

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();

DataRow row = (from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s).Single<DataRow>();

row.AcceptChanges();

row.SetField("Name", "George Oscar Bluth");

Console.WriteLine("Original value = {0} : Current value = {1}",
 row.Field<string>("Name", DataRowVersion.Original),
 row.Field<string>("Name", DataRowVersion.Current));

row.AcceptChanges();

Console.WriteLine("Original value = {0} : Current value = {1}",
 row.Field<string>("Name", DataRowVersion.Original),
 row.Field<string>("Name", DataRowVersion.Current));

In this example, we obtain a sequence from the array of students as we typically do. We then query

for a single DataRow object on which we can make some changes. The first code of interest is the

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

414

AcceptChanges method that we call after obtaining the DataRow object. We call this method to make the
DataRow object accept the current value for each DataColumn object within it as the original version.
Without that, there would be no original version of the DataColumn objects’ values, and merely
attempting to access the field’s original version causes an exception to be thrown. In this way, the
DataRow object is ready to begin tracking DataColumn object value changes. We need this to be able to
obtain different DataRowVersion versions of the DataRow object’s DataColumn values.

Once we call the AcceptChanges method the first time, we set a field using the SetField operator.
We then display the original version and current version of the Name DataColumn value to the console. At
this point, the original version should be "Anthony Adams", and the current version should be "George
Oscar Bluth". This allows you to see the different versions you can obtain from a DataRow object.

Then, just to make it interesting, we call the AcceptChanges method a second time and again
display the original and current version of the DataColumn object’s value. This time, the original and
current version values should both be "George Oscar Bluth", because we have told the DataRow
object to accept the changes as the current version. Let’s examine the results:

Original value = Anthony Adams : Current value = George Oscar Bluth
Original value = George Oscar Bluth : Current value = George Oscar Bluth

That works like a charm. Remember, though, without calling the AcceptChanges method the first
time, we could have changed the value of the DataColumn object all day long and there would not have
been an original version.

We mentioned that one of the additional benefits of using the Field<T> operator is that it handles
the situation when fields are null. Let’s take a look at the example in Listing 10-14 where a student’s
name has a null value, but we are not using the Field<T> operator:

Listing 10-14. An Example Without the Field Operator When There Is a null Present

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = null },

 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();

string name = seq1.Where(student => student.Field<int>("Id") == 7)
 .Select(student => (string)student["Name"])
 .Single();

Console.WriteLine("Student's name is '{0}'", name);

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

415

That is a fairly simple example. Notice that we set the Name member of the Student record of the
student whose Id is 7 to null. Also notice that instead of using the Field<T> operator, we just index into
the DataRow and cast the value to a string. Let’s take a look at the results:

Unhandled Exception: System.InvalidCastException: Unable to cast object of type
'System.DBNull' to type 'System.String'.
…

What happened? What happened is that the DataColumn object’s value is DBNull, and you can’t cast
that to a string. There are some rather verbose solutions we could take to alleviate this complication,
but this is what the Field<T> operator is designed to simplify for you. Let’s take a look at the same
example, except this time we use the Field<T> operator to obtain the DataColumn object’s value. Listing
10-15 is the code.

Listing 10-15. An Example with the Field Operator When There Is a null Present

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = null },

 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();

string name = seq1.Where(student => student.Field<int>("Id") == 7)
 .Select(student => student.Field<string>("Name"))
 .Single();

Console.WriteLine("Student's name is '{0}'", name);

OK, this is the same code except we use the Field<T> operator instead of casting it to a string.

Let’s look at the results:

Student's name is ''

This is much easier to deal with.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

416

SetField<T>
Just as with the retrieval of DataColumn objects, null affects the setting of DataColumn objects. To assist
with this issue, the SetField<T> operator was created. It handles the case where a DataColumn object’s
value is set with a nullable data type whose value is null.

Prototypes
The SetField<T> operator has three prototypes we cover.

The first prototype allows you to set a column’s current value for the DataColumn specified.

The Fi rst SetField Prototyp e

public static void SetField (
 this DataRow first,
 System.Data.DataColumn column,
 T value);

The second prototype allows you to set a column’s current value for the column with the specified

name.

The Second SetField Prototyp e

public static void SetField (
 this DataRow first,
 string columnName,
 T value);

The third prototype allows you to set a column’s current value for the column with the specified

ordinal.

The Third SetField Prot otype

public static void SetField (
 this DataRow first,
 int ordinal,
 T value);

Examples
As an example of the SetField<T> operator, shown in Listing 10-16, first we display the sequence of
DataRow objects that contain the students. Next, we query one of the students by name from the
sequence of DataRow objects and change that name using the SetField<T> operator. We then display
the sequence of DataRow objects after the change has been made. Rinse and repeat for each prototype.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

417

Listing 10-16. An Example of Each SetField Operator Prototype

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
IEnumerable<DataRow> seq1 = dt1.AsEnumerable();

Console.WriteLine("{0}Results before calling any prototype:",
 System.Environment.NewLine);

foreach (DataRow dataRow in seq1)
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));
}

// Using prototype 1.
(from s in seq1
 where s.Field<string>("Name") == "Anthony Adams"
 select s).Single<DataRow>().SetField(dt1.Columns[1], "George Oscar Bluth");

Console.WriteLine("{0}Results after calling prototype 1:",
 System.Environment.NewLine);

foreach (DataRow dataRow in seq1)
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));
}

// Using prototype 2.
(from s in seq1
 where s.Field<string>("Name") == "George Oscar Bluth"
 select s).Single<DataRow>().SetField("Name", "Michael Bluth");

Console.WriteLine("{0}Results after calling prototype 2:",
 System.Environment.NewLine);

foreach (DataRow dataRow in seq1)
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

418

}

// Using prototype 3.
(from s in seq1
 where s.Field<string>("Name") == "Michael Bluth"
 select s).Single<DataRow>().SetField("Name", "Tony Wonder");

Console.WriteLine("{0}Results after calling prototype 3:",
 System.Environment.NewLine);

foreach (DataRow dataRow in seq1)
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));
}

This code is not quite as bad as it looks. After we obtain the sequence of students and display them,

there is a block of code that gets repeated three times, once for each prototype. Each block contains a
LINQ query that retrieves the field and updates its value, displays a header line to the console, and then
displays each row in the sequence to the console to show the change just made to the field.

There are a couple noteworthy things in this example. In each LINQ query where we query the
DataRow on its Name field, again, we are mixing query expression syntax and standard dot notation
syntax in the query. Also, we are using the Field<T> operator to find the record that we are going to set
with the SetField<T> operator. After obtaining the sequence of DataRow objects of students, we work
our way through the SetField<T> operator prototypes one by one. Throughout the example, we query
the previously changed element by its value and change it again. For example, for the first prototype, we
just query the element whose Name field is "Anthony Adams" and set it to "George Oscar Bluth". For
the second prototype, we query the element whose Name field is "George Oscar Bluth" and change it
to something else, which we will query for on the next prototype. Of course, after each element value
update, we display the sequence to the console so you can verify that the element’s value did indeed
change.

One of the things that we think is neat about this example is that we query the element and update
its value in a single statement. This is so powerful one might think it is an illusion, but rest assured, there
is no magician present here.

Here are the results:

Results before calling any prototype:
Student Id = 1 is Joe Rattz
Student Id = 7 is Anthony Adams
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

Results after calling prototype 1:
Student Id = 1 is Joe Rattz
Student Id = 7 is George Oscar Bluth
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

419

Results after calling prototype 2:
Student Id = 1 is Joe Rattz
Student Id = 7 is Michael Bluth
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

Results after calling prototype 3:
Student Id = 1 is Joe Rattz
Student Id = 7 is Tony Wonder
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

As you can see, the Name field of the appropriate element is updated each time.

DataTable Operators
In addition to the DataRow-specific operators in the DataRowExtensions class, there is a need for some
DataTable-specific operators. These operators are defined in the System.Data.Entity.dll assembly,
in the static System.Data.DataTableExtensions class.

AsEnumerable
We guess that you are probably surprised to see the AsEnumerable operator here. In fact, you may be
surprised to learn that there is an AsEnumerable operator specifically for the DataTable class that
returns a sequence of DataRow objects. If so, we are pleased because it means you were not wondering
throughout this whole chapter why we hadn’t mentioned it yet. After all, we have called it in virtually
every example.

Yes, if you look in the System.Data.DataTableExtensions static class, you will see there is an
AsEnumerable operator. The purpose of this operator is to return a sequence of type
IEnumerable<DataRow> from a DataTable object.

Prototypes
The AsEnumerable operator has one prototype we will cover.

The A sEnumerable Prot otype

public static IEnumerable<DataRow> AsEnumerable (
 this DataTable source
);

This operator when called on a DataTable object returns a sequence of DataRow objects. This is

typically the first step of performing a LINQ to DataSet query on a DataSet object’s DataTable. By
calling this operator, you can obtain a sequence, an IEnumerable<T> where T happens to be a DataRow,

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

420

thereby allowing you to call the many LINQ operators that may be called on an IEnumerable<T> type
sequence.

Examples
There is no shortage of examples in this chapter. Since calling the AsEnumerable operator is the first
step to perform a LINQ to DataSet query, virtually every example in this chapter is calling the
AsEnumerable operator. Therefore, there is no need to provide one here.

CopyToDataTable<DataRow>
Now that you know how to query and modify the DataColumn values of a DataRow, you might just be
interested in getting that sequence of modified DataRow objects into a DataTable. The
CopyToDataTable operator exists for this very purpose.

Prototypes
The CopyToDataTable operator has two prototypes we cover.

This first prototype is called on an IEnumerable<DataRow> and returns a DataTable. This is used to
create a new DataTable object from a sequence of DataRow objects.

The Fi rst Copy ToDat aTable Prot otyp e

public static DataTable CopyToDataTable<T> (
 this IEnumerable<T> source
) where T : DataRow;

The first prototype establishes original versions for each field for you automatically without you

needing to call the AcceptChanges method.
The second prototype is called on an IEnumerable<DataRow> of the source DataTable to update an

already existing destination DataTable based on the LoadOption value specified.

The Second Copy ToD ataTable Prot otyp e

public static void CopyToDataTable<T> (
 this IEnumerable<T> source,
 DataTable table,
 LoadOption options
) where T : DataRow;

The value of the LoadOption argument passed informs the operator whether the original column
values only should be changed, the current column values only should be changed, or both. This is
helpful for managing the DataTable’s changes. The following are the available values for LoadOption:

• OverwriteChanges: Both the current value and original value will be updated for each
column.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

421

• PreserveChanges: Only the original value will be updated for each column.

• Upsert: Only the current value will be updated for each column.

This LoadOption argument has now created a bit of a problem, though. Notice that the description
of each possible value refers to updating the values of a column. This, of course, means updating the
columns of a record already in the destination DataTable. How would the CopyToDataTable operator
possibly know which record already in the destination DataTable corresponds to a record in the source
DataTable? In other words, when it tries to copy a record from the source DataTable to the destination
DataTable and has to honor the LoadOption parameter, how does it know whether it should just add
the record from the source DataTable or update an already existing record in the destination
DataTable? The answer is that it doesn’t, unless it is aware of primary key fields in the DataTable.

Therefore, for this prototype of the CopyToDataTable operator to work properly, the destination
DataTable object must have the appropriate fields specified as the primary key fields. Without
specifying primary keys, this prototype will result in appending all the records from the source
DataTable to the destination DataTable.

There is one additional complication. Since by using this prototype you are possibly interested in
original versus current version values of fields, do not forget that with this prototype of the
CopyToDataTable operator, a field doesn’t have an original version unless the AcceptChanges method
has been called. Attempting to access the original version when one does not exist causes an exception
to be thrown. However, you can call the HasVersion method on each DataRow object before attempting
to access the original version to determine if there is an original version to prevent this type of exception.

Examples
As an example of the first CopyToDataTable operator prototype, we will simply modify a field in a
DataTable, create a new DataTable from the modified DataTable by calling the CopyToDataTable
operator, and then display the contents of the new DataTable. Listing 10-17 is the code.

Listing 10-17. Calling the First Prototype of the CopyToDataTable Operator

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);

Console.WriteLine("Original DataTable:");
foreach (DataRow dataRow in dt1.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));
}

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

422

(from s in dt1.AsEnumerable()
 where s.Field<string>("Name") == "Anthony Adams"
 select s).Single<DataRow>().SetField("Name", "George Oscar Bluth");

DataTable newTable = dt1.AsEnumerable().CopyToDataTable();

Console.WriteLine("{0}New DataTable:", System.Environment.NewLine);
foreach (DataRow dataRow in newTable.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} is {1}", dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name"));
}

As we said, first we create a DataTable from our array of students as we typically do in the previous

examples. We then display the contents of that DataTable to the console. Next, we modify the Name field
in one of the DataRow objects. Then we create a new DataTable by calling the CopyToDataTable
operator. Last, we display the contents of the newly created DataTable.

Are you ready for the final countdown? Poof!

Original DataTable:
Student Id = 1 is Joe Rattz
Student Id = 7 is Anthony Adams
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

New DataTable:
Student Id = 1 is Joe Rattz
Student Id = 7 is George Oscar Bluth
Student Id = 13 is Stacy Sinclair
Student Id = 72 is Dignan Stephens

As you can see, not only do we have data in the new DataTable, but it is the modified version, just
as you would expect.

For the next example, we want to demonstrate the second prototype of the CopyToDataTable
operator. We mentioned that for the LoadOption argument to work properly, primary keys must be
established on the destination DataSet. For this example, we will not establish those so you can see the
behavior. Because this example is a little more complex, we describe this one as we go. Listing 10-18 is
the code.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

423

Listing 10-18. Calling the Second Prototype of the CopyToDataTable Operator When Primary Keys Are

Not Established

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
DataTable newTable = dt1.AsEnumerable().CopyToDataTable();

There is little new so far. We created what will be our source DataTable from the students array.

We created our destination DataTable by calling the CopyToDataTable operator on the source
DataTable. Notice that because we called the first prototype of the CopyToDataTable operator, we do
not need to call the AcceptChanges method on the destination DataTable. This is important because, in
the next segment of code, we reference the original version of the Name field. If it were not for the fact
that the first prototype of the CopyToDataTable operator establishes the original versions of fields for
you, an exception will be thrown since the original version would not exist.

Console.WriteLine("Before upserting DataTable:");
foreach (DataRow dataRow in newTable.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} : original {1} : current {2}",
 dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name", DataRowVersion.Original),
 dataRow.Field<string>("Name", DataRowVersion.Current));
}

There is nothing of significance here except that we reference the original version of the Name field

in the record, and no exception is thrown when doing so because this prototype of the
CopyToDataTable operator established the original version for me.

(from s in dt1.AsEnumerable()
 where s.Field<string>("Name") == "Anthony Adams"
 select s).Single<DataRow>().SetField("Name", "George Oscar Bluth");

dt1.AsEnumerable().CopyToDataTable(newTable, LoadOption.Upsert);

This is the important segment of this example. Notice that we change the value of the Name field for

one of the records in the source DataTable using the SetField<T> operator. Next, we call the
CopyToDataTable operator specifying that a LoadOption.Upsert type of copy should occur, meaning
update only the current version. This causes a problem, though, in that since we have called the second
CopyToDataTable operator prototype, which doesn’t establish original versions for records inserted into
the database and we haven’t called the AcceptChanges method, if we attempt to access the original

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

424

versions on inserted records, an exception will be thrown. We will have to use the HasVersion method
to prevent this from happening if any records are inserted. Since we have not specified any primary keys,
we know that all the records in the source table will be inserted into the destination table.

Console.WriteLine("{0}After upserting DataTable:", System.Environment.NewLine);
foreach (DataRow dataRow in newTable.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} : original {1} : current {2}",
 dataRow.Field<int>("Id"),
 dataRow.HasVersion(DataRowVersion.Original) ?
 dataRow.Field<string>("Name", DataRowVersion.Original) : "-does not exist-",
 dataRow.Field<string>("Name", DataRowVersion.Current));
}

In this code segment, we merely display the DataTable content to the console. Now, the interesting

thing about this example is that since we do not specify any primary keys for the destination table, when
the copy occurs, no records will be deemed the same, so all the copied records from the source
DataTable will be appended to the destination DataTable.

Also, notice that we only access the original version of the field’s data if the HasVersion method
returns true indicating that there is an original version. Here are the results:

Before upserting DataTable:
Student Id = 1 : original Joe Rattz : current Joe Rattz
Student Id = 7 : original Anthony Adams : current Anthony Adams
Student Id = 13 : original Stacy Sinclair : current Stacy Sinclair
Student Id = 72 : original Dignan Stephens : current Dignan Stephens

After upserting DataTable:
Student Id = 1 : original Joe Rattz : current Joe Rattz
Student Id = 7 : original Anthony Adams : current Anthony Adams
Student Id = 13 : original Stacy Sinclair : current Stacy Sinclair
Student Id = 72 : original Dignan Stephens : current Dignan Stephens
Student Id = 1 : original -does not exist- : current Joe Rattz
Student Id = 7 : original -does not exist- : current George Oscar Bluth
Student Id = 13 : original -does not exist- : current Stacy Sinclair
Student Id = 72 : original -does not exist- : current Dignan Stephens

Notice that several records are now duplicated because we don’t specify any primary keys in the
destination DataTable. Even the record we actually updated is in the DataTable twice now.

You may be wondering, since we made such a big deal about calling the HasVersion method since
the AcceptChanges method was not called, why not just call the AcceptChanges method? You could do
that, but if you did, all of the fields’ current version values would have become their original version
values, and you would not have been able to tell which records had changed. For these examples, we
want the original version values and current version values to be distinguishable when a record is
changed.

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

425

The solution to the problem in the previous example is to specify the primary keys for the
destination DataTable. Listing 10-19 is the same example as the previous, except this time we specify
the primary keys.

Listing 10-19. Calling the Second Prototype of the CopyToDataTable Operator When Primary Keys Are

Established

Student[] students = {
 new Student { Id = 1, Name = "Joe Rattz" },
 new Student { Id = 7, Name = "Anthony Adams" },
 new Student { Id = 13, Name = "Stacy Sinclair" },
 new Student { Id = 72, Name = "Dignan Stephens" }
};

DataTable dt1 = GetDataTable(students);
DataTable newTable = dt1.AsEnumerable().CopyToDataTable();
newTable.PrimaryKey = new DataColumn[] { newTable.Columns[0] };

Console.WriteLine("Before upserting DataTable:");
foreach (DataRow dataRow in newTable.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} : original {1} : current {2}",
 dataRow.Field<int>("Id"),
 dataRow.Field<string>("Name", DataRowVersion.Original),
 dataRow.Field<string>("Name", DataRowVersion.Current));
}

(from s in dt1.AsEnumerable()
 where s.Field<string>("Name") == "Anthony Adams"
 select s).Single<DataRow>().SetField("Name", "George Oscar Bluth");

dt1.AsEnumerable().CopyToDataTable(newTable, LoadOption.Upsert);

Console.WriteLine("{0}After upserting DataTable:", System.Environment.NewLine);
foreach (DataRow dataRow in newTable.AsEnumerable())
{
 Console.WriteLine("Student Id = {0} : original {1} : current {2}",
 dataRow.Field<int>("Id"),
 dataRow.HasVersion(DataRowVersion.Original) ?
 dataRow.Field<string>("Name", DataRowVersion.Original) : "-does not exist-",
 dataRow.Field<string>("Name", DataRowVersion.Current));
}

The only difference between this example and the previous is that we add the line setting the

primary key on the new DataTable named newTable. Here are the results:

CHAPTER 10 ■ LINQ TO DATASET OPERATORS

426

Before upserting DataTable:
Student Id = 1 : original Joe Rattz : current Joe Rattz
Student Id = 7 : original Anthony Adams : current Anthony Adams
Student Id = 13 : original Stacy Sinclair : current Stacy Sinclair
Student Id = 72 : original Dignan Stephens : current Dignan Stephens

After upserting DataTable:
Student Id = 1 : original Joe Rattz : current Joe Rattz
Student Id = 7 : original Anthony Adams : current George Oscar Bluth
Student Id = 13 : original Stacy Sinclair : current Stacy Sinclair
Student Id = 72 : original Dignan Stephens : current Dignan Stephens

Now this is more like it. Notice that now, the student whose Id is 7 had the name "Anthony Adams"
but now his name is "George Oscar Bluth". This is exactly what we want.

Summary
In this chapter, we showed you how to use all the IEnumerable operators for set-type operations with
DataRow objects and how to get and set field values using the Field<T> and SetField<T> operators. We
also showed you what can go wrong if you do not use the DataRow specific set-type operator prototypes.
Combining the LINQ to Objects Standard Query Operators with these DataSet-specific operators allows
one to create powerful LINQ queries for DataSet objects.

In the next chapter, we wrap up the LINQ to DataSet part of this book by covering how to query
typed DataSets with LINQ, as well as provide a real database example of a LINQ to DataSet query.

C H A P T E R 11

■ ■ ■

427

Additional DataSet Capabilities

In the previous chapter, we provided numerous examples of querying DataTable objects that would
naturally come from typical DataSets in a real-world development environment. For the sake of
simplicity, we programmatically created the DataTable objects using a static array declaration.
However, there is more to DataSet queries than just creating DataTable objects from statically declared
arrays.

Also, the examples in the previous chapter were all performed on untyped DataSets. Sometimes,
you may find you have a need to query a typed DataSet. LINQ to DataSet can do that too.

In this chapter, we address these issues and show you how to make the most of LINQ to DataSet. We
begin with a discussion of querying typed DataSets with LINQ to DataSet. Then, since we pointed out
that there is more to querying DataSets than programmatically creating DataTable objects, we follow
up with an example of querying a database with LINQ to DataSet.

Required Namespaces
The examples in this chapter reference classes in the System.Data, System.Data.SqlClient, and
System.Linq namespaces. If using directives do not already exist in your code, you should add them
like this:

using System.Data;
using System.Data.SqlClient;
using System.Linq;

Typed DataSets
Typed DataSets can be queried using LINQ, just as untyped DataSets can. However, typed DataSets
make your LINQ query code simpler and easier to read. When querying a typed DataSet, because there
is a class for the DataSet, you may access the table and column names using the typed DataSet object’s
class properties instead of indexing into the Tables collection or using the Field<T> and SetField<T>
operators.

So, instead of accessing a DataSet object’s table named Students like this:

DataTable Students = dataSet.Tables["Students"];

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

428

you can access it like this:

DataTable Students = dataSet.Students;

Instead of obtaining a field’s value like this:

dataRow.Field<string>("Name")

you can obtain it like this:

dataRow.Name

This certainly makes the code more readable and maintainable.
Before showing you an example, we need to create a typed DataSet. Here are the steps to do so:

1. Right-click your project in the Solution Explorer window.

2. Choose the Add/New Item menu option in the context menu.

3. Expand the Categories tree in the Add New Item dialog box that opens. Select the Data node
in the tree. Select the DataSet template in the Data Templates list. Edit the name of the
DataSet file to StudentsDataSet.xsd, and click the Add button.

4. You should now see the DataSet Designer. Put your mouse pointer over the Toolbox, and
drag a DataTable onto the DataSet Designer.

5. Right-click the title bar of the DataTable you just added, and select the Properties menu
option from the context menu.

6. Edit the Name of the DataTable to Students in the Properties window.

7. Right-click the DataTable again, and select the Add/Column menu option from the context
menu.

8. Edit the newly added DataColumn Name to Id, and change the DataType to System.Int32.

9. Right-click the DataTable again, and select the Add/Column menu option from the context
menu.

10. Edit the newly added DataColumn Name to Name.

11. Save the file.

We have now created a typed DataSet named StudentsDataSet. The StudentsDataSet typed
DataSet contains a DataTable named Students that contains two data columns of type DataColumn,
one named Id of type Int32 and one named Name of type string. We can use this typed DataSet to
perform LINQ queries, and because the DataSet is typed, we can access the DataRow fields as first-class
object members. Let’s take a look at an example.

Now that we have a typed DataSet, we can perform LINQ queries on it, as shown in Listing 11-1.

Listing 11-1. An Example of a Typed DataSet Query

StudentsDataSet studentsDataSet = new StudentsDataSet();
studentsDataSet.Students.AddStudentsRow(1, "Joe Rattz");

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

429

studentsDataSet.Students.AddStudentsRow(7, "Anthony Adams");
studentsDataSet.Students.AddStudentsRow(13, "Stacy Sinclair");
studentsDataSet.Students.AddStudentsRow(72, "Dignan Stephens");

string name =
 studentsDataSet.Students.Where(student => student.Id == 7).Single().Name;

Console.WriteLine(name);

In this example, we create a StudentsDataSet object and add four student records using the

student names from the previous chapter. In most production code, you would not be doing this part
because more than likely you would be obtaining your data from a database.

Once our typed DataSet is populated, we perform a query on it. Notice that we access the Students
DataTable as a property on the StudentsDataSet object. Also, notice in the Where operator’s lambda
expression that we directly access the Id property on the element, which happens to be a DataRow, as
opposed to calling the Field property on the DataRow. We can do this because the DataSet is typed.
Also notice that when we obtain the singular DataRow object by calling the Single operator, we can
directly access the Name property on it, again because the DataSet is typed.

Here are the results:

Anthony Adams

Isn’t that cool? Typed DataSets make working with DataSets as easy as working with normal class
objects and class object properties.

Putting It All Together
We wanted the examples in the previous chapter to be easy for someone trying to learn how to query
with the LINQ to DataSet API. We wanted the time you spend working with examples to be focused on
LINQ. We didn’t want you to have to struggle with getting a database or getting your connection string
correct. But, before we leave this chapter, we want to provide a more complete example—one that is
actually getting a DataSet from a database because this is most likely how you will obtain a DataSet in
your real-life code.

We must admit that creating a reasonable-size example that gets data from a database and uses the
LINQ to DataSet API feels contrived. After all, we are going to perform a SQL query on data in a database
using ADO.NET to obtain a DataSet and then turn right around and query that data again using LINQ to
DataSet, all within several lines of code. In real life, some would ask, why not just change the SQL query
to get exactly what you need in the first place? To them we say, play along! What we need here is a
scenario to explain away the silliness.

In our scenario, we work for a company named Northwind. If ever there was a less than subtle hint
at the database we will be using, that was it. Our company has an already existing application that
queries our database for orders. This particular application performs various analyses on which
employees sold items to which customers, and to what countries the orders were shipped. So, the
application is already downloading the employees, customers, and shipping countries for all orders into
a DataSet. Our task is to perform one more analysis on that already queried data. We are required to
produce a unique list of each employee who sold to each company for all orders that were shipped to
Germany.

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

430

In this example, we instantiate a SqlDataAdapter followed by a DataSet and call the
SqlDataAdapter object’s Fill method to populate the DataSet. In this scenario, this would have
already been done because this existing application is already doing it. So, the DataSet object would be
passed into our code. But since we don’t have a full-blown application, we will just do it in the example.
After we obtain the DataSet object with the results of the SQL query, all we have to do for our task is
perform a LINQ to DataSet query and display the results. Listing 11-2 is the code.

Listing 11-2. Putting It All Together

string connectionString =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;";

SqlDataAdapter dataAdapter = new SqlDataAdapter(
 @"SELECT O.EmployeeID, E.FirstName + ' ' + E.LastName as EmployeeName,
 O.CustomerID, C.CompanyName, O.ShipCountry
 FROM Orders O
 JOIN Employees E on O.EmployeeID = E.EmployeeID
 JOIN Customers C on O.CustomerID = C.CustomerID",
 connectionString);

DataSet dataSet = new DataSet();
dataAdapter.Fill(dataSet, "EmpCustShip");

// All code prior to this comment is legacy code.

var ordersQuery = dataSet.Tables["EmpCustShip"].AsEnumerable()
 .Where(r => r.Field<string>("ShipCountry").Equals("Germany"))
 .Distinct(System.Data.DataRowComparer.Default)
 .OrderBy(r => r.Field<string>("EmployeeName"))
 .ThenBy(r => r.Field<string>("CompanyName"));

foreach(var dataRow in ordersQuery)
{
 Console.WriteLine("{0,-20} {1,-20}", dataRow.Field<string>("EmployeeName"),
 dataRow.Field<string>("CompanyName"));
}

As you can see, we are connecting to the Northwind database. You may need to tweak the

connection string for your needs.
Notice that in the previous query, we use the AsEnumerable, Distinct, and Field<T> operators we

covered in the previous chapter and the Where, OrderBy, and ThenBy operators from the LINQ to
Objects API together to create the exact query we want. You really have to admire the way this stuff all
plays together so nicely. If the query is doing what we need it to do, we should get a list of each employee
who sold an order to each company where that order was shipped to Germany in alphabetical order by
employee name and company name, and with no duplicate rows. Here are the results:

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

431

Andrew Fuller Die Wandernde Kuh
Andrew Fuller KÖniglich Essen
Andrew Fuller Lehmanns Marktstand
Andrew Fuller Morgenstern Gesundkost
Andrew Fuller Ottilies Käseladen
Andrew Fuller QUICK-Stop
Andrew Fuller Toms Spezialitäten
Anne Dodsworth Blauer See Delikatessen
Anne Dodsworth KÖniglich Essen
Anne Dodsworth Lehmanns Marktstand
Anne Dodsworth QUICK-Stop
…
Steven Buchanan Frankenversand
Steven Buchanan Morgenstern Gesundkost
Steven Buchanan QUICK-Stop

Notice that for each employee on the left, no company is repeated on the right. This is important
because it is once again demonstrating the necessity of the LINQ to DataSet API set-type operators. As a
test, change the call to the Distinct operator in the previous code so that the
DataRowComparer.Default comparer is not specified, and you will see that you get duplicates.

Just so you can see another example using query expression syntax, Listing 11-3 is the same example
again, but with the aforementioned syntax.

Listing 11-3. Putting It All Together with Query Expression Syntax

string connectionString =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;";

SqlDataAdapter dataAdapter = new SqlDataAdapter(
 @"SELECT O.EmployeeID, E.FirstName + ' ' + E.LastName as EmployeeName,
 O.CustomerID, C.CompanyName, O.ShipCountry
 FROM Orders O
 JOIN Employees E on O.EmployeeID = E.EmployeeID
 JOIN Customers C on O.CustomerID = C.CustomerID",
 connectionString);

DataSet dataSet = new DataSet();
dataAdapter.Fill(dataSet, "EmpCustShip");

// All code prior to this comment is legacy code.

var ordersQuery = (from r in dataSet.Tables["EmpCustShip"].AsEnumerable()
 where r.Field<string>("ShipCountry").Equals("Germany")
 orderby r.Field<string>("EmployeeName"),
 r.Field<string>("CompanyName")
 select r)

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

432

 .Distinct(System.Data.DataRowComparer.Default);

foreach (var dataRow in ordersQuery)
{
 Console.WriteLine("{0,-20} {1,-20}", dataRow.Field<string>("EmployeeName"),
 dataRow.Field<string>("CompanyName"));
}

Now the query is using query expression syntax. Although it was our goal to make the query

functionally the same as the previous, we were not able to do this. Notice that the Distinct operator is
called at the very end of the query now. Remember, the compiler cannot translate all operators from a
query specified with query expression syntax, only the most commonly used ones. In this case, it does
not know how to translate the Distinct operator. Because of this, we cannot make that call in the query
expression syntax portion of the query. As you can see, we did call it at the end of the query. We will end
up with the same results from this query.

However, there is a performance difference between the query in Listing 11-3 and the query in
Listing 11-2. In Listing 11-2, the Distinct operator is called just after the Where operator, so duplicate
records are eliminated from the results set prior to ordering them. In Listing 11-3, the Distinct operator
is not called until the end, so the duplicate records are still there during the ordering of the results set.
This means records are being sorted that will be eliminated once the Distinct operator is called. This is
unnecessary work, but it’s unavoidable if you want to use query expression syntax for this query.

Summary
As covered in this chapter, not only can you query normal DataSets with LINQ to DataSet, but you can
query typed DataSets. Typed DataSets make your code easier to maintain and more readable, and
LINQ to DataSet makes querying those typed DataSets a breeze. We also demonstrated a more real-
world LINQ to DataSet query that queried the Northwind database.

The LINQ to DataSet API adds yet another domain to those available for LINQ queries. With all the
existing code already utilizing DataSets, LINQ to DataSet promises to be easy to retrofit into your legacy
.NET code, thereby making it easier than ever to query data from a DataSet.

One benefit that the LINQ to DataSet API has over the LINQ to SQL API is that no database class
code needs to be generated and compiled ahead of time to perform LINQ to DataSet queries. This makes
LINQ to DataSet more dynamic and suitable for database-type utilities where the databases will be
unknown until runtime.

By providing the AsEnumerable operator to create sequences from DataTable objects, using the
LINQ to Objects Standard Query Operators becomes possible, adding even more power to the arsenal of
query capabilities.

For the LINQ to DataSet API, operators have been added for the key classes of the DataSet:
DataTable, DataRow, and DataColumn. One must not forget the issue that makes the new set-type
operator prototypes for the Distinct, Union, Intersect, Except, and SequenceEqual operators
necessary: the problem that DataRows have being compared for equality. So when working with
DataSets, DataTables, and DataRows, always opt for the LINQ to DataSet set-type operator prototypes
for the Distinct, Union, Intersect, Except, and SequenceEqual operators where the equality
comparer object is specified instead of the prototype versions without an equality comparer object being
specified.

Lastly, when obtaining a column’s value, use the Field<T> and SetField<T> operators to eliminate
issues with comparisons for equality and null values.

CHAPTER 11 ■ ADDITIONAL DATASET CAPABILITIES

433

One thing became apparent while working with the LINQ to DataSet API. We had totally
underestimated the power and utility of DataSets. They offer so much in the way of a cached, relational
data store. And, although they already offer somewhat limited search facilities, with the LINQ to DataSet
API, those limitations have been removed. You now have LINQ to query your DataSets with, and that
makes coding just that much easier.

P A R T 5

■ ■ ■

435

LINQ to SQL

C H A P T E R 12

■ ■ ■

437

LINQ to SQL Introduction

Listing 12-1. A Simple Example Updating the ContactName of a Customer in the Northwind Database

// Create a DataContext.
Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Retrieve customer LAZYK.
Customer cust = (from c in db.Customers
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

// Update the contact name.
cust.ContactName = "Ned Plimpton";

try
{
 // Save the changes.
 db.SubmitChanges();
}
// Detect concurrency conflicts.
catch (ChangeConflictException)
{
 // Resolve conflicts.
 db.ChangeConflicts.ResolveAll(RefreshMode.KeepChanges);
}

■ NNote This example requires generation of entity classes, which we will cover later in this chapter.

In Listing 12-1, we used LINQ to SQL to query the record whose CustomerID field is "LAZYK" from
the Northwind database’s Customers table and to return a Customer object representing that record. We
then updated the Customer object’s ContactName property and saved the change to the database by

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

438

calling the SubmitChanges method. That’s not much code considering it is also detecting concurrency
conflicts and resolving them if they occur.

Run Listing 12-1 by pressing Ctrl+F5. There is no console output, but if you check the database, you
should see that the ContactName for customer LAZYK is now "Ned Plimpton".

■ NNote This example makes a change to the data in the database without changing it back. The original value of
the ContactName for customer LAZYK is "John Steel". You should change this back so that no subsequent
examples behave improperly. You could change it manually, or you could just change the example code to set it

back, and run the example again.

This book uses an extended version of the Northwind database. Please read the section in this
chapter titled “Obtaining the Appropriate Version of the Northwind Database” for details.

Introducing LINQ to SQL
At this point, we have discussed using LINQ with in-memory data collections and arrays, XML, and
DataSets. Now, we will move on to what many think is the most compelling reason to use LINQ, LINQ
to SQL.

LINQ to SQL is an application programming interface (API) for working with SQL Server databases.
In the current world of object-oriented programming languages, there is a mismatch between the
programming language and the relational database. When writing an application, we model classes to
represent real-world objects such as customers, accounts, policies, and flights. We need a way to persist
these objects so that when the application is restarted, these objects and their data are not lost.
However, most production-caliber databases are still relational and store their data as records in tables,
not as objects. A customer class may contain multiple addresses and phone numbers stored in
collections that are child properties of that customer class; once persisted, this data will most likely be
stored in multiple tables, such as a customer table, an address table, and a phone table.

Additionally, the data types supported by the application language differ from the database data
types. Developers are required to write code that loads and saves customer objects from the appropriate
tables, handling the data type conversion between the application language and the database. This is a
tedious and error-prone process. Because of this object-relational mapping (ORM) problem, often
referred to as the object-relational impedance mismatch, many prewritten ORM software solutions have
been designed through the years. LINQ to SQL is Microsoft’s entry-level LINQ-enabled ORM
implementation for SQL Server.

Notice that we said “for SQL Server.” LINQ to SQL is exclusive to SQL Server. LINQ, however, is not,
and third-party LINQ support is available for most mainstream databases, including Oracle, DB2,
MySQL, SqlLite, and others.

You may have also noticed that we said LINQ to SQL is an entry-level ORM implementation. If you
find it is not powerful or flexible enough to meet your requirements, you may want to investigate LINQ
to Entities, which we cover in Chapter 19.

Most ORM tools attempt to abstract the physical database into business objects. With that
abstraction, we sometimes lose the ability to perform SQL queries, which is a large part of the attraction
to relational databases. This is what separates LINQ to SQL from many of its contemporaries. Not only
do we get the convenience of business objects that are mapped to the database, we get a full-blown
query language, similar to the already familiar SQL, thrown in to boot.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

439

■ TTip LINQ to SQL is an entry-level ORM tool that permits powerful SQL queries.

In addition to providing LINQ query capabilities, as long as your query returns LINQ to SQL entity
objects, as opposed to returning single fields, named nonentity classes, or anonymous classes, LINQ to
SQL also provides change tracking and database updates, complete with optimistic concurrency conflict
detection and resolution, and transactional integrity.

In Listing 12-1, we first had to instantiate an instance of the Northwind class. That class is derived
from the DataContext class, and we will cover this class in-depth in Chapter 16. For now, consider it a
supercharged database connection. It also handles updating the database for us, as you can see when we
later call the SubmitChanges method on it. Next, we retrieve a single customer from the Northwind
database into a Customer object. That Customer object is an instantiation of the Customer class, which
is an entity class that had to be either written or generated. In this case, the Customer class was
generated by the SQLMetal utility, as was the Northwind class, for that matter. After retrieving the
customer, we updated one of the Customer object’s properties, ContactName, and called the
SubmitChanges method to persist the modified contact name to the database. Notice that we wrapped
the call to the SubmitChanges method in a try/catch block and specifically caught the
ChangeConflictException exception. This is for handling concurrency conflicts, which we will cover in
detail in Chapter 17.

Before you can run this example or any of the others in this chapter, you will need to create entity
classes for the Northwind database. Please read the section in this chapter titled “Prerequisites for
Running the Examples” to guide you through creating the necessary entity classes.

LINQ to SQL is a complex subject, and providing any example requires involving many LINQ to SQL
elements. In the first example at the beginning of this chapter, we are using a derived DataContext class,
which is the Northwind class; an entity class, which is the Customer class; concurrency conflict
detection and resolution; and database updates via the SubmitChanges method. We can’t possibly
explain all these concepts simultaneously. So, we need to give you some background on each of these
components before we begin so that you will have a basic understanding of the foundation of LINQ to
SQL. Rest assured that we will cover each of these concepts in agonizing detail later in the subsequent
LINQ to SQL chapters.

The DataContext
The DataContext class establishes a connection to a database. It also provides several services that
provide identity tracking, change tracking, and change processing. We’ll cover each of these services in
more detail in Chapter 16. For now, just know that it is the DataContext class that is connecting us to
the database, monitoring what we have changed, and updating the database when we call its
SubmitChanges method.

It is typical with LINQ to SQL to use a class derived from the DataContext class. The name of the
derived class usually is the same as the database to which it is mapped. We will often refer to that derived
class in the LINQ to SQL chapters as [Your]DataContext, because its name is dependent on the
database for which it is being created.

In our examples, our derived DataContext class will be named Northwind. We use the SqlMetal tool
included with Visual Studio 2010, which automatically generates mapping classes from a SQL Server
database. SQLMetal names the generated, derived DataContext class after the database for which it is
generated.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

440

This derived DataContext class, [Your]DataContext, will typically have a Table<T> public
property for each database table you have mapped in the database, where T is the type of the entity class
that is instantiated for each retrieved record from that particular database table. The data type Table<T>
is a specialized collection. For example, since there is a Customers table in the Northwind database, our
Northwind class derived from the DataContext class will have a Table<Customer> named Customers.
This means that we can access the records in the Customersdatabase table by directly accessing the
Customers property of type Table<Customer> in our Northwind class. You can see an example of this in
the first example in this chapter, Listing 12-1, where we coded db.Customers. That code is querying the
records in the Customerstable of the Northwind database.

Entity Classes
LINQ to SQL involves using entity classes, where each entity class is typically mapped to a single
database table. However, using entity class inheritance mapping, it is possible to map an entire class
hierarchy to a single table under special circumstances. You can read more about this in Chapter 18. So,
we have entity classes mapping to database tables, and the entity class properties get mapped to table
columns. This entity class-to-table and property-to-column mapping is the essence of LINQ to SQL.

■ NNote The essence of LINQ to SQL is mapping entity classes to database tables and entity class properties to

database table columns.

This mapping can occur directly in class source files by decorating classes with the appropriate
attributes, or it can be specified with an external XML mapping file. By using an external XML mapping
file, the LINQ-to-SQL-specific bits can be kept external to the source code. This could be very handy if
you don’t have source code or want to keep the code separated from LINQ to SQL. For the majority of
examples in the LINQ to SQL chapters, we will be using entity classes that have been generated by the
SQLMetal command-line tool. SQLMetal generates the entity classes with the LINQ to SQL mapping bits
right in the source module it generates. These mapping bits are in the form of attributes and attribute
properties.

You will be able to detect the existence of entity classes in our examples when you see classes or
objects that have the singular form of a Northwind database table name. For example, in Listing 12-1, we
use a class named Customer. Because Customer is the singular form of Customers and the Northwind
database has a table named Customers, this is your clue that the Customer class is an entity class for the
Northwind database’s Customers table.

The SQLMetal command-line tool has an option called /pluralize that causes the entity classes to
be named in the singular form of the database table name. Had we not specified the /pluralize option
when generating our entity classes, our entity class would be named Customers, as opposed to
Customer, because the name of the table is Customers. We mention this in case you get confused
reading other writings about LINQ to SQL. Depending on how the author ran the SQLMetal tool and
what options were specified, the entity class names may be plural or singular.

Associations
An association is the term used to designate a primary key to foreign key relationship between two entity
classes. In a one-to-many relationship, the result of an association is that the parent class, the class
containing the primary key, contains a collection of the child classes, the classes having the foreign key.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

441

That collection is stored in a private member variable of type EntitySet<T>, where T will be the type of
the child entity class.

For example, in the Customer entity class generated by the SQLMetal command-line tool for the
Northwind database, there is a private member of type EntitySet<Order> named _Orders that
contains all of the Order objects for a specific Customer object:

private EntitySet<Order> _Orders;

SQLMetal also generated a public property named Orders to be used for accessing the private

_Orders collection.
On the other end of the relationship, the child, which is the class containing the foreign key,

contains a reference to the parent class, since that is a many-to-one relationship. That reference is
stored in a private member variable of type EntityRef<T>, where T is the type of the parent class.

In the generated Northwind entity classes, the Order entity class contains a private member
variable of type EntityRef<Customer> named _Customer:

private EntityRef<Customer> _Customer;

Again, the SQLMetal tool also generated a public property named Customer to provide access to the

parent reference.
The association, primary and foreign keys, and the direction of the relationship are all defined by

attributes and attribute properties in the generated entity classes’ source module.
The benefit gained by the association is the ability to access a parent’s child classes, and therefore

database records, as easily as accessing a property of the parent class. Likewise, accessing a child’s
parent class is as easy as accessing a property of the child class.

Concurrency Conflict Detection
One of the services that the DataContext performs is change processing. When you try to update the
database by calling the DataContext object’s SubmitChanges method, it automatically performs
optimistic concurrency conflict detection.

If a conflict is detected, a ChangeConflictException exception is thrown. Any time you call the
SubmitChanges method, you should wrap that call in a try/catch block and catch the
ChangeConflictException exception. This is the proper way to detect concurrency conflicts.

You can see an example of this in Listing 12-1. We will go into detail about concurrency conflict
detection and resolution in Chapter 17. Many of the examples in this and the following LINQ to SQL
chapters will not provide concurrency conflict detection or resolution for the sake of brevity and clarity.
In real code, you should always do both.

Concurrency Conflict Resolution
Once a concurrency conflict has been detected, the next step will be to resolve the concurrency conflict.
This can be done in several ways. In Listing 12-1, we do it the simplest way by calling the ResolveAll
method of the ChangeConflicts collection of the derived DataContext class when the
ChangeConflictException exception is caught.

Again, in many of the examples in the LINQ to SQL chapters, we will not have code to either detect
the concurrency conflicts or to resolve them, but you should always have code handling this in your real
production code.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

442

As we mentioned in the previous section, we will cover concurrency conflict resolution in detail in
Chapter 17.

Prerequisites for Running the Examples
Since virtually all the examples in this and the following LINQ to SQL chapters use Microsoft’s sample
extended Northwind database, we will need entity classes and mapping files for the Northwind
database.

Obtaining the Appropriate Version of the Northwind Database
Unfortunately, the standard Microsoft Northwind database is missing a few things we will need to fully
show off LINQ to SQL, such as table-valued and scalar-valued functions. Therefore, instead of using the
standard Northwind database, we will use an extended version of it that Microsoft initially distributed to
demonstrate LINQ.

We have included the extended version of the Northwind database with the source code for this
book, which you can download from the Apress site.

Generating the Northwind Entity Classes
Because we have not yet covered how to generate entity classes, we are going to tell you how to generate
them without providing much explanation. However, we cover the details thoroughly in Chapter 13.

To generate the entity classes, you must have the extended version of the Northwind database that
we discussed in the previous section.

Open a Visual Studio command prompt. To do so, look in your Microsoft Visual Studio 2010 menu
for a submenu named Visual Studio Tools for an item named Visual Studio Command Prompt (2010),
and select it. Once the command prompt opens, change your current directory to whatever directory in
which you desire to create your entity classes and external mapping file. We are going to change our
directory to the root of the C: drive:

cd \

If you are going to generate your entity classes using the Northwind database files without first

attaching the database to them, use the following command:

sqlmetal /namespace:nwind /code:Northwind.cs /pluralize /functions /sprocs /views
<path to Northwind MDF file>

■ CCaution Pay particular attention to the MDF file name and its casing, as you specify it on the command line.
The name and case of the DataContext derived class that is generated will match the file name that is passed
on the command line, not the physical file name itself. If you deviate from a DataContext derived class name of
Northwind, none of the examples will work without modification. Therefore, it is critical that you pass the

Northwind database file name as [path]\Northwind.mdf, not northwind.mdf, NorthWind.mdf, or any
other variation of the name.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

443

So, to create entity classes from a file named Northwind.mdf, enter the following command:

sqlmetal /namespace:nwind /code:Northwind.cs /pluralize /functions /sprocs /views
"C:\Northwind.mdf"

Running this command create an entity class module named Northwind.cs in the current

directory. If you are going to generate your entity classes from the Northwind database that is already
attached to your SQL Server, use the following command:

sqlmetal /server:<server> /user:<user> /password:<password> /database:Northwind
/namespace:nwind /code:Northwind.cs /pluralize /functions /sprocs /views

So, to create entity classes from an attached database named Northwind, enter the following

command:

sqlmetal /server:.\SQLExpress /database:Northwind /namespace:nwind
/code:Northwind.cs /pluralize /functions /sprocs /views

■ NNote Depending on your environment, you may need to specify a user with the /user:[username] option
and a password with the /password:[password] option on the command line in the preceding example. Please

read the section titled “SQLMetal” in Chapter 13 for more details.

The command entered using either of these approaches tells SQLMetal to generate the source code
into a file named Northwind.cs in the current directory. We will cover all the program’s options in the
next chapter. Copy the generated Northwind.cs file into your project by adding it as an existing item.

You may now utilize LINQ to SQL on the Northwind database using the entity classes contained in
the Northwind.cs file.

■ TTip Be cautious of making changes to the generated entity class source file. You may find you need to
regenerate it at some later point, causing you to lose any changes. You may desire to add business logic by adding

methods to the entity classes. Instead of modifying the generated file, consider taking advantage of C# partial

classes to keep the added properties and methods in a separate source module.

Generating the Northwind XML Mapping File
We also need to generate a mapping file to use in some of the examples. Again, we will use SQLMetal for
this purpose. So, from the same command line and path, execute the following command:

sqlmetal /map:northwindmap.xml "C:\Northwind.mdf" /pluralize /functions /sprocs
/views /namespace:nwind /code:Northwind.cs

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

444

Again, pay close attention to the casing used to specify the MDF file. This will generate a file named

northwindmap.xml into the current directory.

Using the LINQ to SQL API
To use the LINQ to SQL API, you will need to add the System.Data.Linq.dll assembly to your project if
it is not already there. Also, if they do not already exist, you will need to add using directives to your
source module for the System.Linq and System.Data.Linq namespaces like this:

using System.Data.Linq;
using System.Linq;

Additionally, for the examples, you will need to add a using directive for the namespace the entity

classes were generated into, nwind:
using nwind;

IQueryable<T>
You will see that in many of the LINQ to SQL examples in this chapter and the subsequent LINQ to SQL
chapters, we work with sequences of type IQueryable<T>, where T is the type of an entity class. These
are the type of sequences that are typically returned by LINQ to SQL queries. They will often appear to
work just like an IEnumerable<T> sequence, and that is no coincidence. The IQueryable<T> interface
extends the IEnumerable<T> interface. Here is the definition of IQueryable<T>:

interface IQueryable<T> : IEnumerable<T>, IQueryable

Because of this inheritance, you can treat an IQueryable<T> sequence like an IEnumerable<T>

sequence.

Some Common Methods
You will see that the examples in this chapter and the others that deal with LINQ to SQL quickly become
complex. Demonstrating a concurrency conflict requires making changes to the database external to
LINQ to SQL. To highlight the LINQ to SQL code and to eliminate as many of the trivial details as
possible (while at the same time providing useful examples), we have created some common methods.
Be sure to add these common methods to your source modules as appropriate when testing the
examples in the LINQ to SQL chapters.

GetStringFromDb()
A common method that will come in handy is a method to obtain a simple string from the database
using standard ADO.NET. This will allow us to examine what is actually in the database, as opposed to
what LINQ to SQL is showing us.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

445

GetSt ringF romD b: A Meth od for Ret rievi ng a Stri ng Using A DO. NET

static private string GetStringFromDb(
 System.Data.SqlClient.SqlConnection sqlConnection, string sqlQuery)
{
 if (sqlConnection.State != System.Data.ConnectionState.Open)
 {
 sqlConnection.Open();
 }

 System.Data.SqlClient.SqlCommand sqlCommand =
 new System.Data.SqlClient.SqlCommand(sqlQuery, sqlConnection);

 System.Data.SqlClient.SqlDataReader sqlDataReader = sqlCommand.ExecuteReader();
 string result = null;

 try
 {
 if (!sqlDataReader.Read())
 {
 throw (new Exception(
 String.Format("Unexpected exception executing query [{0}].", sqlQuery)));
 }
 else
 {
 if (!sqlDataReader.IsDBNull(0))
 {
 result = sqlDataReader.GetString(0);
 }
 }
 }
 finally
 {
 // always call Close when done reading.
 sqlDataReader.Close();
 }

 return (result);
}

To call the GetStringFromDb method, a SqlConnection and a string containing a SQL query are

passed into the method. The method verifies that the connection is open, and if the connection is not
open, the method opens it.

Next, a SqlCommand is created by passing the query and connection into the constructor. Then, a
SqlDataReader is obtained by calling the ExecuteReader method on the SqlCommand. The
SqlDataReader is read by calling its Read method, and if data was read and the returned first column’s

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

446

value is not null, the returned first column value is retrieved with the GetString method. Finally, the
SqlDataReader is closed, and the first column value is returned to the calling method.

ExecuteStatementInDb()
Sometimes, we will need to execute nonquery SQL statements such as insert, update, and delete in
ADO.NET to modify the state of the database external to LINQ to SQL. For that purpose, we have created
the ExecuteStatementInDb method:

ExecuteSt atement InD b: A Method for Executing Insert, Updates, and Delet es in

ADO.NE T

static private void ExecuteStatementInDb(string cmd)
{
 string connection =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated
Security=SSPI;";

 System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(connection);

 System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

 sqlComm.Connection = sqlConn;
 try
 {
 sqlConn.Open();
 Console.WriteLine("Executing SQL statement against database with ADO.NET ...");
 sqlComm.ExecuteNonQuery();
 Console.WriteLine("Database updated.");
 }
 finally
 {
 // Close the connection.
 sqlComm.Connection.Close();
 }
}

To call the ExecuteStatementInDb method, a string is passed containing a SQL command. A

SqlConnection is created followed by a SqlCommand. The SqlConnection is assigned to the
SqlCommand. The SqlConnection is then opened, and the SQL command is executed by calling the
SqlCommand object’s ExecuteNonQuery method. Finally, the SqlConnection is closed.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

447

Summary
In this chapter, we have introduced you to LINQ to SQL and some of its most basic terminology, such as
DataContext objects, entity classes, associations, and concurrency conflict detection and resolution.
We showed you how to generate entity classes and external mapping file for the extended Northwind
database. These entity classes will be used extensively throughout the LINQ to SQL examples. We also
provided a couple of common methods that many of the examples in the subsequent LINQ to SQL
chapters will rely on. The next step is to arm you with some tips and show you how to use the necessary
tools to leverage LINQ to SQL, and this is exactly what the next chapter is about.

CHAPTER 12 ■ LINQ TO SQL INTRODUCTION

448

C H A P T E R 13

■ ■ ■

449

LINQ to SQL Tips and Tools

In the previous chapter, we introduced you to LINQ to SQL and most of its terminology. We showed you
how to generate the entity classes that most of the examples in the LINQ to SQL chapters will require.
We also provided some common methods that many of the examples in these chapters will need.

In this chapter, we will present some tips that we hope you will find useful while working with LINQ
to SQL. We will also show you some of the tools that make using LINQ to SQL such a pleasure.

Introduction to LINQ to SQL Tips and Tools
Now would be a good time to remind you that before you can run the examples in this chapter, you must
have met the prerequisites. First, you must have the extended Northwind database and already
generated the entity classes for it. Please review the section in Chapter 12 titled “Prerequisites for
Running the Examples” to ensure that you have the appropriate database and generated entity classes.

In this chapter, because we will be demonstrating code that uses entity classes generated by both
SQLMetal and the Object Relational Designer, we will not specify a using directive for the nwind
namespace in the examples. Instead, we will explicitly specify the namespace where it’s needed for the
nwind classes. This is necessary in this chapter to control which Customer entity class is referenced in
each example. Since, by default, the Object Relational Designer generates a namespace that is the same
as your project and since the examples will already exist in your project’s namespace, you will not need
to specify the namespace for the designer-generated entity classes, but you will for the SQLMetal-
generated entity classes.

■ NNote Unlike most of the LINQ to SQL chapters, do not specify a using directive for the nwind namespace for

the examples in this chapter.

Tips
In keeping with our style, we are going to jump the gun and give you some tips requiring information we
have yet to discuss. So if this section makes little sense to you, our work is done! After all, we want you to
know about these tips before you need them, not after you have learned them the hard way.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

450

Use the DataContext.Log Property
Now is a good time to remind you of some of the LINQ to SQL–specific tips we provided in Chapter 1.
One of those tips, titled “The DataContext Log,” discussed how you could use the DataContext object’s
Log property to display what the translated SQL query will be. This can be very useful not only for
debugging purposes but also for performance analysis. You may find that LINQ to SQL queries are
getting translated into very inefficient SQL queries. Or, you may find that because of the deferred loading
of associated entity classes, you are making many more SQL queries than necessary. The
DataContext.Log property will reveal this type of information to you.

To take advantage of this feature, assign the DataContext.Log property to a
System.IO.TextWriter object, such as Console.Out.

Listing 13-1 contains an example.

Listing 13-1. An Example Using the DataContext.Log Property

nwind.Northwind db =
 new nwind.Northwind(@"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind");

db.Log = Console.Out;

var custs = from c in db.Customers
 where c.Region == "WA"
 select new { Id = c.CustomerID, Name = c.ContactName };

foreach (var cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.Id, cust.Name);
}

Since we will be demonstrating both SQLMetal- and Object Relational Designer–generated entity

classes in this chapter, there will be two Customer classes that exist for the examples. As we mentioned
earlier, we did not include a using directive for the examples so that the entity classes such as Customer
would not be ambiguous. Therefore, we have to specify the namespace nwind for the Northwind class in
Listing 13-1, since we are using the SQLMetal-generated entity class code for this example.

As you can see, in Listing 13-1, we simply assign Console.Out to our Northwind DataContext
object’s Log property. Here are the results of Listing 13-1:

SELECT [t0].[CustomerID], [t0].[ContactName]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[Region] = @p0
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [WA]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

LAZYK - John Steel
TRAIH - Helvetius Nagy
WHITC - Karl Jablonski

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

451

This allows us to see exactly what the generated SQL query looks like. Notice that the generated SQL
statement is not just formatting a string; it is using parameters. So by using LINQ to SQL, we
automatically get protection from SQL injection attacks.

■ CCaution If you see in your results that the name associated with customer LAZYK is Ned Plimpton instead of
John Steel as we show in the preceding example, you probably ran Listing 13-1 without setting the data back as

we recommended.

In later chapters, we will demonstrate how to use this logging feature to detect and resolve potential
performance issues.

Use the GetChangeSet() Method
You can use the DataContext object’s GetChangeSet method to obtain all entity objects containing
changes that need to be persisted to the database when the SubmitChanges method is called. This is
useful for logging and debugging purposes. This method is also fully documented in Chapter 16.

Consider Using Partial Classes or Mapping Files
Without a doubt, one of the bigger hassles of using any ORM tool is going to be managing changes to the
database. If you keep all your business class logic and LINQ to SQL logic in the same modules, you may
be creating a maintenance headache for yourself down the road once the database changes. Consider
leveraging partial classes by adding your business logic to a separate module than the generated entity
class modules. By using partial classes to keep your LINQ to SQL database attributes separate from your
business logic, you will minimize the need to add code back to any generated entity class code.

Alternatively, you could have your business classes and your LINQ to SQL entity mapping
decoupled by using an external XML mapping file. This is an XML file that maps business objects to the
database without relying on LINQ to SQL attributes. You can read more about mapping files in the “XML
External Mapping File Schema” section in Chapter 15 and in the DataContext constructor section of
Chapter 16.

Consider Using Partial Methods
Partial methods allow you to hook into certain events that occur in entity classes. The beauty of partial
methods is that if you do not take advantage of them by implementing the body of a partial method,
there is no overhead, and no code is emitted by the compiler to call them.

We discuss how partial methods are used in entity classes in the “Calling the Appropriate Partial
Methods” section of Chapter 15.

Tools
Just as there are some tips we want to make you aware of before you actually need them, there are some
tools that can make your life easier. Again, we may be bringing these up before they make sense to you,

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

452

but we want you to be aware of them and how they can facilitate and accelerate your adoption of LINQ
to SQL.

SQLMetal
Although we have yet to discuss the different ways to create the entity classes necessary to use LINQ to
SQL with a database, you should know that the easiest way to generate all entity classes for an entire
database, if you do not already have business classes, is with the SQLMetal program. You can find this
tool in your C:\Program Files\Microsoft SDKs\Windows\v7.0A\Bin\NETFX 4.0 Tools directory.
SQLMetal is a command-line tool that generates all the necessary and nifty parts of LINQ to SQL entity
classes.

To see the options available for the SQLMetal program, open a Visual Studio command prompt. To

do so, look in your Microsoft Visual Studio 2010 menu for an item named Visual Studio Command
Prompt (2010) in a submenu named Visual Studio Tools , and select it.

Once the command prompt is open, type sqlmetal, and press Enter:

sqlmetal

This command will cause the program’s template and options to be displayed:

Microsoft (R) Database Mapping Generator 2008 version 4.0.30319.1
for Microsoft (R) .NET Framework version 4.0
Copyright (C) Microsoft Corporation. All rights reserved.

SqlMetal [options] [<input file>]
Generates code and mapping for the LINQ to SQL component of the .NET framework.

SqlMetal can:

 - Generate source code and mapping attributes or a mapping file from a database.
 - Generate an intermediate dbml file for customization from the database.
 - Generate code and mapping attributes or mapping file from a dbml file.

Options:
 /server:<name> Database server name.
 /database:<name> Database catalog on server.
 /user:<name> Login user ID (default: use Windows Authentication).
 /password:<password> Login password (default: use Windows Authentication).
 /conn:<connection string> Database connection string. Cannot be used with
/server, /database, /user or /password options.
 /timeout:<seconds> Timeout value to use when SqlMetal accesses the
database (default: 0 which means infinite).
 /views Extract database views.
 /functions Extract database functions.
 /sprocs Extract stored procedures.
 /dbml[:file] Output as dbml. Cannot be used with /map option.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

453

 /code[:file] Output as source code. Cannot be used with /dbml
option.
 /map[:file] Generate mapping file, not attributes. Cannot be used
with /dbml option.
 /language:<language> Language for source code: VB or C# (default: derived
from extension on code file name).
 /namespace:<name> Namespace of generated code (default: no namespace).
 /context:<type> Name of data context class (default: derived from
database name).
 /entitybase:<type> Base class of entity classes in the generated code
(default: entities have no base class).
 /pluralize Automatically pluralize or singularize class and
member names using English language rules.
 /serialization:<option> Generate serializable classes: None or Unidirectional
(default: None).
 /provider:<type> Provider type: SQLCompact, SQL2000, SQL2005, or
SQL2008. (default: provider is determined at run time).
 <input file> May be a SqlExpress mdf file, a SqlCE sdf file, or a
dbml intermediate file.
Create code from SqlServer:
 SqlMetal /server:myserver /database:northwind /code:nwind.cs /namespace:nwind
Generate intermediate dbml file from SqlServer:
 SqlMetal /server:myserver /database:northwind /dbml:northwind.dbml
/namespace:nwind
Generate code with external mapping from dbml:
 SqlMetal /code:nwind.cs /map:nwind.map northwind.dbml
Generate dbml from a SqlCE sdf file:
 SqlMetal /dbml:northwind.dbml northwind.sdf

Generate dbml from SqlExpress local server:

 SqlMetal /server:.\sqlexpress /database:northwind /dbml:northwind.dbml
Generate dbml by using a connection string in the command line:
 SqlMetal /conn:"server='myserver'; database='northwind'" /dbml:northwind.dbml

As you can see, it even provides a few examples too. Table 13-1 summarizes the options.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

454

Table 13-1. SQLMetal Command-Line Options

Option / Example Description

/server:<name>
/server:.\SQLExpress

This option allows you to specify the name of the database
server to connect to. If omitted, SQLMetal will default to
localhost/sqlexpress.

To have SQLMetal generate entity classes from an MDF
file, omit this option and the /database option, and
specify the MDF file name at the end of the command.

/database:<name>
/database:Northwind

This is the name of the database on the specified server for
which to generate entity classes.

To have SQLMetal generate entity classes from an MDF
file, omit this option and the /server option, and specify
the MDF file name at the end of the command.

/user:<name>
/user:sa

This is the user account used to log in to the specified
database when connecting to create the entity classes.

/password:<password>
/password:1590597893

This is the password used for the specified user account to
log in to the specified database when connecting to create
the entity classes.

/conn:<connection string>
/conn:"Data
Source=.\SQLEXPRESS;Initial
Catalog=Northwind;Integrated
Security=SSPI;"

This is a connection string to the database. You may use
this instead of specifying the /server, /database, /user,
and /password options.

/timeout:<seconds>
/timeout:120

This option allows you to specify the time-out value in
seconds for SqlMetal to use when generating the entity
classes. Omitting this option will cause SqlMetal to default
to 0, which means never time out.

This option does not control the time-out your generated
DataContext will use for LINQ to SQL queries. If you want
to control the time-out for that, consider setting the
CommandTimeout property of the DataContext class, or for
even more granular control, call the
DataContext.GetCommand method to set the time-out for
a specific query. See Chapter 16 for an example doing this.

/views
/views

Specify this option to have SQLMetal generate the
necessary Table<T> properties and entity classes to
support the specified database’s views.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

455

/functions
/functions

Specify this option to have SQLMetal generate methods to
call the specified database’s user-defined functions.

/sprocs
/sprocs

Specify this option to have SQLMetal generate methods to
call the specified database’s stored procedures.

/dbml[:file]
/dbml:Northwind.dbml

This option specifies the file name for a DBML
intermediate file. The purpose of generating this file is so
that you control class and property names of the generated
entity classes.

You would generate the DBML intermediate file with this
option, edit the file, and then create a source code module
by calling SQLMetal on the intermediate DBML file and
specifying the /code option.

Alternatively, you could load the DBML intermediate file
created with this option into the Object Relational
Designer, edit the file in the designer using its GUI, and
allow the designer to generate the necessary source code.
This option cannot be used with the /map option.

/code[:file]
/code:Northwind.cs

This is the file for SQLMetal to create and that contains the
derived DataContext and entity classes in the specified
programming language.

This option cannot be used with the /dbml option.
Interestingly, if you specify both the /code and /map
options in the same invocation of SQLMetal, you will get
code generated without LINQ to SQL attributes. Of course,
you would use the also generated map with the generated
code to be able to use LINQ to SQL.

/map[:file]
/map:northwindmap.xml

This option specifies that SQLMetal should generate an
XML external mapping file, as opposed to a source code
module specified by the /code option.

This XML external mapping file can then be loaded when
instantiating the DataContext. This allows LINQ to SQL to
be used without any actual LINQ to SQL source code being
compiled with your code.

/language:<language> language:C# This option defines for which programming language
SQLMetal is to generate the code. The valid options are
currently csharp, C#, and VB.

Omitting this option will cause SQLMetal to derive the
language from the specified code file name’s extension.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

456

/namespace:<name>
/namespace:nwind

This dictates the namespace that the generated derived
DataContext and entity classes will live in.

/context:<type>
/context:Northwind

This specifies the name of the generated class that will be
derived from the DataContext class.

If this option is omitted, the class name will be the same as
the database for which the code was generated.

/entitybase:<type>
/entitybase:MyEntityClassBase

This specifies the name of a class for SQLMetal to specify
as the base class for all generated entity classes.

If this option is omitted, the generated entity classes will
not be derived from any class.

/pluralize
/pluralize

This option causes SQLMetal to retain the plural names for
tables but to singularize the entity class names mapped to
those tables. So, for a database table named Customers,
the entity class generated will be named Customer
(singular), and a Table<Customer> will be generated
named Customers (plural). In this way, a Customer object
exists in a Customers table. Grammatically speaking, this
sounds correct.

Without specifying this option, the entity class will be
named Customers (plural), and the Table<Customers>
will be named Customers (plural). This means a
Customers object will exist in the Customers table.
Grammatically speaking, this sounds incorrect.

/serialization:<option>
/serialization:None

This option specifies whether SQLMetal should generate
serialization attributes for the classes. The choices are
None and Unidirectional.

If this option is not specified, SQLMetal will default to
None.

/provider:<type>
/provider:SQL2005

This option is used to specify the database provider class.
The valid values are SQLCompact, SQL2000, SQL2005, and
SQL2008. SQLMetal will generate a Provider attribute that
specifies the class you specify with this option.

Each of these values maps to a provider class in the
System.Data.Linq.SqlClient namespace. SqlMetal will
append Provider to the end of the value specified to build
the provider class name and generate a Provider attribute
specifying that provider class name.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

457

Notice that the /dbml, /code, and /map options may be specified without providing a file name. If a
file name is not specified, the generated code or XML will be output to the console.

XML Mapping File Vs. DBML Intermediate File
One of the confusing aspects of using SQLMetal is that it allows you to specify two different types of XML
files to produce. One is created by specifying the /map option, and the other is created by specifying the
/dbml option.

The difference between these two files is that the /map option creates an XML external mapping file
intended to be loaded when the DataContext is instantiated. The /map option is an alternative to
generating, or writing by hand, a source module containing LINQ to SQL attributes that you compile.
With this approach, your source code never has any database-specific LINQ to SQL code compiled with
or linked to it. This allows for somewhat dynamic consumption of a database, since you do not need any
pregenerated and compiled code. We say it is “somewhat dynamic,” because your code has to know the
names of tables and fields; otherwise, it wouldn’t even know what to query. The XML external mapping
file instructs LINQ to SQL as to what tables, columns, and stored procedures exist with which it can
interact and to what classes, class properties, and methods they should be mapped.

The /dbml option creates an intermediate DBML (XML) file for the purpose of allowing you to edit
class and property names for the soon-to-be-generated entity classes. You would then generate a source
code module by running SQLMetal again, this time against the DBML file instead of the database, and
specifying the /code option. Or, you can load the DBML intermediate file into the Object Relational
Designer, edit it in the designer, and allow the designer to generate the necessary entity class source
code.

Another reason that the two XML files that SQLMetal can produce, the XML mapping file and the
DBML intermediate file, are confusing is that their schemas are fairly similar. So, don’t be surprised
when you see just how similar they are. The schema for the XML mapping file will be discussed in
Chapter 15.

Working with DBML Intermediate Files
As we said, the purpose of the DBML intermediate file is to allow you the opportunity to insert yourself
between the database schema extraction and the entity class generation so that you can control class
and property names. Therefore, if you have no need to do that, you have no need to generate a DBML
intermediate file. That said, let’s continue as though you have the need.

Assuming you have the extended Northwind database attached to your SQL Server database, here is
how you would create the intermediate DBML file:

sqlmetal /server:.\SQLExpress /database:Northwind /pluralize /sprocs /functions
/views /dbml:Northwind.dbml

■ NNote Specifying the /server and /database options when running SQLMetal requires that the extended

Northwind database be attached to SQL Server.

Additionally, you may need to specify the appropriate /user and /password options so that
SQLMetal can connect to the database.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

458

Or, if you prefer, you can generate the DBML intermediate file from an MDF file:

sqlmetal /pluralize /sprocs /functions /views /dbml:Northwind.dbml
"C:\Northwind.mdf"

■ NNote Generating the DBML intermediate file from an MDF file may cause the MDF database file to be attached
to SQL Server with the name C:\NORTHWIND.MDF or something similar. You should rename the database to
“Northwind” inside SQL Server Enterprise Manager or SQL Server Management Studio so that the examples work

properly.

Either of these two approaches should produce an identical DBML intermediate file. We specified
only those options relevant for reading the database and producing the DBML file. Options such as
/language and /code are relevant only when creating the source code module.

Once you have edited your intermediate XML file, here is how you would produce the source code
module:

sqlmetal /namespace:nwind /code:Northwind.cs Northwind.dbml

The options we specified in that execution of SQLMetal are relevant when generating the source

code.

DBML Intermediate File Schema

If you decide to take the route of creating the DBML intermediate file so that you can edit it and then
generate your entity class mappings from that, you will need to know the schema and what the element
and attribute names mean.

Because the schema is subject to change, please consult the Microsoft documentation for the DBML
intermediate file schema for the most recent schema definition and explanation. Once you understand
the schema, you could choose to manually edit the DBML intermediate file to control entity class and
property names and then generate the entity class source code with SQLMetal from your edited DBML
intermediate file.

Or, even better, you can load the generated DBML intermediate file into Visual Studio’s Object
Relational Designer and edit it there. This will give you a GUI interface for maintaining your
object/relational (O/R) model and free you from the necessity of knowing and understanding the
schema. We will describe how to edit your O/R model in the next section.

The Object Relational Designer
In addition to the SQLMetal tool, there is also a graphical user tool for generating entity classes that runs
inside Visual Studio. This tool is called the Object Relational Designer, but you will commonly see it
referred to as the LINQ to SQL Designer, the O/R Designer, or even DLinq Designer. The Object
Relational Designer is a more selective tool than SQLMetal. The designer gives the developer drag-and-
drop design-time entity class modeling. You needn’t worry; the designer does most of the difficult work
for you. You get the easy parts of selecting the database tables you want modeled and, if it suits you,

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

459

editing entity class and entity class property names. Of course, you still have the option of doing all the
modeling manually in the designer if you desire ultimate control.

Creating Your LINQ to SQL Classes File
The first step to use the designer is to create a LINQ to SQL Classes file by right-clicking your project and
selecting Add New Item from the context menu. After doing that, the Add New Item dialog box will
open. Select the LINQ to SQL Classes template from the list of installed templates. Edit the name to
whatever you choose. The name of the database you will be modeling is typically a good choice for the
LINQ to SQL Classes file name. The extension for a LINQ to SQL Classes file is .dbml. For this example,
we will use Northwind.dbml for the name of the file.

■ CCaution If you create a file named Northwind.dbml in a project you have already created for the samples in
this book, be careful that you don’t end up with a name collision between the designer-generated code and your

already existing code.

Click the Add button once you have named the file. You will then be presented with a blank window.
This is your designer canvas. Figure 13-1 shows the designer canvas.

If you click the canvas and examine the Properties window, you will see a property named Name. The
value of the Name property will be the name of the generated DataContext class. Because we named our
LINQ to SQL Classes file Northwind.dbml, the Name property’s value will default to
NorthwindDataContext, which is just fine. You could change it if you wanted to, but for this discussion,
we will leave it as it is.

If you examine the Solution Explorer, you will see that you now have a file nested under
Northwind.dbml named Northwind.designer.cs. If you open this file, you will see that it contains very
little code at this point. Basically, it will contain the constructors for the new DataContext class it is
deriving for that you named NorthwindDataContext.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

460

Figure 13-1. The Object Relational Designer canvas

Connecting the DataContext to the Database
The next step is to add a connection to the appropriate database server containing the Northwind
database in the Server Explorer window if one does not already exist.

■ TTip If you do not see the Server Explorer window, select Server Explorer from the Visual Studio View menu.

To add a connection to the database, right-click the Data Connections node in the Server Explorer
window, and choose the Add Connection menu item to open the Add Connection dialog box, shown in
Figure 13-2. The “Data source” entry field will default to Microsoft SQL Server (SqlClient), which is what
we want. Configure the appropriate settings for your Northwind database in the Add Connection dialog
box.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

461

Figure 1 3- 2 . The Add Connection dialog box

Once you have the connection properly configured, click the OK button. You should now have a
node representing your Northwind database connection under the Data Connections node in the Server
Explorer. You may now access the Northwind database in the designer.

Before proceeding, make sure you are viewing the Northwind.dbml file in the Visual Studio editor.

Adding an Entity Class
Find your Northwind database in the list of Data Connections in the Server Explorer window. Expand
the Tables node, and you should be presented with a list of tables in the Northwind database. Entity
classes are created by dragging tables from the Table list in the Server Explorer window to the designer
canvas.

From the Server Explorer, drag the Customers table to the designer canvas. You have just instructed
the designer to create an entity class for the Customers table named Customer. Your canvas should look
like Figure 13-3.

You may have to resize some of the panes to be able to see everything clearly. By dragging the
Customers table to the designer canvas, the source code for the Customer entity class is added to the
Northwind.designer.cs source file. Once you build your project, which we will do in a few moments,

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

462

you can begin using the Customer entity class to access and update data in the Northwind database. It’s
just that simple!

Figure 1 3- 3 . The designer after dragging the Customers table to the canvas

However, before we build the project and write code using the generated entity classes, we want to
create a few more bits necessary to reap all the benefits of LINQ to SQL. Now, from the Server Explorer,
drag the Orders table to the canvas. You may need to move it around the canvas to get it to a desirable
location. You have now instructed the designer to create an entity class for the Orders table named
Order. Your canvas should look something like Figure 13-4.

Looking at the canvas, you will see a dashed line connecting the Customer class to the Order class.
That dashed line represents the relationship, referred to as an association in LINQ to SQL, between the
Customers and Orders tables, as defined by the FK_Orders_Customers foreign key constraint that exists
in the Northwind database. That line being there indicates that the designer will also be creating the
necessary association in the entity classes to support the relationship between those two entity classes.
The existence of that association will allow you to obtain a reference to a collection of a customer’s
orders by referencing a property on a Customer object and to obtain a reference to an order’s customer
by referencing a property on an Order object.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

463

Figure 1 3- 4 . The designer after dragging the Orders table to the canvas

If you do not want the association to be generated, you can select the dashed line representing the
association and delete it by pressing the Delete key or by right-clicking the dashed line and selecting the
Delete menu option from the context menu.

Using the Designer-Generated Entity Classes

You are now ready to use the entity classes the designer generated for you. Listing 13-2 contains an
example querying the database for the customers whose city is London.

Listing 13-2. An Example Using the Designer-Generated Entity Classes

NorthwindDataContext db = new NorthwindDataContext();

IQueryable<Customer> custs = from c in db.Customers
 where c.City == "London"
 select c;

foreach(Customer c in custs)
{
 Console.WriteLine("{0} has {1} orders.", c.CompanyName, c.Orders.Count);
}

This looks like our other examples with one key difference. Notice that we did not specify any

connection information when instantiating the NorthwindDataContext object. This is because the

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

464

designer generated our NorthwindDataContext class with a parameterless constructor that gets the
connection information from the project’s settings file named app.config. It was even kind enough to
set the value in the settings file. Here is what the generated parameterless constructor looks like:

The Desi gner- Generat ed D at aCont ext Const ruct or

public NorthwindDataContext() :
 base(global::LINQChapter13.Properties.Settings.Default.NorthwindConnectionString,
 mappingSource)
{
 OnCreated();
}

■ CCaution If you download the companion source code for this book, make sure you update the

connectionString setting in the app.config file.

Notice in the preceding code that we are able to access the retrieved customer’s orders by
referencing a Customer object’s Orders property. This is because of the association that the designer
created automatically for us. How cool is that? Here are the results of Listing 13-2:

Around the Horn has 13 orders.
B's Beverages has 10 orders.
Consolidated Holdings has 3 orders.
Eastern Connection has 8 orders.
North/South has 3 orders.
Seven Seas Imports has 9 orders.

Editing the Entity Class Model
Naturally, you may want to have some control over entity class names, entity class properties (entity
class settings), entity class property (entity class member) names, and entity class property (entity class
member) properties (settings). OK, Microsoft, can you make the naming any more confusing? Did you
really need to call the members of classes properties, knowing that in Visual Studio you call the settings
properties too?

The flexibility and ease of use for controlling the names of entity classes and their properties are
what makes the designer so attractive. It’s all drag and drop, point and click, man!

Editing the Entity Class Name

You can edit the entity class name by double-clicking the name on the canvas or by selecting the entity
class on the canvas and editing the Name property in the Properties window.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

465

Editing the Entity Class’s Properties (Entity Class Settings)
You can edit the properties, as in settings, of the entity class by selecting the entity class on the canvas
and editing the appropriate properties in the Properties window, of which the entity class name is one.
You have the ability to edit the database table name in which these entities are stored; the insert, update,
and delete override methods; and other properties.

Editing an Entity Class Property (Entity Class Member) Name
You can edit the name of an entity class property, as in entity class member, by triple-clicking the
property name on the canvas. We weren’t aware that there was such a thing as triple-clicking either, but
that’s what it appears to be responding to. Or, you can select the entity class property on the canvas and
edit the Name property in the Properties window.

Editing an Entity Class Property’s (Entity Class Member’s) Properties (Settings)
You can edit an entity class property’s properties by selecting the property on the canvas and editing the
appropriate property in the Properties window, of which the entity class property name is one. This is
where you will find all the properties that correspond to the entity class attribute properties, such as
Name and UpdateCheck, for the Column entity class attribute. We will discuss the entity class attributes in
detail in Chapter 15.

Adding Objects to the Entity Class Model
Dragging and dropping an entity class on the canvas is simple enough, as long as you have a table in a
database in the Server Explorer. There are times when you may not have this luxury. Perhaps you are
defining the entity class first and plan to generate the database by calling the CreateDatabase method
on the DataContext. Or, perhaps you are going to be taking advantage of entity class inheritance, and
there is no existing table to map to.

Adding New Entity Classes
One way to add new entity classes to your entity class model is to drag them from the tables of a
database in your Server Explorer window, as we did in the previous section. Another way you can create
a new entity class is by dragging the Object Relational Designer Class object in the Visual Studio Toolbox
onto the canvas. Edit the name, and set the entity class’s properties as described in the previous section.

Adding New Entity Class Properties (Members)
You can add new entity class properties (members) by right-clicking the entity class in the designer and
selecting the Property menu item in the Add context menu. Once the property has been added to the
entity class, follow the directions for editing an entity class property’s properties in the earlier “Editing
an Entity Class Property’s (Entity Class Member’s) Properties (Settings)” section.

Adding a New Association
Instead of using drag and drop to create an association, like you did when adding a new entity class from
the Visual Studio Toolbox, you can create an association by clicking the Association object in the
Toolbox followed by clicking the parent entity class (the one side of the one-to-many relationship)
followed by clicking the child entity class (the many side of the one-to-many relationship). Each of the

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

466

two classes needs to have the appropriate property before you add the association so that you can map
the primary key on the one side to the foreign key of the many side. Once you have selected the second
class, the many class, of the association by clicking it, the Association Editor dialog box will open
allowing you to map the property of the one class to its corresponding property of the many class.

Once you have mapped the properties and dismissed the Association Editor dialog box, you will see
a dotted line connecting the parent to the child entity class.

Select the association by clicking the dotted line, and set the appropriate association properties in
the Properties window. Refer to the descriptions of the Association attribute and its properties in
Chapter 15 for more information about the association properties.

Adding a New Inheritance Relationship

You can use the Object Relational Designer to model inheritance relationships, too. Adding an
inheritance relationship works just like adding a new association. Select the Inheritance object in the
Visual Studio Toolbox, and click the entity class that will be the derived class, followed by the entity class
that will be the base class. Make sure to set all appropriate entity class properties as defined by the
InheritanceMapping and Column entity class attributes, which we cover in Chapter 15.

Adding Stored Procedures and User-Defined Functions

To have the designer generate the code necessary to call stored procedures or user-defined functions,
drag the stored procedure or user-defined function from the Server Explorer to the Methods pane of the
designer. We will demonstrate this in the next section.

Overriding the Insert, Update, and Delete Methods
In Chapter 14, we will discuss overriding the insert, update, and delete methods used by LINQ to SQL
when making changes to an entity class object. You can override the default methods by adding specific
methods to an entity class. If you take this approach, be sure to use partial classes so you are not
modifying any generated code. We will demonstrate how to do this in Chapter 14.

However, overriding the insert, update, and delete methods is easily accomplished in the designer
too. Let’s assume you have a stored procedure named InsertCustomer that will insert a new customer
record into the Northwind database’s Customer table. Here is the stored procedure we will use:

The Insert Cust omer St ored Procedu re

CREATE PROCEDURE dbo.InsertCustomer
 (
 @CustomerID nchar(5),
 @CompanyName nvarchar(40),
 @ContactName nvarchar(30),
 @ContactTitle nvarchar(30),
 @Address nvarchar(60),
 @City nvarchar(15),
 @Region nvarchar(15),
 @PostalCode nvarchar(10),
 @Country nvarchar(15),
 @Phone nvarchar(24),

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

467

 @Fax nvarchar(24)
)
AS
 INSERT INTO Customers
 (
 CustomerID,
 CompanyName,
 ContactName,
 ContactTitle,
 Address,
 City,
 Region,
 PostalCode,
 Country,
 Phone,
 Fax
)
 VALUES
 (
 @CustomerID,
 @CompanyName,
 @ContactName,
 @ContactTitle,
 @Address,
 @City,
 @Region,
 @PostalCode,
 @Country,
 @Phone,
 @Fax
)

■ NNote The InsertCustomer stored procedure is not part of the extended Northwind database. We manually

added it for this demonstration.

To override the Customer entity class’s insert method, first make sure the Methods pane is visible. If
it is not, right-click the canvas, and select the Show Methods Pane context menu item. Next, open the
Server Explorer window in Visual Studio. Find and expand the Stored Procedures node in the
appropriate database node in the tree. Your Visual Studio should look very similar to Figure 13-5.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

468

Figure 1 3- 5 . Finding the stored procedure

Once you have found your stored procedure, simply drag it to the Methods pane, which is the
window to the right of the entity class model. Figure 13-6 shows Visual Studio after we have dragged the
InsertCustomer stored procedure to the Methods pane.

Figure 1 3- 6 . Dropping the stored procedure on the Methods pane

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

469

Dragging a stored procedure from the Server Explorer window to the Methods pane is the way you
instruct the designer to generate the code necessary to call the stored procedure from LINQ to SQL. This
is also the same way you instruct the designer to generate the code for a user-defined function too.

Making the stored procedure accessible from LINQ to SQL is the first step to having the insert,
update, or delete operation call a stored procedure instead of the default method. The next step is to
override one of those operations to call the now accessible stored procedure.

Now that the InsertCustomer stored procedure is in the Methods pane, select the Customer class
in the designer canvas, and examine the Properties window for the Customer class. You will now see a
list of the Default Methods. Select the Insert method by clicking it. You will now be presented with the
ellipses (…) selection button as is displayed in Figure 13-7.

Now, simply click the ellipses selection button to display the Configure Behavior dialog box. Select
the Customize radio button, and select the InsertCustomer stored procedure from the drop-down list.
Map the Method Arguments on the left to the appropriate Customer Class Properties on the right, as
illustrated in Figure 13-8.

Figure 1 3- 7 . Select the Insert method in the Default Methods category of the Properties window.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

470

Figure 1 3- 8 . Mapping method arguments to class properties

All our method arguments were already mapped by default to the appropriate class properties. Nice!
Once you have mapped all the method arguments, click the OK button. You are now ready to insert

Customer records using the InsertCustomer stored procedure. In Listing 13-3, we will create a new
customer using the InsertCustomer stored procedure.

Listing 13-3. Creating a Customer Record with the Default Insert Method Overridden

NorthwindDataContext db = new NorthwindDataContext();

db.Log = Console.Out;

Customer cust =
 new Customer
 {
 CustomerID = "EWICH",
 CompanyName = "Every 'Wich Way",
 ContactName = "Vickey Rattz",
 ContactTitle = "Owner",
 Address = "105 Chip Morrow Dr.",
 City = "Alligator Point",
 Region = "FL",
 PostalCode = "32346",
 Country = "USA",
 Phone = "(800) EAT-WICH",
 Fax = "(800) FAX-WICH"

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

471

 };

db.Customers.InsertOnSubmit(cust);

db.SubmitChanges();

Customer customer = db.Customers.Where(c => c.CustomerID == "EWICH").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);

// Restore the database.
db.Customers.DeleteOnSubmit(cust);
db.SubmitChanges();

Notice that we are not specifying any namespace on the Customer class that we reference; therefore,

we will be using the Customer class that exists in the same namespace as the project, which is the
designer-generated Customer class.

There is nothing special in Listing 13-3. We merely instantiate a DataContext, which in this case is
the designer-generated NorthwindDataContext. We then create a new Customer object and insert it
into the Customers Table<T> property. Next, we call the SubmitChanges method to persist the new
customer to the database. Then, we query for that customer from the database and display it to the
console just to prove the record was indeed inserted into the database table. The very last things we do
are delete the customer by calling the DeleteOnSubmit method and persist to the database by calling
the SubmitChanges method, so the database is left in the same state it was initially so that subsequent
examples will run properly and so that this example can be run multiple times.

Let’s examine the output of Listing 13-3:

EXEC @RETURN_VALUE = [dbo].[InsertCustomer] @CustomerID = @p0, @CompanyName = @p1,
@ContactName = @p2, @ContactTitle = @p3, @Address = @p4, @City = @p5, @Region =
@p6,
@PostalCode = @p7, @Country = @p8, @Phone = @p9, @Fax = @p10
-- @p0: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [EWICH]
-- @p1: Input String (Size = 15; Prec = 0; Scale = 0) [Every 'Wich Way]
-- @p2: Input String (Size = 12; Prec = 0; Scale = 0) [Vickey Rattz]
-- @p3: Input String (Size = 5; Prec = 0; Scale = 0) [Owner]
-- @p4: Input String (Size = 19; Prec = 0; Scale = 0) [105 Chip Morrow Dr.]
-- @p5: Input String (Size = 15; Prec = 0; Scale = 0) [Alligator Point]
-- @p6: Input String (Size = 2; Prec = 0; Scale = 0) [FL]
-- @p7: Input String (Size = 5; Prec = 0; Scale = 0) [32346]
-- @p8: Input String (Size = 3; Prec = 0; Scale = 0) [USA]
-- @p9: Input String (Size = 14; Prec = 0; Scale = 0) [(800) EAT-WICH]
-- @p10: Input String (Size = 14; Prec = 0; Scale = 0) [(800) FAX-WICH]
-- @RETURN_VALUE: Output Int32 (Size = 0; Prec = 0; Scale = 0) []
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

SELECT TOP 1 [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

472

FROM [dbo].[Customers] AS [t0]
WHERE [t0].[CustomerID] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [EWICH]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Every 'Wich Way - Vickey Rattz
DELETE FROM [dbo].[Customers] WHERE ([CustomerID] = @p0) AND ([CompanyName] = @p1)
AND ([ContactName] = @p2) AND ([ContactTitle] = @p3) AND ([Address] = @p4) AND
([City] = @p5) AND ([Region] = @p6) AND ([PostalCode] = @p7) AND ([Country] = @p8)
AND ([Phone] = @p9) AND ([Fax] = @p10)
-- @p0: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [EWICH]
-- @p1: Input String (Size = 15; Prec = 0; Scale = 0) [Every 'Wich Way]
-- @p2: Input String (Size = 12; Prec = 0; Scale = 0) [Vickey Rattz]
-- @p3: Input String (Size = 5; Prec = 0; Scale = 0) [Owner]
-- @p4: Input String (Size = 19; Prec = 0; Scale = 0) [105 Chip Morrow Dr.]
-- @p5: Input String (Size = 15; Prec = 0; Scale = 0) [Alligator Point]
-- @p6: Input String (Size = 2; Prec = 0; Scale = 0) [FL]

-- @p7: Input String (Size = 5; Prec = 0; Scale = 0) [32346]

-- @p8: Input String (Size = 3; Prec = 0; Scale = 0) [USA]
-- @p9: Input String (Size = 14; Prec = 0; Scale = 0) [(800) EAT-WICH]
-- @p10: Input String (Size = 14; Prec = 0; Scale = 0) [(800) FAX-WICH]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Although it is a little difficult to see with all the output, a SQL insert statement was not created.
Instead, the InsertCustomer stored procedure was called. The designer makes it very easy to override
the insert, update, and delete methods for an entity class.

Use SQLMetal and the O/R Designer Together
Because SQLMetal’s DBML intermediate file format shares the same XML schema as the Object
Relational Designer’s format, it is possible to use them together.

For example, you could generate a DBML intermediate file for a database using SQLMetal and then
load that file into the O/R Designer to tweak any entity class or entity class property names you desire.
This approach provides a simple way to generate entity classes for an entire database yet makes it simple
to modify what you would like.

Another example where this interchangeability can be useful is for overriding the insert, update, and
delete operations that are performed to make changes to the database for an entity class. You can
generate the DBML intermediate file for your database with SQLMetal but then load the file into the
designer and modify the insert, update, and delete methods, as was described in the section in this
chapter about the Object Relational Designer.

CHAPTER 13 ■ LINQ TO SQL TIPS AND TOOLS

473

Summary
As is typical of our style, much of the information in this chapter may seem premature, since we have yet
to actually discuss entity classes or the DataContext class. However, we just can’t, in good conscience,
allow you to continue without you knowing some of these tips and tools that are available for LINQ to
SQL development. Refer to these tips once you have the foundation to more fully understand them.

Remember that there are two tools for modeling your entity classes. The first, SQLMetal, is a
command-line tool suited to generating entity classes for an entire database. The second tool, the Object
Relational Designer, often referred to as the LINQ to SQL Designer, is a GUI drag-and-drop entity class
modeling tool that runs in Visual Studio. It is better suited for iterative and new development. But, as we
pointed out, these two tools work well together. Your best path may be to start with SQLMetal to
generate your entity classes for your entire database and maintain your entity classes with the Object
Relational Designer.

Now that we have provided some tips, covered the LINQ to SQL tools, and you have had the
opportunity to create your entity classes, in Chapter 14, we will show you how to perform the most
common database operations you will use on a regular basis.

C H A P T E R 14

■ ■ ■

475

LINQ to SQL Database Operations

In this chapter, we will discuss and demonstrate how all of the typical database operations are
performed with LINQ to SQL. Specifically, we will cover how to perform the following:

• Inserts

• Queries

• Updates

• Deletes

After we discuss the standard database operations, we will demonstrate how you can override the
default insert, update, and delete methods an entity class uses to persist changes to the database.

The last topic we will cover is the automatic translation of LINQ to SQL queries, including what to be
mindful of when writing queries.

To discuss the standard database operations, we will have to refer to the DataContext and relevant
entity classes. We are aware that we have not provided much detail yet as to how entity classes and the
DataContext class work, but we will cover them in subsequent chapters. We will discuss entity classes in
Chapter 15 and the DataContext class in Chapter 16. For now, just remember that the DataContext
manages the connection to the database the entity class objects. An entity class object represents a
specific database record in object form.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated entity classes for it. Please read and follow the instructions in
Chapter 12’s “Prerequisites for Running the Examples” section.

Some Common Methods
Additionally, to run the examples in this chapter, you will need some common methods that will be
utilized by the examples. Please read and follow the instructions in Chapter 12’s “Some Common
Methods” section.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

476

Using the LINQ to SQL API
To run the examples in this chapter, you may need to add the appropriate references and using
directives to your project. Please read and follow the instructions in Chapter 12’s “Using the LINQ to SQL
API” section.

Standard Database Operations
Although we will be covering the details of performing LINQ to SQL queries in detail in subsequent LINQ
to SQL chapters, we want to give you a glimpse of how to perform the rudimentary database operations.
These examples are meant to demonstrate the basic concepts. As such, they do not include error
checking or exception handling.

For example, since many of the basic operations we discuss make changes to the database, those
that make changes should detect and resolve concurrency conflicts. But, for the sake of simplicity, these
examples will not demonstrate these principles. However, in Chapter 17, we will discuss concurrency
conflict detection and resolution.

Inserts
There are four steps required to perform an insert. The first is to create a DataContext —this is the first
step for every LINQ to SQL query, in fact. For the second step, an entity object is instantiated from an
entity class (such as the Customer class). Third, that entity object is inserted into the appropriate table
collection of type Table<T>, where T is the type of the entity class stored in the table, or is added to an
EntitySet<T> on an entity object already being tracked by the DataContext, where T is the type of an
entity class.

For the fourth and final step, the SubmitChanges method is called on the DataContext.
Listing 14-1 contains an example of inserting a record into the database.

Listing 14-1. Inserting a Record by Inserting an Entity Object into Table<T>

// 1. Create the DataContext.
Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// 2. Instantiate an entity object.
Customer cust =
 new Customer
 {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

477

 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
 };

// 3. Add the entity object to the Customers table.
db.Customers.InsertOnSubmit(cust);

// 4. Call the SubmitChanges method.
db.SubmitChanges();

// Query the record.
Customer customer = db.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);

// This part of the code merely resets the database so the example can be
// run more than once.
Console.WriteLine("Deleting the added customer LAWN.");
db.Customers.DeleteOnSubmit(cust);
db.SubmitChanges();

There really isn’t much to this example. First, we create a Northwind object so that we have a

DataContext for the Northwind database. Second, we instantiate a Customer object and populate it
using object initialization. Third, we insert the instantiated Customer object into the Customers table,
which is of type Table<Customer>, in the Northwind DataContext class. Fourth, we call the
SubmitChanges method to persist the newly created Customer object to the database. Finally, we query
the customer back out of the database just to prove it was inserted.

■ NNote If you run this example, a new record will be temporarily added to the Northwind Customers table for
customer LAWN. Please notice that after the newly added record is queried and displayed, it is then deleted. We do

this so that the example can be run more than once and so the newly inserted record does not affect subsequent
examples. Any time one of our examples changes the database, the database needs to be returned to its original
state so that no examples are impacted. If any example that modifies the database is unable to complete for some

reason, you should manually reset the database to its original state.

Here are the results of Listing 14-1:

Lawn Wranglers - Mr. Abe Henry
Deleting the added customer LAWN.

As you can see from the output, the inserted record was found in the database.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

478

Alternatively, we can add a new instance of an entity class to an already existing entity object being
tracked by the DataContext object, as demonstrated in Listing 14-2.

Listing 14-2. Inserting a Record into the Northwind Database by Adding It to EntitySet<T>

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

// Used to query record back out.
DateTime now = DateTime.Now;

Order order = new Order
{
 CustomerID = cust.CustomerID,
 EmployeeID = 4,
 OrderDate = now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = cust.CompanyName,
 ShipAddress = cust.Address,
 ShipCity = cust.City,
 ShipRegion = cust.Region,
 ShipPostalCode = cust.PostalCode,
 ShipCountry = cust.Country
};

cust.Orders.Add(order);

db.SubmitChanges();

IEnumerable<Order> orders =
 db.Orders.Where(o => o.CustomerID == "LONEP" && o.OrderDate.Value == now);

foreach (Order o in orders)
{
 Console.WriteLine("{0} {1}", o.OrderDate, o.ShipName);
}

// This part of the code resets the database
db.Orders.DeleteOnSubmit(order);
db.SubmitChanges();

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

479

In Listing 14-2, we created a Northwind DataContext, retrieved a customer, and added a newly
constructed order entity object to the Orders EntitySet<Order> of the Customer entity object. We
then queried for the new record and displayed it to the console.

In Listing 14-1, the inserted object, which was a Customer, was inserted into a variable of type
Table<Customer>. In Listing 14-2, the inserted object, which is an Order, is added to a variable of type
EntitySet<Order>.

Here are the results of Listing 14-2:

9/2/2007 6:02:16 PM Lonesome Pine Restaurant

Inserting Attached Entity Objects
The DataContext class detects any associated dependent entity class objects that are attached so that
they will be persisted too when the SubmitChanges method is called. By dependent, we mean any entity
class object containing a foreign key to the inserted entity class object. Listing 14-3 contains an example.

Listing 14-3. Adding Attached Records

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust =
 new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO",
 Orders = {
 new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

480

 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
 }
 }
 };

db.Customers.InsertOnSubmit(cust);
db.SubmitChanges();

Customer customer = db.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);
foreach (Order order in customer.Orders)
{
 Console.WriteLine("{0} - {1}", order.CustomerID, order.OrderDate);
}

// This part of the code resets the database
db.Orders.DeleteOnSubmit(cust.Orders.First());
db.Customers.DeleteObSubmit(cust);
db.SubmitChanges();

In Listing 14-3, we created a new Customer object with an assigned Orders collection containing

one newly instantiated Order. Even though we inserted only the Customer object cust into the
Customers table, the new Order will be persisted in the database as well when the SubmitChanges
method is called, because the new Order is attached to the new Customer.

There is one additional point we would like to make about this example. Notice that, in the cleanup
code at the end of Listing 14-3, we call the DeleteOnSubmit method for both the new Order and the new
Customer. In this case, we delete only the first Order, but since the Customer was new, we know this is
the only Order. We must manually delete the orders, because, although newly attached, associated
entity objects are automatically inserted into the database when a parent entity object is inserted, the
same is not true when they are deleted. Deleting a parent entity object does not cause attached entity
objects to be deleted from the database automatically. Had we not deleted the orders manually, an
exception would have been thrown. We will discuss this in more detail in the “Deletes” section of this
chapter.

Let’s take a look at the output of Listing 14-3 by pressing Ctrl+F5:

Lawn Wranglers - Mr. Abe Henry
LAWN - 9/2/2007 6:05:07 PM

Queries
Performing LINQ to SQL queries is almost like performing any other LINQ query with a few exceptions.
We will cover the exceptions very shortly.

To perform a LINQ to SQL query, we need to first create a DataContext. Then we can perform the
query on a table in that DataContext, as Listing 14-4 demonstrates.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

481

Listing 14-4. Performing a Simple LINQ to SQL Query on the Northwind Database

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

When that code is executed, the customer whose CustomerID is "LONEP" will be retrieved into the
cust variable. You should be aware, though, as was mentioned in Chapter 5, that the Single standard
query operator will throw an exception if the sequence it is called on contains no matching elements. So,
using this code, you had better know that customer "LONEP" exists. In reality, the SingleOrDefault
standard query operator provides better protection for the possibility of no record matching the where
clause.

There are a couple additional points worth mentioning. First, notice that the query is using C#
syntax when comparing the CustomerID to "LONEP". This is evidenced by the fact that double quotes are
used to contain the string "LONEP" as opposed to single quotes that SQL syntax requires. Also, the C#
equality test operator, ==, is used instead of the SQL equality test operator, =. This demonstrates the fact
that the query is indeed integrated into the language, since, after all, this is what LINQ is named for:
Language Integrated Query. Second, notice that we are mixing both query expression syntax and
standard dot notation syntax in this query. The query expression syntax portion is contained within
parentheses, and the Single operator is called using standard dot notation syntax.

Now, here is a question for you. We have discussed deferred query execution many times in the
book so far. The question is, will just executing the preceding code cause the query to actually be
performed? Don’t forget to consider deferred query execution when selecting your answer. The answer is
yes; the Single standard query operator will cause the query to actually execute. Had we left off that
operator call and merely returned the query minus the call to the Single operator, the query would not
have executed.

Listing 14-4 provides no screen output, so just for verification that the code does indeed retrieve the
appropriate customer, Listing 14-5 is the same code, plus output to the console has been added to
display the customer that is retrieved.

Listing 14-5. Performing the Same Query with Console Output

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);

Here is the output for Listing 14-5:

Lonesome Pine Restaurant - Fran Wilson

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

482

Exceptions to the Norm
Earlier we mentioned that LINQ to SQL queries are like typical LINQ queries with some exceptions. Now
we will discuss the exceptions.

LINQ to SQL Queries Return an IQueryable<T>

Although LINQ queries performed on arrays and collections return sequences of type IEnumerable<T>,
a LINQ to SQL query typically returns a sequence of type IQueryable<T>. Listing 14-6 contains an
example of a query returning a sequence of type IQueryable<T>.

Listing 14-6. A Simple LINQ to SQL Query Returning an IQueryable<T> Sequence

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.City == "London"
 select c;

foreach(Customer cust in custs)
{
 Console.WriteLine("Customer: {0}", cust.CompanyName);
}

As you can see, the return type for this query is IQueryable<Customer>. Here are the results of

Listing 14-6:

Customer: Around the Horn
Customer: B's Beverages
Customer: Consolidated Holdings
Customer: Eastern Connection
Customer: North/South
Customer: Seven Seas Imports

As we stated in Chapter 12, since IQueryable<T> implements IEnumerable<T>, you can typically
treat a sequence of type IQueryable<T> as though it were a sequence of type IEnumerable<T>. If you
are trying to treat an IQueryable<T> sequence like an IEnumerable<T> sequence and you are having
trouble, don’t forget the AsEnumerable operator.

LINQ to SQL Queries Are Performed on Table<T> Objects

Although most normal LINQ queries are performed on arrays or collections that implement the
IEnumerable<T> or IEnumerable interfaces, a LINQ to SQL query is performed on classes that
implement the IQueryable<T> interface, such as the Table<T> class.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

483

This means that LINQ to SQL queries have additional query operators available, as well as the
standard query operators, since IQueryable<T> implements IEnumerable<T>.

LINQ to SQL Queries Are Translated to SQL

As we discussed in Chapter 2, because LINQ to SQL queries return sequences of type IQueryable<T>,
they are not compiled into .NET intermediate language code the way that normal LINQ queries are.
Instead, they are converted into expression trees, which allows them to be evaluated as a single unit, and
translated to appropriate and optimal SQL statements. Please read the section “SQL Translation” later in
this chapter to learn more about the SQL translation that takes place with LINQ to SQL queries.

LINQ to SQL Queries Are Executed in the Database

Unlike normal LINQ queries that are executed in local machine memory, LINQ to SQL queries are
translated to SQL calls and actually executed in the database. There are ramifications because of this,
such as the way projections are handled, which cannot actually occur in the database since the database
knows nothing about your entity classes, or any other classes for that matter.

Also, since the query actually executes in the database and the database doesn’t have access to your
application code, what you can do in a query must be translated and is therefore limited in some ways
based on the translator’s capabilities. You can’t just embed a call to a method you wrote in a lambda
expression and expect SQL Server to know what to do with the call. Because of this, it is good to know
what can be translated, what it will be translated to, and what happens when it cannot be translated.

Associations
Querying an associated class in LINQ to SQL is as simple as accessing a member variable of an entity
class. This is because an associated class is a member variable of the related entity class or stored in a
collection of entity classes, where the collection is a member variable of the related entity class. If the
associated class is the many (child) side of a one-to-many relationship, the many class will be stored in a
collection of the many classes, where the type of the collection is EntitySet<T>, and T is the type of the
many entity class. This collection will be a member variable of the one class. If the associated class is the
one (parent) side of a one-to-many relationship, a reference to the one class will be stored in a variable
of type EntityRef<T>, where T is the type of the one class. This reference to the one class will be a
member variable of the many class.

For example, consider the case of the Customer and Order entity classes that were generated for the
Northwind database. A customer may have many orders, but an order can have but one customer. In
this example, the Customer class is the one side of the one-to-many relationship between the Customer
and Order entity classes. The Order class is the many side of the one-to-many relationship. Therefore, a
Customer object’s orders can be referenced by a member variable, typically named Orders, of type
EntitySet<Order> in the Customer class. An Order object’s customer can be referenced with a member
variable, typically named Customer, of type EntityRef<Customer> in the Order class (see Figure 14-1).

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

484

Figure 14-1. A parent and child entity class association relationship

Classes are associated by specifying the Association attribute on the class property that contains
the reference to the associated class in the entity class definition. Since both the parent and child have a
class property referencing the other, the Association attribute is specified in both the parent and child
entity classes. We will discuss the Association attribute in depth in Chapter 15.

Listing 14-7 is an example where we query for certain customers and display the retrieved
customers and each of their orders.

Listing 14-7. Using an Association to Access Related Data

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c;

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 foreach (Order order in cust.Orders)
 {
 Console.WriteLine(" {0} {1}", order.OrderID, order.OrderDate);
 }
}

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

485

As you can see, we enumerate through each customer, display the customer, enumerate through

each customer’s orders, and display them. We never even specified that we wanted orders in the query.
Here are the truncated results for Listing 14-7:

Around the Horn - Thomas Hardy
 10355 11/15/1996 12:00:00 AM
 10383 12/16/1996 12:00:00 AM
 10453 2/21/1997 12:00:00 AM
 10558 6/4/1997 12:00:00 AM
 10707 10/16/1997 12:00:00 AM
 10741 11/14/1997 12:00:00 AM
 10743 11/17/1997 12:00:00 AM
 10768 12/8/1997 12:00:00 AM
 10793 12/24/1997 12:00:00 AM
 10864 2/2/1998 12:00:00 AM
 10920 3/3/1998 12:00:00 AM
 10953 3/16/1998 12:00:00 AM
 11016 4/10/1998 12:00:00 AM
…
Consolidated Holdings - Elizabeth Brown
 10435 2/4/1997 12:00:00 AM
 10462 3/3/1997 12:00:00 AM
 10848 1/23/1998 12:00:00 AM
…

At this point, you might be thinking, isn’t this terribly inefficient if we never access the customer’s
orders?

The answer is no. The reason is that the orders were not actually retrieved until they were
referenced. Had the code not accessed the Orders property of the customer, they would have never
been retrieved. This is known as deferred loading, which should not be confused with deferred query
execution, which we have already discussed.

Deferred Loading

Deferred loading is the type of loading in which records are not actually loaded from the database until
absolutely necessary, which is when they are first referenced; hence, the loading of the records is
deferred.

In Listing 14-7, had we not referenced the Orders member variable, the orders would never have
been retrieved from the database. That’s pretty slick. For most situations, deferred loading is a good
thing. It prevents needless queries from occurring and unnecessary data from eating up network
bandwidth.

However, a problem can occur. Listing 14-8 is the same as Listing 14-7 except we have turned on the
logging feature provided by the DataContext.Log object to reveal the problem.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

486

Listing 14-8. An Example Demonstrating Deferred Loading

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c;

// Turn on the logging.
db.Log = Console.Out;

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 foreach (Order order in cust.Orders)
 {
 Console.WriteLine(" {0} {1}", order.OrderID, order.OrderDate);
 }
}

We will run the example by pressing Ctrl+F5. We are going to severely truncate the output:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE ([t0].[Country] = @p0) AND ([t0].[City] = @p1)
ORDER BY [t0].[CustomerID]
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- @p1: Input String (Size = 6; Prec = 0; Scale = 0) [London]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Around the Horn - Thomas Hardy
SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry]
FROM [dbo].[Orders] AS [t0]
WHERE [t0].[CustomerID] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [AROUT]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

 10355 11/15/1996 12:00:00 AM

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

487

 10383 12/16/1996 12:00:00 AM
 10453 2/21/1997 12:00:00 AM
 10558 6/4/1997 12:00:00 AM
 10707 10/16/1997 12:00:00 AM
 10741 11/14/1997 12:00:00 AM
 10743 11/17/1997 12:00:00 AM
 10768 12/8/1997 12:00:00 AM
 10793 12/24/1997 12:00:00 AM
 10864 2/2/1998 12:00:00 AM
 10920 3/3/1998 12:00:00 AM
 10953 3/16/1998 12:00:00 AM
 11016 4/10/1998 12:00:00 AM
B's Beverages - Victoria Ashworth
SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry]
FROM [dbo].[Orders] AS [t0]
WHERE [t0].[CustomerID] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [BSBEV]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

 10289 8/26/1996 12:00:00 AM
 10471 3/11/1997 12:00:00 AM
 10484 3/24/1997 12:00:00 AM
 10538 5/15/1997 12:00:00 AM
 10539 5/16/1997 12:00:00 AM
 10578 6/24/1997 12:00:00 AM
 10599 7/15/1997 12:00:00 AM
 10943 3/11/1998 12:00:00 AM
 10947 3/13/1998 12:00:00 AM
 11023 4/14/1998 12:00:00 AM
Consolidated Holdings - Elizabeth Brown
…

We have marked the SQL queries in bold to make them stand out from the customer and order
output data. In the first SQL query, you can see that a query is created to query the customers, and you
can see that nothing in the query is querying the orders table. Then you can see that the company name
and contact name for the first company are displayed, and then another SQL query is output. In that
second SQL query, you can see that the Orders table is queried with a specific customer’s CustomerID in
the where clause. So, a query is generated and executed just for the specific customer that we just
displayed to the console. Next, you will see a list of orders displayed for that previously listed customer,
followed by the next customer. Next, another SQL query appears for a specific customer’s orders.

As you can see, a separate query is performed to retrieve each customer’s orders. The orders are not
queried, and therefore not loaded, until the Orders EntityRef<T> variable is referenced in the second

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

488

foreach loop, which is immediately after the customer information is displayed to the console. Because
the orders are not retrieved until they are referenced, their loading is deferred.

Since a separate query is generated and performed for each customer, potentially a lot of SQL
queries will be going back and forth to the database. This could be a performance problem. In this case,
it may provide better performance if we could retrieve the orders when we retrieve the customers. What
we need is immediate loading.

Immediate Loading with the DataLoadOptions Class

Although deferred loading is the default behavior for associated classes, we can perform immediate
loading, which loads associated classes prior to them being referenced. This may provide performance
benefits. We can use the DataLoadOptions class’s LoadWith<T> operator to instruct the DataContext to
immediately load the associated class specified in the LoadWith<T> operator’s lambda expression. By
using the LoadWith<T> operator, when the query is actually executed, not only will the primary class be
retrieved, so will the specified associated class.

In Listing 14-9, we will use the same basic example code as in Listing 14-8 except we will instantiate
a DataLoadOptions object; call the LoadWith<T> operator on that DataLoadOptions object, passing the
Orders member as a class to immediately load when a Customer object is loaded; and assign the
DataLoadOptions object to the Northwind DataContext. Also, to eliminate any doubt that the
associated classes, the orders, are being loaded prior to being referenced, we will omit the code that
enumerates through the customer’s orders, so there will be no reference to them.

Listing 14-9. An Example Demonstrating Immediate Loading Using the DataLoadOptions Class

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

DataLoadOptions dlo = new DataLoadOptions();
dlo.LoadWith<Customer>(c => c.Orders);
db.LoadOptions = dlo;

IQueryable<Customer> custs = (from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c);
// Turn on the logging.
db.Log = Console.Out;

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
}

Again, the only differences between this listing and Listing 14-8 are the instantiation of the

DataLoadOptions object, the call to the LoadWith<T> operator, the assignment of the
DataLoadOptions object to the Northwind DataContext, and the removal of any reference to each

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

489

customer’s orders. In the call to the LoadWith<T> operator, we instruct the DataLoadOptions to
immediately load Orders whenever a Customer object is loaded. Now, let’s take a look at the output of
Listing 14-9.

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax], [t1].[OrderID], [t1].[CustomerID] AS
[CustomerID2], [t1].[EmployeeID], [t1].[OrderDate], [t1].[RequiredDate],
[t1].[ShippedDate], [t1].[ShipVia], [t1].[Freight], [t1].[ShipName],
[t1].[ShipAddress], [t1].[ShipCity], [t1].[ShipRegion], [t1].[ShipPostalCode],
[t1].[ShipCountry], (
 SELECT COUNT(*)
 FROM [dbo].[Orders] AS [t2]
 WHERE [t2].[CustomerID] = [t0].[CustomerID]
) AS [count]
FROM [dbo].[Customers] AS [t0]
LEFT OUTER JOIN [dbo].[Orders] AS [t1] ON [t1].[CustomerID] = [t0].[CustomerID]
WHERE ([t0].[Country] = @p0) AND ([t0].[City] = @p1)
ORDER BY [t0].[CustomerID], [t1].[OrderID]
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- @p1: Input String (Size = 6; Prec = 0; Scale = 0) [London]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Around the Horn - Thomas Hardy
B's Beverages - Victoria Ashworth
Consolidated Holdings - Elizabeth Brown
Eastern Connection - Ann Devon
North/South - Simon Crowther
Seven Seas Imports - Hari Kumar

As you can see, a single SQL query was executed to retrieve all the customers matching our query’s
where clause. You can also see that, despite that we never even referenced a customer’s orders, the
single SQL query joined each customer retrieved with that customer’s orders. Since the orders were
loaded prior to being referenced, their loading was not deferred and therefore is considered to be
immediate. Instead of having a number of SQL queries equal to one (for the customers), plus the
number of customers (for each customer’s orders), there is a single SQL query. If there are a lot of
customers, this can make a huge difference.

Using the DataLoadOptions class, you are not limited to the immediate loading of a single
associated class or a single hierarchical level of class. However, immediately loading more than one
associated class does affect the way immediate loading works.

When Immediate Loading Is Not So Immediate

When classes are not loaded until they are referenced, their loading is said to be deferred. If they are
loaded prior to being referenced, their loading is said to be immediate. However, sometimes, immediate
is not as immediate as you might expect.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

490

With the code in Listing 14-9, we saw that, by specifying an associated class as the argument to the
DataLoadOptions class’s LoadWith<T> method, we could get immediate loading to cause the orders to
be loaded along with the customers. If we call the LoadWith<T> method multiple times to have multiple
classes loaded immediately, only one of the classes will be joined with the original entity class, and the
others will be loaded upon referencing that original entity class. When this happens, since the associated
classes not joined with the original entity class are still loaded prior to being referenced, they are still
considered immediately loaded, but a separate query is still made for them as you reference each
original entity class. In this way, although their loading is still considered to be immediate, it feels less
immediate than when they are joined.

The decision as to which associated classes should be joined versus which should just be loaded
prior to being referenced is made by LINQ to SQL. It is an optimized decision based on general
principles applied to your entity class model, though; it is not an optimization made by the database. It
will join the association lowest in the hierarchy of the immediately loaded classes. This will be more
easily understood when we get to the section about immediately loading a hierarchy of associated
classes.

To better understand this behavior, we will discuss this for each approach where more than one
association is immediately loaded. The two approaches are loading multiple associated classes of the
original entity class and loading a hierarchy of associated classes.

Immediate Loading of Multiple Associated Classes

The DataLoadOptions class can also be used to immediately load more than one associated classes for a
given entity class.

Notice that the generated SQL query in Listing 14-9 made no reference to the customer’s associated
customer demographics. Had we referenced the customer demographics on the retrieved customers,
additional SQL statements would have been executed for each customer whose customer demographics
were referenced.

In Listing 14-10, we will instruct the DataLoadOptions to immediately load the customer’s
customer demographics as well as its orders.

Listing 14-10. Immediately Loading Multiple EntitySets

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

DataLoadOptions dlo = new DataLoadOptions();
dlo.LoadWith<Customer>(c => c.Orders);
dlo.LoadWith<Customer>(c => c.CustomerCustomerDemos);

db.LoadOptions = dlo;

IQueryable<Customer> custs = (from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c);
// Turn on the logging.
db.Log = Console.Out;

foreach (Customer cust in custs)
{

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

491

 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
}

In Listing 14-10, we have specified that the customer’s orders and demographics are to be loaded

immediately. Notice that we do not reference either in the LINQ query. So, any loading of these
associated classes is immediate as opposed to deferred. We are really not interested in the returned data
so much as the executed SQL statements. Let’s examine the output of Listing 14-10.

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax], [t1].[CustomerID] AS [CustomerID2],
[t1].[CustomerTypeID], (
 SELECT COUNT(*)
 FROM [dbo].[CustomerCustomerDemo] AS [t2]
 WHERE [t2].[CustomerID] = [t0].[CustomerID]
) AS [count]
FROM [dbo].[Customers] AS [t0]
LEFT OUTER JOIN [dbo].[CustomerCustomerDemo] AS [t1] ON [t1].[CustomerID] =
[t0].[CustomerID]
WHERE ([t0].[Country] = @p0) AND ([t0].[City] = @p1)
ORDER BY [t0].[CustomerID], [t1].[CustomerTypeID]
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- @p1: Input String (Size = 6; Prec = 0; Scale = 0) [London]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry]
FROM [dbo].[Orders] AS [t0]
WHERE [t0].[CustomerID] = @x1
-- @x1: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [AROUT]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Around the Horn - Thomas Hardy
SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry]
FROM [dbo].[Orders] AS [t0]
WHERE [t0].[CustomerID] = @x1
-- @x1: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [BSBEV]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

B's Beverages - Victoria Ashworth
…

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

492

As you can see, the customer demographics were joined with the customers when they were
queried, but a separate SQL query was generated to load each customer’s orders. That separate query for
orders was performed when each customer was actually referenced, which is in the foreach statement.
Notice that in the output the query for the orders of a customer is output before the customer
information is displayed to the console.

Since neither the customer demographics nor the orders are referenced in the code, other than
when calling the LoadWith<T> method, the loading is not deferred and is therefore immediate.

Immediate Loading of Hierarchical Associated Classes

In the previous section, we discussed how to cause multiple associated entity classes to be immediately
loaded. In this section, we will discuss how to cause a hierarchy of associated entity classes to be loaded
immediately. To demonstrate this, in Listing 14-11, we will make the query immediately load not only
the orders but also each order’s order details.

Listing 14-11. Immediate Loading of a Hierarchy of Entity Classes

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

DataLoadOptions dlo = new DataLoadOptions();
dlo.LoadWith<Customer>(c => c.Orders);
dlo.LoadWith<Order>(o => o.OrderDetails);

db.LoadOptions = dlo;

IQueryable<Customer> custs = (from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c);
// Turn on the logging.
db.Log = Console.Out;

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 foreach (Order order in cust.Orders)
 {
 Console.WriteLine(" {0} {1}", order.OrderID, order.OrderDate);
 }
}

Notice that we are immediately loading the customer’s orders, and for each order, we are

immediately loading its order details. Here is the output for Listing 14-11:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

493

WHERE ([t0].[Country] = @p0) AND ([t0].[City] = @p1)
ORDER BY [t0].[CustomerID]
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- @p1: Input String (Size = 6; Prec = 0; Scale = 0) [London]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry], [t1].[OrderID] AS [OrderID2],
[t1].[ProductID], [t1].[UnitPrice], [t1].[Quantity], [t1].[Discount], (
 SELECT COUNT(*)
 FROM [dbo].[Order Details] AS [t2]
 WHERE [t2].[OrderID] = [t0].[OrderID]
) AS [count]
FROM [dbo].[Orders] AS [t0]
LEFT OUTER JOIN [dbo].[Order Details] AS [t1] ON [t1].[OrderID] = [t0].[OrderID]
WHERE [t0].[CustomerID] = @x1
ORDER BY [t0].[OrderID], [t1].[ProductID]
-- @x1: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [AROUT]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Around the Horn - Thomas Hardy
SELECT [t0].[OrderID], [t0].[CustomerID], [t0].[EmployeeID], [t0].[OrderDate],
[t0].[RequiredDate], [t0].[ShippedDate], [t0].[ShipVia], [t0].[Freight],
[t0].[ShipName], [t0].[ShipAddress], [t0].[ShipCity], [t0].[ShipRegion],
[t0].[ShipPostalCode], [t0].[ShipCountry], [t1].[OrderID] AS [OrderID2],
[t1].[ProductID], [t1].[UnitPrice], [t1].[Quantity], [t1].[Discount], (
 SELECT COUNT(*)
 FROM [dbo].[Order Details] AS [t2]
 WHERE [t2].[OrderID] = [t0].[OrderID]
) AS [count]
FROM [dbo].[Orders] AS [t0]
LEFT OUTER JOIN [dbo].[Order Details] AS [t1] ON [t1].[OrderID] = [t0].[OrderID]
WHERE [t0].[CustomerID] = @x1
ORDER BY [t0].[OrderID], [t1].[ProductID]
-- @x1: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [BSBEV]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

B's Beverages - Victoria Ashworth
...

Again, we are not interested in the retrieved data, just the SQL statements. Notice that this time, the
query for the customers joined neither the orders nor the order details. Instead, as each customer was
referenced, an additional SQL query was made that joined the orders and order details. Since neither

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

494

was referenced, they were still loaded prior to being referenced and are still considered to be
immediately loaded.

From this example, you can see that LINQ to SQL does perform the single join for the association at
the lowest level in the hierarchy of the immediately loaded files, as we previously mentioned.

Filtering and Ordering

While we are discussing the DataLoadOptions class, we want you to be aware of its AssociateWith
method, which can be used to both filter associated child objects and order them.

In Listing 14-8, we retrieve some customers and enumerate through them displaying the customer
and its orders. You can see in the results that the orders’ dates are in ascending order. To demonstrate
how the AssociateWith method can be used to both filter associated classes and order them, in Listing
14-12 we will do both.

Listing 14-12. Using the DataLoadOptions Class to Filter and Order

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

DataLoadOptions dlo = new DataLoadOptions();
dlo.AssociateWith<Customer>(c => from o in c.Orders
 where o.OrderID < 10700
 orderby o.OrderDate descending
 select o);

db.LoadOptions = dlo;

IQueryable<Customer> custs = from c in db.Customers
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c;

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 foreach (Order order in cust.Orders)
 {
 Console.WriteLine(" {0} {1}", order.OrderID, order.OrderDate);
 }
}

Notice that in Listing 14-12 we embed a query for the lambda expression passed to the

AssociateWith method. In that query, we filter out all records where the OrderID is not less than 10700,
and we sort the orders by OrderDate in descending order. Let’s examine the results of Listing 14-12:

Around the Horn - Thomas Hardy

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

495

 10558 6/4/1997 12:00:00 AM
 10453 2/21/1997 12:00:00 AM
 10383 12/16/1996 12:00:00 AM
 10355 11/15/1996 12:00:00 AM
B's Beverages - Victoria Ashworth
 10599 7/15/1997 12:00:00 AM
 10578 6/24/1997 12:00:00 AM
 10539 5/16/1997 12:00:00 AM
 10538 5/15/1997 12:00:00 AM
 10484 3/24/1997 12:00:00 AM
 10471 3/11/1997 12:00:00 AM
 10289 8/26/1996 12:00:00 AM
Consolidated Holdings - Elizabeth Brown
 10462 3/3/1997 12:00:00 AM
 10435 2/4/1997 12:00:00 AM
Eastern Connection - Ann Devon
 10532 5/9/1997 12:00:00 AM
 10400 1/1/1997 12:00:00 AM
 10364 11/26/1996 12:00:00 AM
North/South - Simon Crowther
 10517 4/24/1997 12:00:00 AM
Seven Seas Imports - Hari Kumar
 10547 5/23/1997 12:00:00 AM
 10523 5/1/1997 12:00:00 AM
 10472 3/12/1997 12:00:00 AM
 10388 12/19/1996 12:00:00 AM
 10377 12/9/1996 12:00:00 AM
 10359 11/21/1996 12:00:00 AM

As you can see in the preceding results, only the orders whose OrderID is less than 10700 are
returned, and they are returned in descending order by date.

Coincidental Joins

One of the benefits of associations is that they are, in effect, performing joins for us automatically. When
we query customers from the Northwind database, each customer has a collection of orders that is
accessible via the Customer object’s Orders property. So, retrieving orders for customers is automatic.
Normally, you would have to perform a join to get that type of behavior. The reverse is also true. When
we retrieve orders, the Order class has a Customer property that references the appropriate customer.

Although we have this automatic join happening, it is merely a happy little accident. The join
happens because when we have an object, say a child object, that has a relationship to another object,
say a parent object, we expect to be able to access it via a reference in the initial, child object.

For example, when working with XML, when we have a reference to a node, we expect to be able to
obtain a reference to its parent by the child node having a member variable that references the parent.
We don’t expect to have to perform a query on the entire XML structure and provide the child node as a
search key. Also, when we have a reference to a node, we expect to be able to access its children with a
reference on the node itself as well.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

496

So, although the automatic join is certainly convenient, the implementation has more to do with the
nature of object relationships, and our expectations of how they should behave, than an intentional
effort to make joins happen automatically. In this way, the joins are really coincidental.

Joins
We just discussed that many relationships in the database are specified to be associations and that we
can access the associated objects by simply accessing a class member. However, only those relationships
that are defined using foreign keys will get mapped this way. Since every type of relationship is not
defined using foreign keys, you will sometimes need to explicitly join tables.

Inner Joins

We can perform an inner equijoin by using the join operator. As is typical with an inner join, any
records in the outer results set will be omitted if a matching record does not exist in the inner results set.
Listing 14-13 contains an example.

Listing 14-13. Performing an Inner Join

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var entities = from s in db.Suppliers
 join c in db.Customers on s.City equals c.City

 select new
 {
 SupplierName = s.CompanyName,
 CustomerName = c.CompanyName,
 City = c.City
 };

foreach (var e in entities)
{
 Console.WriteLine("{0}: {1} - {2}", e.City, e.SupplierName, e.CustomerName);
}

In Listing 14-13, we performed an inner join on the suppliers and the customers. If a customer

record doesn’t exist with the same city as a supplier, the supplier record will be omitted from the results
set. Here are the results of Listing 14-13:

London: Exotic Liquids - Around the Horn
London: Exotic Liquids - B's Beverages
London: Exotic Liquids - Consolidated Holdings
London: Exotic Liquids - Eastern Connection
London: Exotic Liquids - North/South
London: Exotic Liquids - Seven Seas Imports
Sao Paulo: Refrescos Americanas LTDA - Comércio Mineiro

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

497

Sao Paulo: Refrescos Americanas LTDA - Familia Arquibaldo
Sao Paulo: Refrescos Americanas LTDA - Queen Cozinha
Sao Paulo: Refrescos Americanas LTDA - Tradiçao Hipermercados
Berlin: Heli Süßwaren GmbH & Co. KG - Alfred Futterkiste
Paris: Aux joyeux ecclésiastiques - Paris spécialités
Paris: Aux joyeux ecclésiastiques - Spécialités du monde
Montréal: Ma Maison - Mère Paillarde

As you can see, despite that some suppliers are in the output with multiple matching customers,
some suppliers are not in the list at all. This is because there were no customers in the same city as the
missing suppliers. If we need to still see the supplier regardless of whether there is a matching customer,
we need to perform an outer join.

Outer Joins

In Chapter 4, we discussed the DefaultIfEmpty standard query operator and mention that it can be
used to perform outer joins. In Listing 14-14, we will use the into clause to direct the matching join
results into a temporary sequence that we will subsequently call the DefaultIfEmpty operator on. This
way, if the record is missing from the joined results, a default value will be provided. We will use the
DataContext logging feature so we can see the generated SQL statement.

Listing 14-14. Performing an Outer Join

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

var entities =
 from s in db.Suppliers
 join c in db.Customers on s.City equals c.City into temp
 from t in temp.DefaultIfEmpty()
 select new
 {
 SupplierName = s.CompanyName,
 CustomerName = t.CompanyName,
 City = s.City
 };

foreach (var e in entities)
{
 Console.WriteLine("{0}: {1} - {2}", e.City, e.SupplierName, e.CustomerName);
}

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

498

Notice that in the join statement in Listing 14-14, we direct the join results into the temporary
sequence named temp. That temporary sequence name can be whatever you want, as long as it doesn’t
conflict with any other name or keyword. Then we perform a subsequent query on the results of the
temp sequence passed to the DefaultIfEmpty operator. Even though we haven’t covered it yet, the
DefaultIfEmpty operator called in Listing 14-14 is not the same operator that was discussed in Chapter
4. As we will explain shortly, LINQ to SQL queries are translated into SQL statements, and those SQL
statements are executed by the database. SQL Server has no way to call the DefaultIfEmpty standard
query operator. Instead, that operator call will be translated into the appropriate SQL statement. This is
why we wanted the DataContext logging to be enabled.

Also, notice that we access the city name from the Suppliers table instead of the temp collection. We
did this because we know there will always be a record for the supplier, but for suppliers without a
matching customer, there will be no city in the joined results in the temp collection. This is different
from the previous example of the inner join where we obtained the city from the joined table. In that
example, it didn’t matter which of the tables we got the city from, because if a matching customer record
didn’t exist, there would be no record anyway since an inner join was performed.

Let’s look at the results of Listing 14-14:

SELECT [t0].[CompanyName], [t1].[CompanyName] AS [value], [t0].[City]
FROM [dbo].[Suppliers] AS [t0]
LEFT OUTER JOIN [dbo].[Customers] AS [t1] ON [t0].[City] = [t1].[City]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

London: Exotic Liquids - Around the Horn
London: Exotic Liquids - B's Beverages
London: Exotic Liquids - Consolidated Holdings
London: Exotic Liquids - Eastern Connection
London: Exotic Liquids - North/South
London: Exotic Liquids - Seven Seas Imports
New Orleans: New Orleans Cajun Delights -
Ann Arbor: Grandma Kelly's Homestead -
Tokyo: Tokyo Traders -
Oviedo: Cooperativa de Quesos 'Las Cabras' -
Osaka: Mayumi's -
Melbourne: Pavlova, Ltd. -
Manchester: Specialty Biscuits, Ltd. -
Göteborg: PB Knäckebröd AB -
Sao Paulo: Refrescos Americanas LTDA - Comércio Mineiro
Sao Paulo: Refrescos Americanas LTDA - Familia Arquibaldo
Sao Paulo: Refrescos Americanas LTDA - Queen Cozinha
Sao Paulo: Refrescos Americanas LTDA - Tradiçao Hipermercados
Berlin: Heli Süßwaren GmbH & Co. KG - Alfreds Futterkiste
Frankfurt: Plutzer Lebensmittelgroßmärkte AG -
Cuxhaven: Nord-Ost-Fisch Handelsgesellschaft mbH -
Ravenna: Formaggi Fortini s.r.l. -
Sandvika: Norske Meierier -
Bend: Bigfoot Breweries -
Stockholm: Svensk Sjöföda AB -
Paris: Aux joyeux ecclésiastiques - Paris spécialités

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

499

Paris: Aux joyeux ecclésiastiques - Spécialités du monde
Boston: New England Seafood Cannery -
Singapore: Leka Trading -
Lyngby: Lyngbysild -
Zaandam: Zaanse Snoepfabriek -
Lappeenranta: Karkki Oy -
Sydney: G'day, Mate -
Montréal: Ma Maison - Mère Paillarde
Salerno: Pasta Buttini s.r.l. -
Montceau: Escargots Nouveaux -
Annecy: Gai pâturage -
Ste-Hyacinthe: Forêts d'érables -

As you can see in the output of Listing 14-14, we got at least one record for every supplier, and you
can see that some suppliers do not have a matching customer, thereby proving the outer join was
performed. But, if there is any doubt, you can see the actual generated SQL statement, and that clearly is
performing an outer join.

To Flatten or Not to Flatten

In the examples in Listing 14-13 and Listing 14-14, we projected our query results into a flat structure. By
this, we mean an object was created from an anonymous class where each field requested is a member
of that anonymous class. Contrast this with the fact that, instead of creating a single anonymous class
containing each field we wanted, we could have created an anonymous class composed of a Supplier
object and matching Customer object. In that case, there would be the topmost level of the anonymous
class, as well as a lower level containing a Supplier object and either a Customer object or the default
value provided by the DefaultIfEmpty operator, which would be null.

If we take the flat approach, as we did in the two previous examples, because the projected output
class is not an entity class, we will not be able to perform updates to the output objects by having the
DataContext object manage persistence for the changes to the database for us. This is fine for data that
will not be changed. However, sometimes you may be planning on allowing updates to the retrieved
data. In this case, using the nonflat approach would allow you to make changes to the retrieved objects
and have the DataContext object manage the persistence. We will cover this in more depth in Chapter
16. For now, let’s just take a look at Listing 14-15, which contains an example that isn’t flat.

Listing 14-15. Returning Nonflat Results so the DataContext Can Manage Persistence

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var entities = from s in db.Suppliers
 join c in db.Customers on s.City equals c.City into temp
 from t in temp.DefaultIfEmpty()
 select new { s, t };

foreach (var e in entities)

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

500

{
 Console.WriteLine("{0}: {1} - {2}", e.s.City,
 e.s.CompanyName,
 e.t != null ? e.t.CompanyName : "");
}

In Listing 14-15, instead of returning the query results into a flat anonymous object with a member

for each desired field, we return the query results in an anonymous object composed of the Supplier
and potentially Customer entity objects. Also notice that in the Console.WriteLine method call, we still
have to be concerned that the temporary result can be a null if no matching Customer object exists.
Let’s take a look at the results of Listing 14-15:

London: Exotic Liquids - Around the Horn
London: Exotic Liquids - B's Beverages
London: Exotic Liquids - Consolidated Holdings
London: Exotic Liquids - Eastern Connection
London: Exotic Liquids - North/South
London: Exotic Liquids - Seven Seas Imports
New Orleans: New Orleans Cajun Delights -
Ann Arbor: Grandma Kelly's Homestead -
Tokyo: Tokyo Traders -
Oviedo: Cooperativa de Quesos 'Las Cabras' -
Osaka: Mayumi's -
Melbourne: Pavlova, Ltd. -
Manchester: Specialty Biscuits, Ltd. -
Göteborg: PB Knäckebröd AB -
Sao Paulo: Refrescos Americanas LTDA - Comércio Mineiro
Sao Paulo: Refrescos Americanas LTDA - Familia Arquibaldo
Sao Paulo: Refrescos Americanas LTDA - Queen Cozinha
Sao Paulo: Refrescos Americanas LTDA - Tradiçao Hipermercados
Berlin: Heli Süßwaren GmbH & Co. KG - Alfreds Futterkiste
Frankfurt: Plutzer Lebensmittelgroßmärkte AG -
Cuxhaven: Nord-Ost-Fisch Handelsgesellschaft mbH -
Ravenna: Formaggi Fortini s.r.l. -
Sandvika: Norske Meierier -
Bend: Bigfoot Breweries -
Stockholm: Svensk Sjöföda AB -
Paris: Aux joyeux ecclésiastiques - Paris spécialités
Paris: Aux joyeux ecclésiastiques - Spécialités du monde
Boston: New England Seafood Cannery -
Singapore: Leka Trading -
Lyngby: Lyngbysild -
Zaandam: Zaanse Snoepfabriek -
Lappeenranta: Karkki Oy -
Sydney: G'day, Mate -
Montréal: Ma Maison - Mère Paillarde
Salerno: Pasta Buttini s.r.l. -

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

501

Montceau: Escargots Nouveaux -
Annecy: Gai pâturage -
Ste-Hyacinthe: Forêts d'érables –

In the output for Listing 14-15, you can see that some suppliers do not have customers in their cities.
Unlike the sequence of anonymous objects returned by the query in Listing 14-14, the anonymous
objects returned by the query in Listing 14-15 contain entity objects of type Supplier and Customer.
Because these are entity objects, we can take advantage of the services provided by the DataContext to
manage the changes to them and their persistence to the database.

Deferred Query Execution
You have probably read our explanation of deferred query execution a dozen times, but this is such an
important topic that it bears some repetition in case you have skipped around the book to get to this
point. Deferred query execution refers to the fact that a LINQ query of any type—be it a LINQ to SQL
query, a LINQ to XML query, or a LINQ to Objects query—may not actually be executed at the time it is
defined. Take the following query, for example:

IQueryable<Customer> custs = from c in db.Customers
 where c.Country == "UK"
 select c;

The database query is not actually performed when this statement is executed; it is merely defined

and assigned to the variable custs. The query will not be performed until the custs sequence is
enumerated.

Repercussions of Deferred Query Execution
One repercussion of deferred query execution is that your query can contain errors that will cause
exceptions but only when the query is actually performed, not when defined. This can be very
misleading when you step over the query in the debugger and all is well, but then, farther down in the
code, an exception is thrown when enumerating the query sequence. Or, perhaps you call another
operator on the query sequence that results in the query sequence being enumerated.

Another repercussion is that since the SQL query is performed when the query sequence is
enumerated, enumerating it multiple times results in the SQL query being performed multiple times.
This could certainly hamper performance. The way to prevent this is by calling one of the standard query
operator conversion operators, ToArray<T>, ToList<T>, ToDictionary<T, K>, or ToLookup<T, K>, on
a sequence. Each of these operators will convert the sequence on which it is called to a data structure of
the type specified, which in effect caches the results for you. You can then enumerate that new data
structure repeatedly without causing the SQL query to be performed again and the results potentially
changing.

Taking Advantage of Deferred Query Execution

One advantage of deferred query execution is that performance can be improved while at the same time
allowing you to reuse previously defined queries. Since the query is executed every time the query
sequence is enumerated, you can define it once and enumerate it over and over, whenever the situation
warrants. And, if the code flow takes some path that doesn’t need to actually examine the query results
by enumerating them, performance is improved because the query is never actually executed.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

502

Another of the benefits of deferred query execution is that since the query isn’t actually performed
by merely defining it, we can append additional operators programmatically as needed. Imagine an
application that allows the user to query customers. Also imagine that the user can filter the queried
customers. Picture one of those filter-type interfaces that have a drop-down list for each column in the
customer table. There is a drop-down list for the City column and another for the Country column. Each
drop-down list has every city and country from all Customer records in the database. At the top of each
drop-down list is an [ALL] option, which is the default for its respective database column. If the user
hasn’t changed the setting of either of those drop-down lists, no additional where clause is appended to
the query for the respective column. Listing 14-16 contains an example programmatically building a
query for such an interface.

Listing 14-16. Programmatically Building a Query

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Turn on the logging.
db.Log = Console.Out;

// Pretend the values below are not hardcoded, but instead, obtained by accessing
// a dropdown list's selected value.
string dropdownListCityValue = "Cowes";
string dropdownListCountryValue = "UK";

IQueryable<Customer> custs = (from c in db.Customers
 select c);

if (!dropdownListCityValue.Equals("[ALL]"))
{
 custs = from c in custs
 where c.City == dropdownListCityValue
 select c;
}

if (!dropdownListCountryValue.Equals("[ALL]"))
{
 custs = from c in custs
 where c.Country == dropdownListCountryValue
 select c;
}

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1} - {2}", cust.CompanyName, cust.City, cust.Country);
}

In Listing 14-16, we simulate obtaining the user selected city and country from their drop-down

lists, and only if they are not set to "[ALL]", we append an additional where operator to the query.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

503

Because the query is not actually performed until the sequence is enumerated, we can programmatically
build it, one portion at a time.

Let’s take a look at the results of Listing 14-16:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE ([t0].[Country] = @p0) AND ([t0].[City] = @p1)
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- @p1: Input String (Size = 5; Prec = 0; Scale = 0) [Cowes]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Island Trading - Cowes - UK

Notice that since we specified that the selected city was Cowes and the selected country was UK, we
got the records for the customers in Cowes in the United Kingdom. Also notice that there is a single SQL
statement that was performed. And, because the query execution is deferred, we can continue to append
to the query to further restrict it, or perhaps order it, without the expense of multiple SQL queries taking
place.

For another test, in Listing 14-17, we’ll change the value of the dropdownListCityValue variable to
" [ALL]" and see what the executed SQL statement looks like then and what the results are. Since the
default city of " [ALL]" is specified, the SQL query shouldn’t even restrict the results set by the city.

Listing 14-17. Programmatically Building Another Query

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Turn on the logging.
db.Log = Console.Out;

// Pretend the values below are not hardcoded, but instead, obtained by accessing
// a dropdown list's selected value.
string dropdownListCityValue = "[ALL]";
string dropdownListCountryValue = "UK";

IQueryable<Customer> custs = (from c in db.Customers
 select c);

if (!dropdownListCityValue.Equals("[ALL]"))
{
 custs = from c in custs
 where c.City == dropdownListCityValue
 select c;
}

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

504

if (!dropdownListCountryValue.Equals("[ALL]"))
{
 custs = from c in custs
 where c.Country == dropdownListCountryValue
 select c;
}

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1} - {2}", cust.CompanyName, cust.City, cust.Country);
}

Let’s examine the output of Listing 14-17:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[Country] = @p0
-- @p0: Input String (Size = 2; Prec = 0; Scale = 0) [UK]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Around the Horn - London - UK
B's Beverages - London - UK
Consolidated Holdings - London - UK
Eastern Connection - London - UK
Island Trading - Cowes - UK
North/South - London - UK
Seven Seas Imports - London - UK

You can see that the where clause of the SQL statement no longer specifies the city, which is exactly
what we wanted. You can also see in the output results that there are now customers from different cities
in the United Kingdom.

Of course, you can always append a call to the ToArray<T>, ToList<T>, ToDictionary<T, K>, or
ToLookup<T, K> standard query operators to force the query to execute when you want.

The SQL IN Statement with the Contains Operator
One of the SQL query capabilities that early incarnations of LINQ to SQL lacked was the ability to
perform a SQL IN statement, such as the one in the following SQL query:

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

505

A SQL Query with an IN Statement

SELECT *
FROM Customers
WHERE (City IN ('London', 'Madrid'))

To alleviate this problem, Microsoft added the Contains operator. But it works in the opposite

direction to what you might expect given how the SQL IN statement works. With SQL IN, we say some
member of an entity class must be IN some set of values. Instead, Contains works in the opposite
manner. Let’s take a look at Listing 14-18 where we demonstrate the Contains operator.

Listing 14-18. The Contains Operator

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

string[] cities = { "London", "Madrid" };

IQueryable<Customer> custs = db.Customers.Where(c => cities.Contains(c.City));

foreach (Customer cust in custs)
{
 Console.WriteLine("{0} - {1}", cust.CustomerID, cust.City);
}

As you can see in Listing 14-18, instead of writing the query so that the customer’s city must be in

some set of values, you write the query so that some set of values contains the customer’s city. In the
case of Listing 14-18, we create an array of cities named cities. In our query, we then call the Contains
operator on the cities array and pass it the customer’s city. If the cities array contains the customer’s city,
true will be returned to the Where operator, and that will cause the Customer object to be included in
the output sequence.

Let’s take a look at the output of Listing 14-18:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[City] IN (@p0, @p1)
-- @p0: Input String (Size = 6; Prec = 0; Scale = 0) [London]
-- @p1: Input String (Size = 6; Prec = 0; Scale = 0) [Madrid]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

AROUT - London

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

506

BOLID - Madrid
BSBEV - London
CONSH - London
EASTC - London
FISSA - Madrid
NORTS - London
ROMEY - Madrid
SEVES – London

Looking at the generated SQL statement, you can see that the Contains operator was translated into
a SQL IN statementN statement.

Updates
Making database updates with LINQ to SQL is as easy as changing properties on an object, calling the
DataContext object’s SubmitChanges method, and handling any concurrency conflicts that may occur.
Don’t let the concurrency conflict handling intimidate you; there are several options for handling
conflicts, and none of them is too painful. We will cover detecting and handling conflicts in detail in
Chapter 17.

Of course, this simplicity is true only if you have written entity classes that are mapped to the
database properly and maintain graph consistency. For more information about mapping the entity
classes to the database, read the “Entity Class Attributes and Attribute Properties” section in Chapter 15.
For more information about graph consistency, read the “Graph Consistency” section in that same
chapter. However, SQLMetal and the Object Relational Designer handle all the necessary plumbing to
make all this happen for you.

For a simple example of making an update to the database, look at the first example in Chapter 12,
Listing 12-1.

Updating Associated Classes
By design, LINQ to SQL allows you to update either side of associated classes to remove the relationship
between them. You could update a parent object’s reference to one of its children, or you could update
that child’s reference to the parent. Obviously, the references at each end of that relationship must be
updated, but you need to update only one side or the other.

It is not LINQ to SQL that keeps your object model’s graph consistent when updating one side; it is
the responsibility of the entity class to make this happen. Please read the “Graph Consistency” section in
Chapter 15 for more information about how this should be implemented.

However, SQLMetal and the Object Relational Designer handle this for you if you allow them to
create your entity classes.

Updating a Child’s Parent Reference

Since we can update either side of the relationship, we could choose to update a child’s parent reference.
So, as an example, let’s see how we would change the employee that gets credit for an order in the
Northwind database by examining Listing 14-19. Because this example is more complex than many of
the others, we will explain it as we go.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

507

Listing 14-19. Changing a Relationship by Assigning a New Parent

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Order order = (from o in db.Orders
 where o.EmployeeID == 5
 orderby o.OrderDate descending
 select o).First<Order>();

// Save off the current employee so we can reset it at the end.
Employee origEmployee = order.Employee;

In the preceding code, after obtaining the DataContext, we query for the most recent order of the

employee whose EmployeeID is 5 by ordering that person’s orders by date in descending order and
calling the First operator. This will provide us with the most recent order. Next, just so we will have a
reference to the original employee this order was credited to, so that we can restore it at the end of the
example, we save the reference in a variable named origEmployee:
Console.WriteLine("Before changing the employee.");
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order.OrderID, order.OrderDate, order.Employee.EmployeeID);

Next, we display a line to the console letting you know we haven’t changed the employee for the
retrieved order yet, followed by displaying the order’s ID, date, and credited employee to the screen. We
should see that the order is credited to employee 5, since that is the employee we queried to obtain the
order.

Employee emp = (from e in db.Employees
 where e.EmployeeID == 9
 select e).Single<Employee>();

// Now we will assign the new employee to the order.
order.Employee = emp;

db.SubmitChanges();

Next, we query for some other employee, the one whose EmployeeID is 9, that we then set to be the

credited employee for the previously queried order. Then, we save the changes by calling the
SubmitChanges method.

Now, to prove the change was really made at both ends, we could just show you the credited
employee for the queried order, but that would be anticlimactic, since you just saw us set the Employee
property of the order, and it wouldn’t really prove to you that the change was made on the employee
side of the relationship. It would be much more satisfying for us to find the order we just changed in the
new employee’s collection of orders, so that is what we will do.

Order order2 = (from o in emp.Orders
 where o.OrderID == order.OrderID
 select o).First<Order>();

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

508

In the preceding code, we query for the order we changed by its OrderID in the new employee’s

Orders. If it is found, that will prove the relationship between the employee and order was updated on
both ends of the relationship.

Console.WriteLine("{0}After changing the employee.", System.Environment.NewLine);
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order2.OrderID, order2.OrderDate, order2.Employee.EmployeeID);

In the preceding code, we display to the console that we are about to display the order after

changing it to the new employee emp. We then display that order. We should see that its employee is the
employee whose EmployeeID is 9. Prior to the change, the EmployeeID was 5.

// Now we need to reverse the changes so the example can be run multiple times.
order.Employee = origEmployee;
db.SubmitChanges();

The last two lines of code, as well as the line that saves the order’s original employee, are for

resetting the database so the example can be run multiple times.
Now, let’s examine the output for Listing 14-19:

Before changing the employee.
OrderID = 11043 : OrderDate = 4/22/1998 12:00:00 AM : EmployeeID = 5

After changing the employee.
OrderID = 11043 : OrderDate = 4/22/1998 12:00:00 AM : EmployeeID = 9

As you can see, the employee for the order before the change was the employee whose EmployeeID
is 5. After the change, the order’s credited EmployeeID is 9. What is significant is that we didn’t just
display the order’s credited employee on the same order variable, order. We retrieved that order from
the employee whose EmployeeID is 9. This proves that the order was indeed changed on the employee
side of the relationship.

In this example, we updated the child object’s parent reference, where the child was the order and
the parent was the employee. There is yet another approach we could have taken to achieve the same
result. We could have updated the parent object’s child reference.

Updating a Parent’s Child Reference

Another approach to changing the relationship between two objects is to remove the child object from
the parent object’s EntitySet<T> collection and add it to a different parent’s EntitySet<T> collection.
In Listing 14-20, we remove the order from the employee’s collection of orders. Because this example is
similar to Listing 14-19, we will be far briefer in the explanation, but the significant differences will be in
bold.

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

509

Listing 14-20. Changing a Relationship by Removing and Adding a Child to a Parent’s EntitySet

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Order order = (from o in db.Orders
 where o.EmployeeID == 5
 orderby o.OrderDate descending
 select o).First<Order>();

// Save off the current employee so we can reset it at the end.
Employee origEmployee = order.Employee;

Console.WriteLine("Before changing the employee.");
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order.OrderID, order.OrderDate, order.Employee.EmployeeID);

Employee emp = (from e in db.Employees
 where e.EmployeeID == 9
 select e).Single<Employee>();

// Remove the order from the original employee's Orders.
origEmployee.Orders.Remove(order);

// Now add it to the new employee's orders.
emp.Orders.Add(order);

db.SubmitChanges();

Console.WriteLine("{0}After changing the employee.", System.Environment.NewLine);
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order.OrderID, order.OrderDate, order.Employee.EmployeeID);

// Now we need to reverse the changes so the example can be run multiple times.
order.Employee = origEmployee;
db.SubmitChanges();

In Listing 14-20, we retrieve the most recent order for the employee whose EmployeeID is 5, and we

save off the retrieved order’s employee in origEmployee so that we can restore it at the end of the
example. Next, we display the order before the employee is changed. Then, we retrieve the employee
whose EmployeeID is 9 and store the reference in the variable named emp. At this point, this code is the
same as Listing 14-19.

Then, we remove the order from the original employee’s collection of orders and add it to the new
employee’s collection of orders. We then call the SubmitChanges method to persist the changes to the
database. Next, we display the order after the changes to the console. Last, we restore the order to its
original condition so the example can be run more than once. Let’s examine the results of Listing 14-20:

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

510

Before changing the employee.
OrderID = 11043 : OrderDate = 4/22/1998 12:00:00 AM : EmployeeID = 5

After changing the employee.
OrderID = 11043 : OrderDate = 4/22/1998 12:00:00 AM : EmployeeID = 9

Deletes
To delete a record from a database using LINQ to SQL, you must delete the entity object from the
Table<T> of which it is a member with the Table<T> object’s DeleteOnSubmit method. Then, of course,
you must call the SubmitChanges method. Listing 14-21 contains an example.

■ CCaution Unlike all the other examples in this chapter, this example will not restore the database at the end.
This is because one of the tables involved contains an identity column, and it is not a simple matter to
programmatically restore the data to its identical state prior to the example executing. Therefore, before running

this example, make sure you have a backup of your database that you can restore from. If you downloaded the
zipped extended version of the Northwind database, after running this example, you could just detach the

Northwind database, reextract the database files, and reattach the database.

Listing 14-21. Deleting a Record by Deleting It from Its Table<T>

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Retrieve a customer to delete.
Customer customer = (from c in db.Customers
 where c.CompanyName == "Alfreds Futterkiste"
 select c).Single<Customer>();

db.OrderDetails.DeleteAllOnSubmit(
 customer.Orders.SelectMany(o => o.OrderDetails));
db.Orders.DeleteAllOnSubmit(customer.Orders);
db.Customers.DeleteOnSubmit(customer);

db.SubmitChanges();

Customer customer2 = (from c in db.Customers
 where c.CompanyName == "Alfreds Futterkiste"
 select c).SingleOrDefault<Customer>();

Console.WriteLine("Customer {0} found.", customer2 != null ? "is" : "is not");.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

511

This example is pretty straightforward, but there are some interesting facets to it. First, since the

Order table contains a foreign key to the Customer table, you cannot delete a customer without first
deleting the customer’s orders. And, since the OrderDetails table contains a foreign key to the Orders
table, you cannot delete an order without first deleting the order’s order details. So, to delete a customer,
we must first delete the order details for all the orders for the customer, then we can delete all the orders,
and finally we can delete the customer.

Deleting all the orders is not difficult thanks to the DeleteAllOnSubmit operator that can delete a
sequence of orders, but deleting all the order details for each order is a little trickier. Of course, we could
enumerate through all the orders and call the DeleteAllOnSubmit operator on each order’s sequence of
order details, but that would be boring. Instead, we call the SelectMany operator to take a sequence of
sequences of order details to create a single concatenated sequence of order details that we then pass to
the DeleteAllOnSubmit operator.

After deleting the order details, orders, and the customer, we call the SubmitChanges method. To
prove the customer is actually gone, we query for it and display a message to the console.

Let’s take a look at the output of Listing 14-21:

Customer is not found.

That’s not very exciting output, but it does prove the customer no longer exists. Although the point
of Listing 14-21 is to demonstrate that to delete an entity object you must delete it from the appropriate
Table<T>, we think the example became a cheerleader for the SelectMany operator as well.

■ NNote Remember that this example did not restore the database at the end, so you should manually restore it

now.

Deleting Attached Entity Objects
Unlike when an attached associated dependent entity object was automatically inserted into the
database by the DataContext when the dependent entity object’s associated parent object was inserted,
as happened in Listing 14-3, our attached dependent entity objects are not automatically deleted if the
parent entity object is deleted. By dependent, we mean the entity objects containing the foreign key. You
saw this demonstrated in Listing 14-21, where we had to delete the OrderDetails records before the
Orders records and the Orders records before the Customers record.

So, for example, with the Northwind database, if you attempt to delete an order, its order details will
not automatically be deleted. This will cause a foreign key constraint violation when you attempt to
delete the order. Therefore, before you can delete an entity object, you must delete all its attached
associated child entity objects.

For examples of this, see Listing 14-21 and Listing 14-3. In each of these listings, we had to delete the
associated attached entity objects before we could delete their parent object.

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

512

Deleting Relationships
To delete a relationship between two entity objects in LINQ to SQL, you reassign the entity object’s
reference to the related object to a different object or null. By assigning the reference to null, the entity
object will have no relationship to an entity of that type. However, removing the relationship altogether
by assigning the reference to null will not delete the record itself. Remember, to actually delete a record,
its corresponding entity object must be deleted from the appropriate Table<T>. Listing 14-22 contains
an example of removing the relationship.

Listing 14-22. Removing a Relationship Between Two Entity Objects

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Retrieve an order to unrelate.
Order order = (from o in db.Orders
 where o.OrderID == 11043
 select o).Single<Order>();

// Save off the original customer so we can set it back.
Customer c = order.Customer;

Console.WriteLine("Orders before deleting the relationship:");
foreach (Order ord in c.Orders)
{
 Console.WriteLine("OrderID = {0}", ord.OrderID);
}

// Remove the relationship to the customer.
order.Customer = null;
db.SubmitChanges();

Console.WriteLine("{0}Orders after deleting the relationship:",
 System.Environment.NewLine);
foreach (Order ord in c.Orders)
{
 Console.WriteLine("OrderID = {0}", ord.OrderID);
}

// Restore the database back to its original state.
order.Customer = c;
db.SubmitChanges();

In Listing 14-22, we query a specific order, one with an OrderID of 11043. We save that order’s

Customer, so we can restore it at the end of the example. We then display all of that customer’s orders to
the console and assign the retrieved order’s customer to null and call the SubmitChanges method to

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

513

persist the changes to the database. Then, we display all the customer’s orders again, and this time, the
order whose OrderID is 11043 is gone. Let’s examine the output for Listing 14-22:

Orders before deleting the relationship:
OrderID = 10738
OrderID = 10907
OrderID = 10964
OrderID = 11043

Orders after deleting the relationship:
OrderID = 10738
OrderID = 10907
OrderID = 10964

As you can see, once we remove the relationship to the customer for the order whose OrderID is
11043, the order is no longer in the customer’s collection of orders.

Overriding Database Modification Statements
If you have been thinking that using LINQ to SQL in your environment is not possible, perhaps because
of requirements to use stored procedures for all modifications to the database, then you would be
interested in knowing that the actual code that gets called to make the updates, including inserts and
deletes, can be overridden.

Overriding the code called to insert, update, and delete is as simple as defining the appropriately
named partial method with the appropriate signature. When you override this way, the DataContext
change processor will call your partial method implementation for the database update, insert, or delete.
Here is yet another way Microsoft is taking advantage of partial methods. You get the ability to hook into
the code but with no overhead if you don’t.

You must be aware, though, that if you take this approach, you will be responsible for concurrency
conflict detection. Please read Chapter 17 thoroughly before you do this.

When you define these override methods, it is the name of the partial method and the entity type of
the method’s parameters that instruct the DataContext to call your override methods. Let’s take a look
at the method prototypes you must define to override the insert, update, and delete methods.

Overriding the Insert Method
You may override the method called to insert a record in the database by implementing a partial method
prototyped as

partial void Insert[EntityClassName](T instance)

where [EntityClassName] is the name of the entity class whose insert method is being overridden and
type T is that entity class.

Here is an example of the prototype to override the insert method for the Shipper entity class:

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

514

partial void InsertShipper(Shipper instance)

Overriding the Update Method
You may override the method called to update a record in the database by implementing a partial
method prototyped as

partial void Update[EntityClassName](T instance)

where [EntityClassName] is the name of the entity class whose update method is being overridden and
type T is that entity class.

Here is an example of the prototype to override the update method for the Shipper entity class:

partial void UpdateShipper(Shipper instance)

Overriding the Delete Method
You may override the method called to delete a record in the database by implementing a partial
method prototyped as

partial void Delete[EntityClassName](T instance)

where [EntityClassName] is the name of the entity class whose delete method is being overridden and
type T is that entity class.

Here is an example of the prototype to override the delete method for the Shipper entity class:

partial void DeleteShipper(Shipper instance)

Example
For an example demonstrating overriding the insert, update, and delete methods, instead of modifying
our generated entity class file, we are going to create a new file for our override partial methods so that if
we ever need to regenerate our entity class file, we will not lose our override partial methods. We have
named our file NorthwindExtended.cs. Here is what it will look like:

The NorthwindExtended.cs File with Database Update Override Methods

using System;
using System.Data.Linq;

namespace nwind
{
 public partial class Northwind : DataContext
 {
 partial void InsertShipper(Shipper instance)

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

515

 {
 Console.WriteLine("Insert override method was called for shipper {0}.",
 instance.CompanyName);
 }

 partial void UpdateShipper(Shipper instance)
 {
 Console.WriteLine("Update override method was called for shipper {0}.",
 instance.CompanyName);
 }

 partial void DeleteShipper(Shipper instance)
 {
 Console.WriteLine("Delete override method was called for shipper {0}.",
 instance.CompanyName);
 }
 }
}

■ NNote You will have to add the file containing this partial class definition to your Visual Studio project.

The first thing to notice about the override code is that the override methods are partial methods
defined at the DataContext level. They are not defined in the entity class to which they relate.

As you can see, our override methods aren’t doing anything except for informing us that they are
getting called. In many situations, the override will be for the purpose of calling a stored procedure, but
this is up to the developer.

Now, let’s take a look at Listing 14-23, which contains code that will cause our override methods to
be called.

Listing 14-23. An Example Where the Update, Insert, and Delete Methods Are Overridden

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Shipper ship = (from s in db.Shippers
 where s.ShipperID == 1
 select s).Single<Shipper>();

ship.CompanyName = "Jiffy Shipping";

Shipper newShip =
 new Shipper
 {
 ShipperID = 4,

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

516

 CompanyName = "Vickey Rattz Shipping",
 Phone = "(800) SHIP-NOW"
 };

db.Shippers.InsertOnSubmit(newShip);

Shipper deletedShip = (from s in db.Shippers
 where s.ShipperID == 3
 select s).Single<Shipper>();

db.Shippers.DeleteOnSubmit(deletedShip);

db.SubmitChanges();

In Listing 14-23, first we retrieve the shipper whose ShipperID is 1, and then we update a field.

Then, we insert another shipper, Vickey Rattz Shipping, and delete yet another, the one with a
ShipperID of 3. Of course, since our override methods are getting called and they only display a message
to the console, no change is actually persisted to the database. Here are the results of Listing 14-23:

Update override method was called for shipper Jiffy Shipping.
Insert override method was called for shipper Vickey Rattz Shipping.
Delete override method was called for shipper Federal Shipping.

From the results, you can see each of our override methods is called. Now the question becomes,
what if you want to override the insert, update, and delete methods but you also want the default
behavior to occur?

Because the code required would conflict with our partial methods for the previous example, we will
not provide a working example of this, but we will explain how to do it. In your partial method
implementations for the insert, update, and delete methods, you call the
DataContext.ExecuteDynamicInsert, DataContext.ExecuteDynamicUpdate, or
DataContext.ExecuteDynamicDelete method, respectively, to get the default method behavior.

For example, if, for the previous example, we want our log messages to be called and we want the
normal LINQ to SQL code to be called to actually handle the persistence to the database, we could
change our partial method implementations to the following:

Overriding the Insert, Update, and Delete Methods Plus Calling the Default Behavior

namespace nwind
{
 public partial class Northwind : DataContext
 {
 partial void InsertShipper(Shipper instance)
 {
 Console.WriteLine("Insert override method was called for shipper {0}.",
 instance.CompanyName);
 this.ExecuteDynamicInsert(instance);

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

517

 }

 partial void UpdateShipper(Shipper instance)
 {
 Console.WriteLine("Update override method was called for shipper {0}.",
 instance.CompanyName);
 this.ExecuteDynamicUpdate(instance);

 }

 partial void DeleteShipper(Shipper instance)
 {
 Console.WriteLine("Delete override method was called for shipper {0}.",
 instance.CompanyName);
 this.ExecuteDynamicDelete(instance);

 }
 }
}

Notice that in each of the partial methods we call the appropriate ExecuteDynamicInsert,

ExecuteDynamicUpdate, or ExecuteDynamicDelete method. Now, we can extend the behavior when
an entity class is called, we can modify it, or we can even create a wrapper for the existing default
behavior. LINQ to SQL is very flexible.

Overriding in the Object Relational Designer
Don’t forget, as we covered in Chapter 13, you can override the insert, update, and delete methods using
the Object Relational Designer.

Considerations
Don’t forget that when you override the update, insert, and delete methods, you take responsibility for
performing concurrency conflict detection. This means you should be very familiar with how the
currently implemented concurrency conflict detection works. For example, the way Microsoft has
implemented it is to specify all relevant fields involved in update checks in the where clause of the
update statement. The logic then checks to see how many records were updated by the statement. You
should follow a similar pattern, and if a concurrency conflict is detected, you must throw a
ChangeConflictException exception. Be sure to read Chapter 17 before attempting to override these
methods.

SQL Translation
When writing LINQ to SQL queries, you may have noticed that when specifying expressions such as
where clauses, the expressions are in the native programming language, as opposed to SQL. After all, this
is part of the goal of LINQ, language integration. For this book, the expressions are in C#. If you haven’t
noticed, shame on you.

For example, in Listing 14-2, we have a query that looks like this:

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

518

An Example of a LINQ to SQL Query

Customer cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

Notice that the expression in the where clause is indeed C# syntax, as opposed to SQL syntax that

would look more like this:

An Example of an Invalid LINQ to SQL Query

Customer cust = (from c in db.Customers
 where c.CustomerID = 'LONEP'
 select c).Single<Customer>();

Notice that instead of using the C# equality operator (==), the SQL equality operator (=) is used.

Instead of enclosing the string literal in double quotes (""), single quotes ('') enclose it. One of the goals
of LINQ is to allow developers to program in their native programming languages. Remember, LINQ
stands for Language Integrated Query. However, since the database won’t be executing C# expressions,
your C# expressions must be translated to valid SQL. Therefore, your queries must be translated to SQL.

Right off the bat, this means that what you can do does have limitations. But, in general, the
translation is pretty good. Rather than attempt to re-create a reference similar to the MSDN help for this
translation process and what can and cannot be translated, we want to show you what to expect when
your LINQ to SQL query cannot be translated.

First, be aware that the untranslatable code may compile. A failed translation may not actually
reveal itself until the time the query is actually performed. Because of deferred query execution, this also
means the line of code defining the query may execute just fine. Only when the query is actually
performed does the failed translation rear its ugly head, and it does so in the form of an exception similar
to this:

Unhandled Exception: System.NotSupportedException: Method 'TrimEnd' has no
supported
translation to SQL.
…

That is a pretty clear error message. Let’s examine the code in Listing 14-24 that produces this
exception.

Listing 14-24. A LINQ to SQL Query That Cannot Be Translated

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.CustomerID.TrimEnd('K') == "LAZY"
 select c;

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

519

foreach (Customer c in custs)
{
 Console.WriteLine("{0}", c.CompanyName);
}

Notice that the TrimEnd method that caused the translation exception is called on the database

field, not our local string literal. In Listing 14-25, I’ll reverse the side we call the TrimEnd method on and
see what happens.

Listing 14-25. A LINQ to SQL Query That Can Be Translated

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.CustomerID == "LAZY".TrimEnd('K')
 select c;

foreach (Customer c in custs)
{
 Console.WriteLine("{0}", c.CompanyName);
}

The output of Listing 14-25 looks like this:

OK, you got us; there is no output. But that is fine because this is the appropriate output for the
query, and no SQL translation exception is thrown.

So, calling an unsupported method on a database column causes the exception, while calling that
same method on the passed parameter is just fine. This makes sense. LINQ to SQL would have no
problem calling the TrimEnd method on our parameter, because it can do this prior to binding the
parameter to the query, which occurs in our process environment. Calling the TrimEnd method on the
database column would have to be done in the database, and that means, instead of calling the method
in our process environment, that call must be translated to a SQL statement that can be passed to the
database and executed. Since the TrimEnd method is not supported for SQL translation, the exception is
thrown.

One thing to keep in mind is that if you do need to call an unsupported method on a database
column, perhaps you can instead call a method that has the mutually opposite effect on the parameter?
Say, for example, you want to call the ToUpper method on the database column, and it’s not supported;
perhaps you could call the ToLower method on the parameter instead. However, in this case, the
ToUpper method is supported, so the point is moot. Also, you must ensure that the method you call does
indeed have a mutually opposite effect. In this case, the database column could have mixed case, so
calling the ToLower method would still not have exactly the opposite effect. If your database column
contained the value “Smith” and your parameter was "SMITH", and you were checking for equality,
calling the ToUpper method on the database column would work and give you a match. However, if the

CHAPTER 14 ■ LINQ TO SQL DATABASE OPERATIONS

520

ToUpper method were not supported, trying to reverse the logic by calling the ToLower method on the
parameter would still not yield a match.

You may be wondering how you would know that the TrimEnd method is not supported by SQL
translation. Because the nature of which primitive types and methods are supported is so dynamic and
subject to change, it is beyond the scope of this book to attempt to document them all. There are also a
lot of restrictions and disclaimers to the translation. We suspect SQL translation will be an ongoing effort
for Microsoft. For you to know what is supported, you should consult the MSDN documentation titled
“.NET Framework Function Translation” for LINQ to SQL. However, as you can see from the previous
examples, it is pretty easy to tell when a method is not supported.

Summary
We know this chapter has been a whirlwind tour of standard database operations using LINQ to SQL. We
hope we kept the examples simple enough to allow you to focus on the basic steps necessary to perform
inserts, queries, updates, and deletes to the database. We also pointed out the ways that LINQ to SQL
queries differ from LINQ to Objects queries.

Bear in mind that any LINQ to SQL code that changes the database should detect and resolve
concurrency conflicts, which we cover thoroughly in Chapter 17.

In addition to understanding how to perform these basic operations on entity objects, it is also
important to understand how this affects an object’s associated entity objects. Remember, when you
insert an entity object into the database, any attached objects will be added automatically for you.
However, this automation does not extend to deletes. To delete a parent entity object in an association
relationship, you must first delete the child entity objects; otherwise, an exception will be thrown.

Next, we demonstrated how you can override the default methods generated to modify your entity
object’s corresponding database records. This allows a developer to control how database changes are
made, which allows you to use stored procedures.

Finally, we covered the fact that LINQ to SQL queries must be translated to SQL statements. It is
important to never forget that this translation takes place, and this does somewhat restrict what can be
done.

We are conscious that we have mentioned entity classes repeatedly but have yet to explain them in
any depth. It’s high time we rectify this state of affairs. So, in the next chapter, Chapter 15, we plan to
bore you to tears with them.

C H A P T E R 15

■ ■ ■

521

LINQ to SQL Entity Classes

In the previous LINQ to SQL chapters, we mentioned entity classes numerous times but did not define
or describe them. In this chapter, we will define entity classes, as well as discuss the different ways they
can be created. We will also discuss of the complexities and responsibilities should you decide to create
your own entity classes.

But before we can begin, you must meet some prerequisites to be able to run the examples in this
chapter.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated entity classes for it. Please read and follow the instructions in the
“Prerequisites for Running the Examples” section of Chapter 12.

Entity Classes
Classes that are mapped to the SQL Server database using LINQ to SQL are known as entity classes. An
instantiated object of an entity class is an entity of that type, and we will refer to it as an entity object.
Entity classes are normal C# classes with additional LINQ to SQL attributes specified. Alternatively,
rather than adding attributes, entity classes can be created by providing an XML mapping file when
instantiating the DataContext object. Those attributes or mapping file entries dictate how the entity
classes are to be mapped to a SQL Server database when using LINQ to SQL.

By using these entity classes, we can query and update the database using LINQ to SQL.

Creating Entity Classes
Entity classes are the basic building blocks utilized when performing LINQ to SQL queries. To begin
using LINQ to SQL, entity classes are required. There are two ways to obtain entity classes; you can
generate them, as we demonstrate in Chapter 12 and Chapter 13, or you can write them by hand. And,
there is no reason you cannot do a combination of both.

If you do not already have business classes for the entities stored in the database, generating the
entity classes is probably the best approach. If you already have an object model, writing the entity
classes may be the best approach.

If you are starting a project from scratch, we recommend that you consider modeling the database
first and generating the entity classes from the database, which will alleviate the burden of writing them
correctly.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

522

Generating Entity Classes
In Chapter 12, we demonstrate how to generate the entity classes for the Northwind database so you can
try the examples in the LINQ to SQL chapters of this book. In Chapter 13, we discuss in detail how you
can generate entity classes using either the command-line tool named SQLMetal or the GUI tool named
the Object Relational Designer.

SQLMetal is very simple to use but does not provide any options for controlling the naming of the
generated entity classes—although you can use it to produce an intermediate XML file, which you can
edit. Further, SQLMetal generates entity classes for every table in the specified database and for every
field in each table. The Object Relational Designer may take longer to create a complete object model for
a database, but it has the benefit of allowing you to specify exactly which tables and fields you want to
generate entity classes for, as well as allowing you to specify the names of the entity classes and their
properties. We have already discussed SQLMetal and the Object Relational Designer in Chapter 13, so
refer to that chapter for more details about using either of these two tools.

There is a difference between generating an entity class and using one. You might generate entity
classes for all the tables in a database, but that doesn’t mean you have to use them all.

And using generated entity classes doesn’t mean that you can’t add custom functionality to them.
For example, a Customer class was generated by SQLMetal in Chapter 12. There is no reason that
business methods or nonpersisted class members cannot be added to this Customer class. However, if
you do this, make sure you do not actually modify the generated entity class code. Instead, create
another Customer class module, and take advantage of the fact that entity classes are generated as
partial classes. Partial classes are a great addition to C# and make it easier than ever to separate
functionality into separate modules. This way, if the entity class gets regenerated for any reason, you will
not lose your added methods or members.

Writing Entity Classes by Hand
Writing entity classes by hand is the most difficult approach. It requires a solid understanding of the
LINQ to SQL attributes and/or the external mapping schema. However, writing entity classes by hand is
a great way to really learn LINQ to SQL.

Where writing entity classes by hand really pays off is when you already have an object model to
work with. It wouldn’t be very beneficial to generate entity classes from a database, since you already
have your object model used by the application. In such cases, you can either add the necessary
attributes to your existing object model or create a mapping file. Thanks to the flexibility of LINQ to SQL,
it is not necessary that your classes match the name of the table they are persisted in or that the names
of the properties of the class match the column names in the table. This means that previously
implemented classes can now be modified to persist in a SQL Server database.

To create entity classes by hand using attributes, you will need to add the appropriate attributes to
your classes, be they existing business classes or new classes created specifically as entity classes. Read
the “Entity Class Attributes and Attribute Properties” section in this chapter for a description of the
available attributes and properties.

To create entity classes by using an external mapping file, you will need to create an XML file that
conforms to the schema discussed in the “XML External Mapping File Schema” section later in this
chapter. Once you have this external mapping file, you will use the appropriate DataContext
constructor when instantiating the DataContext object to load the mapping file. There are two
constructors that allow you to specify an external mapping file.

Additional Responsibilities of Entity Classes

Unfortunately, when writing entity classes by hand, it is not enough to understand the attributes and
attribute properties. You must also know about some of the additional responsibilities of entity classes.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

523

For example, you must be aware change notifications and how to implement them. You also must
ensure graph consistency between your parent and child classes.

These additional responsibilities are all taken care of for you when using SQLMetal or the Object
Relational Designer, but if you are creating your entity classes yourself, you must add the necessary
code.

Change Notifications

Later, in Chapter 16, we will discuss change tracking. It turns out that change tracking is not very elegant
or efficient without assistance from the entity classes themselves. If your entity classes are generated by
SQLMetal or the Object Relational Designer, you can relax because these tools will take care of these
inefficiencies by implementing code to participate in change notifications when they generate your
entity classes. But if you are writing your entity classes, you need to understand change notifications and
potentially implement the code to participate in the change notifications.

You can elect to have your entity classes participate in change notifications. If they do not
participate in change notifications, the DataContext provides change tracking by keeping two copies of
each entity object—one with the original values and one with the current values. It creates the copies the
first time an entity is retrieved from the database when change tracking begins. You can make change
tracking more efficient by making your handwritten entity classes implement the change notification
interfaces, System.ComponentModel.INotifyPropertyChanging and
System.ComponentModel.INotifyPropertyChanged.

As we will do often in the LINQ to SQL chapters, we will refer to the code that was generated by
SQLMetal to show you the quintessential way to handle a situation. In this case, we will refer to the
SQLMetal-generated code to handle change notifications. To implement the
INotifyPropertyChanging and INotifyPropertyChanged interfaces, we need to do four things.

First, we need to define an entity class so that it implements the INotifyPropertyChanging and
INotifyPropertyChanged interfaces:

From the Generated Customer Entity Class

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{ … }

Because the entity class implements these two interfaces, the DataContext will know to register two

event handlers for two events we will discuss in just a few paragraphs.
You can see that the Table attribute is specified in the preceding code. We will be displaying the

related attributes for context purposes in this section and discuss them in detail later in this chapter. You
can ignore them for the moment.

Second, we need to declare a private static variable of type PropertyChangingEventArgs and
pass String.Empty to its constructor.

From the Generated Customer Entity Class

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{
 private static PropertyChangingEventArgs emptyChangingEventArgs =
 new PropertyChangingEventArgs(String.Empty);

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

524

 ...
}

The emptyChangingEventArgs object will be passed to one of the previously mentioned event

handlers when the appropriate event is raised.
Third, we need to add two public event members, one of type

System.ComponentModel.PropertyChangingEventHandler named PropertyChanging, and one of
type System.ComponentModel.PropertyChangedEventHandler named PropertyChanged to the entity
class.

From the Generated Customer Entity Class

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{
 private static PropertyChangingEventArgs emptyChangingEventArgs =
 new PropertyChangingEventArgs(String.Empty);
 ...
 public event PropertyChangingEventHandler PropertyChanging;

 public event PropertyChangedEventHandler PropertyChanged;

 ...
}

When the DataContext object initiates change tracking for an entity object, the DataContext object

will register event handlers with these two events if the entity class implements the two change
notification interfaces. If not, it will make a copy of the entity object as we previously mentioned.

Fourth, every time a mapped entity class property is changed, we need to raise the
PropertyChanging event prior to changing the property and raise the PropertyChanged event after
changing the property.

Although it is not necessary that we implement raising the events the following way, for
conciseness, SQLMetal generates SendPropertyChanging and SendPropertyChanged methods for you.

From the Generated Customer Entity Class

 protected virtual void SendPropertyChanging()
 {
 if ((this.PropertyChanging != null))
 {
 this.PropertyChanging(this, emptyChangingEventArgs);
 }
 }

 protected virtual void SendPropertyChanged(String propertyName)
 {
 if ((this.PropertyChanged != null))
 {

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

525

 this.PropertyChanged(this, new PropertyChangedEventArgs(propertyName));
 }
 }

Notice that in the raising of the PropertyChanged event, a new PropertyChangedEventArgs

object is created and passed the name of the specific property that has been changed. This lets the
DataContext object know exactly which property has been changed. So when the
SendPropertyChanging method is called, it raises the PropertyChanging event, which results in the
event handler the DataContext object registered being called. This same pattern and flow also applies to
the SendPropertyChanged method and PropertyChanged event.

Of course, you could choose to embed similar logic in your code instead of creating methods that
are reused, but that would be more of a hassle and create more code to maintain.

Then in each property’s set method, we must call the two methods SendPropertyChanging and
SendPropertyChanged just prior to and after changing a property.

From the Generated Customer Entity Class

 [Column(Storage="_ContactName", DbType="NVarChar(30)")]
 public string ContactName
 {
 get
 {
 return this._ContactName;
 }
 set
 {
 if ((this._ContactName != value))
 {
 this.OnContactNameChanging(value);
 this.SendPropertyChanging();

 this._ContactName = value;
 this.SendPropertyChanged("ContactName");

 this.OnContactNameChanged();
 }
 }
 }

Again, notice that in the call to the SendPropertyChanged method, the name of the property is

passed, which in this case is ContactName. Once the SendPropertyChanged method is called, the
DataContext object knows the ContactName property has been changed for this entity object.

We must also see to it that the appropriate events are raised in the set methods for properties that
represent an association. So, on the many side of a one-to-many association, we need to add the
following code that is bold:

From the Order Class Since Customer Has No EntityRef<T> Properties

 [Association(Name="FK_Orders_Customers", Storage="_Customer",
 ThisKey="CustomerID", IsForeignKey=true)]

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

526

 public Customer Customer
 {
 get
 {
 return this._Customer.Entity;
 }
 set
 {
 Customer previousValue = this._Customer.Entity;
 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))
 {
 this.SendPropertyChanging();

 if ((previousValue != null))
 {
 this._Customer.Entity = null;
 previousValue.Orders.Remove(this);
 }
 this._Customer.Entity = value;
 if ((value != null))
 {
 value.Orders.Add(this);
 this._CustomerID = value.CustomerID;
 }
 else
 {
 this._CustomerID = default(string);
 }
 this.SendPropertyChanged("Customer");

 }
 }
 }

and, on the one side of a one-to-many association, we need the following code that is bold:

From the Generated Customer Entity Class

 public Customer()
 {
 ...
 this._Orders =
 new EntitySet<Order>(new Action<Order>(this.attach_Orders),
 new Action<Order>(this.detach_Orders));
 }
 ...
 private void attach_Orders(Order entity)
 {

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

527

 this.SendPropertyChanging();

 entity.Customer = this;
 this.SendPropertyChanged("Orders");

 }

 private void detach_Orders(Order entity)
 {
 this.SendPropertyChanging();

 entity.Customer = null;
 this.SendPropertyChanged("Orders");

 }

In case you are unfamiliar with the Action generic delegate used in the preceding code, it exists in

the System namespace and was added to the .NET Framework in version 2.0. The preceding code
instantiates an Action delegate object for the Order entity class and passes it a delegate to the
attach_Orders method. LINQ to SQL will use this delegate later to assign a Customer to an Order.
Likewise, another Action delegate object is instantiated and passed a delegate to the detach_Orders
method. LINQ to SQL will use this delegate later to remove the assignment of a Customer to an Order.

By implementing change notification in the manner just described, we can make change tracking
more efficient. Now, the DataContext object knows when and which entity class properties are
changed.

When we call the SubmitChanges method, the DataContext object forgets the original values of the
properties, the current property values effectively become the original property values, and change
tracking starts over. The SubmitChanges method is covered in detail in Chapter 16.

Of course, as we previously mentioned, if you allow SQLMetal or the Object Relational Designer to
create your entity classes, you are relieved of these complexities, because they handle all this plumbing
code for you. It is only when writing entity classes by hand that you need to be concerned with
implementing change notifications.

Graph Consistency

In mathematics, when nodes are connected together, the network created by the connections is referred
to as a graph. In the same way, the network representing the connections created by classes referencing
other classes is also referred to as a graph. When you have two entity classes that participate in a
relationship, meaning an Association has been created between them, since they each have a
reference to the other, a graph exists.

When you are modifying a relationship between two entity objects, such as a Customer and an
Order, the references on each side of the relationship must be properly updated so that each entity
object properly references or no longer references the other. This is true whether you are creating the
relationship or removing it. Since LINQ to SQL defines that the programmer writing code that uses entity
classes need only modify one side of the relationship, something has to handle updating the other side,
and, sadly, LINQ to SQL doesn’t do that for us.

It is the responsibility of the entity class to handle updating the other side of the relationship. If you
allowed SQLMetal or the Object Relational Designer to generate your entity classes, you are set because
they do this for you. But, when you create your own entity classes, it is the entity class developer who
must implement the code to make this happen.

By ensuring that each side of the relationship is properly updated, the graph remains consistent.
Without it, the graph becomes inconsistent, and chaos ensues. A Customer may be related to an Order,
but the Order might be related to a different Customer or no Customer at all. Fortunately, Microsoft

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

528

provides a pattern we can use to make sure our entity classes properly implement graph consistency.
Let’s take a look at their implementation generated for the Northwind database by SQLMetal.

From the Generated Customer Entity Class

 public Customer()
 {
 ...
 this._Orders =
 new EntitySet<Order>(new Action<Order>(this.attach_Orders),
 new Action<Order>(this.detach_Orders));
 }
 ...
 private void attach_Orders(Order entity)
 {
 this.SendPropertyChanging();

 entity.Customer = this;
 this.SendPropertyChanged("Orders");

 }

 private void detach_Orders(Order entity)
 {
 this.SendPropertyChanging();

 entity.Customer = null;
 this.SendPropertyChanged("Orders");

 }

In this example, the Customer class will be the parent class, or the one side of the one-to-many

relationship. The Order class will be the child class, or the many side of the one-to-many relationship.
In the preceding code, we can see that in the constructor of the parent class Customer, when the

EntitySet<T> member for our child class collection _Orders is initialized, two Action<T> delegate
objects are passed into the constructor.

The first Action<T> delegate object is passed a delegate to a callback method that will handle
assigning the current Customer object, referenced with the this keyword, as the Customer of the Order
that will be passed into the callback method. In the preceding code, the callback method we are referring
to is the attach_Orders method.

The second parameter to the EntitySet<T> constructor is an Action<T> delegate object that is
passed a delegate to a callback method that will handle removing the assignment of the passed Order
object’s Customer. In the preceding code, the callback method we are referring to is the detach_Orders
method.

Even though the preceding code is in the parent class Customer, the assignment of the child class
Order to the Customer is actually being handled by the Order object’s Customer property. You can see
that in both the attach_Orders and detach_Orders methods; all they really do is change the Order
object’s Customer property. You can see the entity.Customer property being set to this and null,
respectively, to attach the current Customer and detach the currently assigned Customer. In the get and
set methods for the child class, Order is where all the heavy lifting will be done to maintain graph

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

529

consistency. We have effectively pawned off the real work to the child class this way. In the parent class,
that is all there is to maintaining graph consistency.

However, before we proceed, notice that in the attach_Orders and detach_Orders methods,
change notifications are being raised by calling the SendPropertyChanging and SendPropertyChanged
methods.

Now, let’s take a look at what needs to be done in the child class of the parent-to-child relation to
maintain graph consistency.

From the Generated Order Entity Class

 [Association(Name="FK_Orders_Customers", Storage="_Customer",
 ThisKey="CustomerID", IsForeignKey=true)]
 public Customer Customer
 {
 get
 {
 return this._Customer.Entity;
 }
 set
 {
 Customer previousValue = this._Customer.Entity;
 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))
 {
 this.SendPropertyChanging();
 if ((previousValue != null))
 {
 this._Customer.Entity = null;
 previousValue.Orders.Remove(this);
 }
 this._Customer.Entity = value;
 if ((value != null))
 {
 value.Orders.Add(this);
 this._CustomerID = value.CustomerID;
 }
 else
 {
 this._CustomerID = default(string);
 }
 this.SendPropertyChanged("Customer");
 }
 }
 }

In the preceding code, we are concerned only with the Customer property’s set method, especially

since the parent side of the relationship put the burden of maintaining graph consistency on it. Because
this method gets so complicated, we will present the code as we describe it.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

530

 set
 {
 Customer previousValue = this._Customer.Entity;

You can see that in the first line of the set method code, a copy of the original Customer assigned to

the Order is saved as previousValue. Don’t let the fact that the code is referencing
this._Customer.Entity confuse you. Remember that the _Customer member variable is actually an
EntityRef<Customer>, not a Customer. So, to get the actual Customer object, the code must reference
the EntityRef<T> object’s Entity property. Since the EntityRef<T> is for a Customer, the type of
Entity will be Customer; casting is not necessary.
 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))
 {

Next, the code checks to see whether the Customer currently being assigned to the Order via the

passed value parameter is not the same Customer that is already assigned to the Order, because if it is,
there is nothing that needs to be done unless the Customer has not been loaded or assigned a value yet.
Not only is this logically sensible, when we get to the recursive nature of how this code works, this line of
code will become very important, because it is what will cause the recursion to stop.

 this.SendPropertyChanging();

In the preceding line of code, the SendPropertyChanging method is called to raise the change

notification event.

 if ((previousValue != null))
 {

Next, the code determines whether a Customer object, the parent object, is already assigned to the

Order object, the child object, by comparing the previousValue to null. Remember, at this point, the
Order object’s Customer is still the same as the previousValue variable.

If a Customer is assigned to the Order—meaning the previousValue, which represents the
assigned Customer, is not null—the code needs to set the Order object’s Customer EntityRef<T>
object’s Entity property to null in the following line:

 this._Customer.Entity = null;

The Entity property is set to null in the preceding line of code to halt the recursion that will be set

in motion in the next line of code. Since the Order object’s Customer property’s Entity property is now
null and doesn’t reference the actual Customer object but the Customer object’s Orders property still
contains this Order in its collection, the graph is inconsistent at this moment in time.

In the next line of code, the Remove method is called on the Customer object’s Orders property, and
the current Order is passed as the Order to be removed.

 previousValue.Orders.Remove(this);
 }

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

531

Calling the Remove method will cause the Customer class’s detach_Orders method to get called
and passed the Order that is to be removed. In the detach_Orders method, the passed Order object’s
Customer property is set to null. To refresh your memory, here is what the detach_Orders method
looks like:

This Code Is a Separate Method Listed Here for Your Convenience

 private void detach_Orders(Order entity)
 {
 this.SendPropertyChanging();
 entity.Customer = null;
 this.SendPropertyChanged("Orders");
 }

When the detach_Orders method is called, the passed Order has its Customer property set to null.

This causes the passed Order object’s Customer property’s set method to be called, which is the method
that invoked the code that invoked the detach_Orders method, so the very method that started this
process of removing the Order gets called recursively, and the value of null is passed as the value to the
set method. The flow of execution is now in a recursed call to the Customer set method.

The detach_Orders Method Causes the set Method to Be Called Recursively

 set
 {
 Customer previousValue = this._Customer.Entity;
 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))
 {

In the fourth line of the set method, the passed value is checked, and if it is equal to the currently

assigned Customer property’s Entity property, this recursed call to the set method returns without
doing anything. Because in the previous line of code of the first, nonrecursed set method call the
Customer property’s Entity property was set to null and because null was passed as the value in the
detach_Orders method, they are indeed equal: the recursed invocation of the set method exits without
doing anything more, and the flow of control returns to the first invocation of the set method. This is
what we meant in a previous paragraph when we said the Entity property was set to null to halt
recursion. So, once the recursed call to the set method returned, flow returns to the last line in the
initial invocation of the set method we were discussing.

This Line of Code Is Repeated from a Previous Snippet for Your Convenience

 previousValue.Orders.Remove(this);
 }

Once the Orders.Remove method has completed, the Customer object’s Orders property no longer

contains a reference to this Order; therefore, the graph is now consistent again.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

532

Obviously, if you are planning to write your entity classes, you had better plan to spend some time
in the debugger on this. Just put breakpoints in the detach_Orders method and the set method, and
watch what happens.

Next, the Order object’s Customer object’s Entity property is assigned to be the new Customer
object that was passed to the set method in the value parameter.

 this._Customer.Entity = value;

After all, this is the Customer property’s set method. We were trying to assign the Order to a new

Customer. And again, at this point, the Order has a reference to the newly assigned Customer, but the
newly assigned Customer does not have a reference to the Order, so the graph is no longer consistent.

Next, the code checks to see whether the Customer being assigned to the Order is not null, because
if it is not, the newly assigned Customer needs to be assigned to the Order.

 if ((value != null))
 {

If the Customer object passed in the value parameter is not null, add the current Order to the

passed Customer object’s collection of Order objects.

 value.Orders.Add(this);

When the Order is added to the passed Customer object’s Orders collection in the preceding line,

the delegate that was passed to the callback method in the Customer object’s EntitySet<T> constructor
will be called. So, the result of making the assignment is that the Customer object’s attach_Orders
method gets called.

This, in turn, will assign the current Order object’s Customer to the passed Customer resulting in
the Order object’s Customer property’s set method being called again. The code recurses into the set
method just like it did before. However, just two code statements prior to the previous code statement,
and before we recursed, the Order object’s Customer property’s Entity property was set to the new
Customer, and this is the Customer who is passed to the set method by the attach_Orders method.
Again, the set method code is called recursively, and eventually the second line of code, which is listed
next, is called:

The Following Line of Code Is from Another Invocation of the set Method

 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))

Since the Order object’s current Customer object, which is now stored in previousValue, and the
value parameter are the same, the set method returns without doing anything more, and the recursed
call is over.

In the next line of code, the current Order object’s CustomerID member is set to the new Customer
object’s CustomerID.

 this._CustomerID = value.CustomerID;
 }

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

533

If the newly assigned Customer was null, then the code sets the Order object’s CustomerID
member to the default value of the member’s data type, which in this case is a string.

 else
 {
 this._CustomerID = default(string);
 }

If the CustomerID member had been of type int, the code would have set it to default(int).
In the very last line of the code, the SendPropertyChanged method is called and passed the name of

the property being changed to raise the change notification event.

 this.SendPropertyChanged("Customer");
 }

This pattern is relevant for one-to-many relationships. For a one-to-one relationship, each side of

the relationship would be implemented as the child side was in this example, with a couple of changes.
Since in a one-to-one relationship there is no logical parent or child, let’s pretend that the relationship
between customers and orders is one-to-one. This will give me a name to use to reference each class
since parent and child no longer apply.

If you are writing the entity classes by hand and the relationship between the Customer class and
Order class is one-to-one, then each of those classes will contain a property that is of type
EntityRef<T> where type T is the other entity class. The Customer class will contain an
EntityRef<Order>, and the Order class will contain an EntityRef<Customer>. Since neither class
contains an EntitySet<T>, there are no calls to the Add and Remove methods that exist in the pattern for
one-to-many relationships as we previously described.

So, assuming a one-to-one relationship between orders and customers, the Order class Customer
property set method would look basically like it does previously, except when we are removing the
assignment of the current Order to the original Customer. Since that original Customer has a single
Order, we will not be removing the current Order from a collection of Order objects; we will merely be
assigning the Customer object’s Order property to null.

So instead of this line of code

 previousValue.Orders.Remove(this);

we would have this line of code:

 previousValue.Order = null;

Likewise, when we assign the current Order to the new Customer, since it has a single Order,

instead of calling the Add method on a collection of Order objects, we merely assign the new Customer
object’s Order property to the current Order.

So instead of this line of code

 value.Orders.Add(this);

we would have this line of code:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

534

 value.Order = this;

As you can see, handling graph consistency is not trivial, and it gets confusing. Fortunately, there are

two tools that take care of all of this for you. Their names are SQLMetal and the Object Relational
Designer. For maintaining graph consistency and properly implementing change notifications, they are
worth their weight in, uh, metal. Perhaps the command-line tool should have been named SQLGold, but
we suspect that the metal portion of the name came from the term metalanguage.

Calling the Appropriate Partial Methods

When Microsoft added partial methods to make extending generated code, such as entity classes, easier,
it threw a little bit more responsibility your way if you are going to implement your entity classes
yourself.

There are several partial methods you should declare in your handwritten entity classes:

partial void OnLoaded();
partial void OnValidate(ChangeAction action);
partial void OnCreated();
partial void On[Property]Changing(int value);
partial void On[Property]Changed();

You should have a pair of On[Property]Changing and On[Property]Changed methods for each

entity class property.
For the OnLoaded and OnValidate methods, you do not need to add calls anywhere in your entity

class code for them; they will be called by the DataContext for you.
You should add code to call the OnCreated method inside your entity class’s constructor like this:

Calling the OnCreated Partial Method

public Customer()
{
 OnCreated();
 ...
}

Then, for each mapped entity class property, you should add a call to the On[Property]Changing

and On[Property]Changed methods just prior to and just after a change to the entity class property like
this:

An Entity Class Property set Method Calling the On[Property]Changing and On[Property]Changed

Methods

public string CompanyName
{
 get
 {
 return this._CompanyName;
 }

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

535

 set
 {
 if ((this._CompanyName != value))
 {
 this.OnCompanyNameChanging(value);

 this.SendPropertyChanging();
 this._CompanyName = value;
 this.SendPropertyChanged("CompanyName");
 this.OnCompanyNameChanged();

 }
 }
}

Notice that the On[Property]Changing method is called before the SendPropertyChanging

method is called, and the On[Property]Changed method is called after the SendPropertyChanged
method.

By declaring and calling these partial methods, you are giving other developers easy extensibility
with no performance cost should they choose to not take advantage of it. That’s the beauty of partial
methods.

EntityRef<T> Complications

Although the private class member data type for an associated class is of type EntityRef<T>, the public
property for that private class member must return the type of the entity class, not EntityRef<T>.

Let’s take a look at the way SQLMetal generates the property for an EntityRef<T> private member:

A Public Property for a Class Member Returning the Entity Class Type Instead of EntityRef<T>

[Table(Name="dbo.Orders")]
public partial class Order : INotifyPropertyChanging, INotifyPropertyChanged
{
 ...
 private EntityRef<Customer> _Customer;
 ...
 [Association(Name="FK_Orders_Customers", Storage="_Customer",
 ThisKey="CustomerID", IsForeignKey=true)]
 public Customer Customer
 {
 get
 {
 return this._Customer.Entity;

 }
 set
 {
 ...
 }
 }

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

536

 ...
}

As you can see, even though the private class member is of type EntityRef<Customer>, the

Customer property returns the type Customer, not EntityRef<Customer>. This is important because
any reference in a query to type EntityRef<T> will not get translated into SQL.

EntitySet<T> Complications

Although public properties for private class members of type EntityRef<T> should return a type T
instead of EntityRef<T>, the same is not true for public properties for private class members of type
EntitySet<T>. Let’s take a look at the code SQLMetal generated for a private class member of type
EntitySet<T>.

An EntitySet<T> Private Class Member and Its Property

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{
 ...
 private EntitySet<Order> _Orders;
 ...
 [Association(Name="FK_Orders_Customers", Storage="_Orders",
OtherKey="CustomerID",
 DeleteRule="NO ACTION")]
 public EntitySet<Order> Orders
 {
 get
 {
 return this._Orders;
 }
 set
 {
 this._Orders.Assign(value);

 }
 }
 ...
}

As you can see, the property return type is EntitySet<Order>, just like the private class member

type. Since EntitySet<T> implements the ICollection<T> interface, you may have the property return
the type of ICollection<T> if you want to hide the implementation details.

Another complication to keep in mind when writing your own entity classes is that when you write a
public setter for an EntitySet<T> property, you should use its Assign method, as opposed to merely
assigning the passed value to the EntitySet<T> class member. This will allow the entity object to
continue using the original collection of associated entity objects, since the collection may already be
getting tracked by the DataContext object’s change tracking service.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

537

Looking at the previous example code again, as you can see, instead of assigning the member
variable this._Orders to the value of variable value, it calls the Assign method.

Entity Class Attributes and Attribute Properties
Entity classes are defined by the attributes and attribute properties that map the entity class to a
database table and the entity class properties to database table columns. Attributes define the existence
of a mapping, and the attribute properties provide the specifics on how to map. For example, it is the
Table attribute that defines that a class is mapped to a database table, but it is the Name property that
specifies the database table name to which to map the class.

There is no better way to understand the attributes and attribute properties, and how they work,
than by examining the attributes generated by the experts. So, we will analyze the Customer entity object
generated by SQLMetal.

Here is a portion of the Customer entity class:

A Portion of the SQLMetal Generated Customer Entity Class

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{
 ...

 [Column(Storage="_CustomerID", DbType="NChar(5) NOT NULL", CanBeNull=false,
 IsPrimaryKey=true)]

 public string CustomerID
 {
 get
 {
 return this._CustomerID;
 }
 set
 {
 if ((this._CustomerID != value))
 {
 this.OnCustomerIDChanging(value);
 this.SendPropertyChanging();
 this._CustomerID = value;
 this.SendPropertyChanged("CustomerID");
 this.OnCustomerIDChanged();
 }
 }
 }

 ...

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

538

 [Association(Name="FK_Orders_Customers", Storage="_Orders",
OtherKey="CustomerID",
 DeleteRule="NO ACTION")]

 public EntitySet<Order> Orders
 {
 get
 {
 return this._Orders;
 }
 set
 {
 this._Orders.Assign(value);
 }
 }

 ...

 }
}

For the sake of brevity, we have omitted all the parts of the entity class except those containing LINQ

to SQL attributes. We have also eliminated any redundant attributes.
And here is a portion containing a stored procedure and user-defined function:

A Portion Containing a Stored Procedure and User-Defined Function

[Function(Name="dbo.Get Customer And Orders")]

[ResultType(typeof(GetCustomerAndOrdersResult1))]
[ResultType(typeof(GetCustomerAndOrdersResult2))]

public IMultipleResults GetCustomerAndOrders(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID)
{
 ...
}

[Function(Name="dbo.MinUnitPriceByCategory", IsComposable=true)]
[return: Parameter(DbType="Money")]

public System.Nullable<decimal> MinUnitPriceByCategory(
 [Parameter(DbType="Int")] System.Nullable<int> categoryID)
{
 ...
}

In the preceding code fragments, the attributes are in bold type. We listed these code fragments to

provide context for the discussion of attributes.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

539

Database

The Database attribute specifies for a derived DataContext class the default name of the mapped
database if the database name is not specified in the connection information when the DataContext is
instantiated. If the Database attribute is not specified and the database is not specified in the
connection information, the name of the derived DataContext class will be assumed to be the name of
the database with which to connect.

So for clarity, the order of precedence for where the database name comes from, in highest priority
order, follows:

1. The connection information provided when the derived DataContext class is instantiated

2. The database name specified in the Database attribute

3. The name of the derived DataContext class

Here is the relevant portion of the SQLMetal generated derived DataContext class named
Northwind:

From the SQLMetal Generated Northwind Class

public partial class Northwind : System.Data.Linq.DataContext
{

As you can see, the Database attribute is not specified in the generated Northwind class that derives

from the DataContext class. Since this class was generated by Microsoft, we assume this is intentional.
If you were going to specify the Database attribute and you wanted it to default to a database named
NorthwindTest, the code should look like this:

The Database Attribute

[Database(Name="NorthwindTest")]
public partial class Northwind : System.Data.Linq.DataContext
{

We cannot necessarily see a reason to omit specifying the Database attribute. Perhaps it is because

if you specify the database in the connection information, that will override the derived DataContext
class name and the Database attribute. Perhaps Microsoft thought if you don’t specify the database
name in the connection information, the derived DataContext class name will be used, and that is
satisfactory.

We thought about this and came to the conclusion that we personally don’t like the idea of the
generated class derived from DataContext connecting to a database by default. We cringe at the thought
of running an application, perhaps accidentally, that has not yet been configured and having it default to
a database. That sounds like a potentially painful mistake just waiting to happen. In fact, we might just
advocate specifying a Database attribute with an intentionally ludicrous name just to prevent it from
connecting to a default database. Perhaps something like this:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

540

A Derived DataContext Class Highly Unlikely to Actually Connect to a Database by Default

[Database(Name=" goopeygobezileywag ")]
public partial class Northwind : System.Data.Linq.DataContext
{

We can’t see that connecting to a database unless we have specified one in the connection

information passed to the DataContext during instantiation.

Name (string)

The Name attribute property is a string that specifies the name of the database with which to connect if
the database name is not specified in the connection information when the class derived from the
DataContext class is instantiated. If the Name attribute property is not specified and the database name
is not specified in the connection information, the name of the derived DataContext class will be
assumed to be the name of the database with which to connect.

Table

It is the Table attribute that specifies in which database table an entity class is to be persisted. The entity
class name does not necessarily need to be the same as the table. Here is the relevant portion of the
entity class:

The Table Attribute

[Table(Name="dbo.Customers")]
public partial class Customer : INotifyPropertyChanging, INotifyPropertyChanged
{

Notice that the Table attribute is specifying the name of the database table by specifying the Name

attribute property. If the name of the entity class is the same as the name of the database table, the Name
attribute property can be omitted, because the class name will be the default table name to which it is
mapped.

In this example, because we specified the pluralize option when we used SQLMetal to generate the
Northwind entity classes, the database table name, Customers, is converted to its singular form,
Customer, for the class name. Since the class name does not match the database table name, the Name
property must be specified.

Name (string)

The Name attribute property is a string that specifies the name of the table to which to map this entity
class. If the Name attribute property is not specified, the entity class name will be mapped to a database
table of the same name by default.

Column

The Column attribute defines that an entity class property is mapped to a database field. Here is the
relevant portion of the entity class:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

541

The Column Attribute

Private string _CustomerID;
...
[Column(Storage="_CustomerID", DbType="NChar(5) NOT NULL", CanBeNull=false,
 IsPrimaryKey=true)]

public string CustomerID
{

In this example, because the Storage attribute property is specified, LINQ to SQL can directly

access the private member variable _CustomerID, bypassing the public property accessor CustomerID.
If the Storage attribute property is not specified, the public accessors will be used. This can be useful for
bypassing special logic that may exist in your public property accessors.

You can see that the database type for this field is specified by the DbType attribute as an NCHAR that
is five characters long. Because the CanBeNull attribute is specified with a value of false, this field’s
value in the database cannot be NULL, and because the IsPrimaryKey attribute is specified with a value
of true, this is a record identity column.

It is not necessary for every property of an entity class to be mapped to the database. You may have
runtime data properties that you would not want to persist to the database, and this is perfectly fine. For
those properties, you just wouldn’t specify the Column attribute.

You can also have persisted columns that are read-only. This is accomplished by mapping the
column and specifying the Storage attribute property to reference the private member variable but not
implementing the set method of the class property. The DataContext can still access the private
member, but since there is no set method for the entity class property, no one can change it.

AutoSync (AutoSync enum)

The AutoSync attribute property is an AutoSync enum that instructs the runtime to retrieve the mapped
column’s value after an insert or update database operation. The possible values are Default, Always,
Never, OnInsert, and OnUpdate. We are going to let you guess which one is used by default. According
to Microsoft documentation, the default behavior is Never.

This attribute property setting is overridden when either IsDbGenerated or IsVersion is set to true.

CanBeNull (bool)

The CanBeNull attribute property is a bool that specifies whether the mapped database column’s value
can be NULL. This attribute property defaults to true.

DbType (string)

The DbType attribute property is a string that specifies the data type of the column in the database to
which this entity class property is mapped. If the DbType property is not specified, the database column
type will be inferred from the data type of the entity class property. This attribute property is used to
define the column only if the CreateDatabase method is called.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

542

Expression (string)

The Expression attribute property is a string that defines a computed column in the database. It is
used only if the CreateDatabase method is called. This attribute property defaults to String.Empty.

IsDbGenerated (bool)

The IsDbGenerated attribute property is a bool specifying that the database table column the class
property is mapped to is automatically generated by the database. If a primary key is specified with its
IsDbGenerated attribute property set to true, the class property’s DbType attribute property must be set
to IDENTITY.

A class property whose IsDbGenerated attribute property is set to true will be immediately
synchronized after a record is inserted into the database regardless of the AutoSync attribute property
setting, and the class property’s synchronized value will be visible in the class property once the
SubmitChanges method has successfully completed. This attribute property defaults to false.

IsDiscriminator (bool)

The IsDiscriminator attribute property is a bool that specifies that the mapped entity class property is
the entity class property that stores the discriminator value for entity class inheritance. This attribute
property defaults to false. Please read the section about the InheritanceMapping attribute later in this
chapter, and see the “Entity Class Inheritance” section in Chapter 18 for more information.

IsPrimaryKey (bool)

The IsPrimaryKey attribute property is a bool specifying whether the database table column that this
entity class property is mapped to is part of the database table’s primary key. Multiple class properties
may be specified to be part of the primary key. In that case, all the mapped database columns act as a
composite primary key. For an entity object to be updateable, at least one entity class property must
have an attribute property IsPrimaryKey set to true. Otherwise, the entity objects mapped to this table
will be read-only. This attribute property defaults to false.

IsVersion (bool)

The IsVersion attribute property is a bool that specifies that the mapped database column is either a
version number or a timestamp that provides version information for the record. By specifying the
IsVersion attribute property and setting its value to true, the mapped database column will be
incremented if it is a version number and updated if it is a timestamp, whenever the database table
record is updated.

A class property whose IsVersion attribute property is set to true will be immediately
synchronized after a record is inserted or updated in the database regardless of the AutoSync attribute
property setting, and the class property’s synchronized value will be visible in the class property once
the SubmitChanges method has successfully completed. This attribute property defaults to false.

Name (string)

The Name attribute property is a string that specifies the name of the table column to which to map this
class property. If the Name attribute property is not specified, the class property name will be mapped to
a database table column of the same name by default.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

543

Storage (string)

The Storage attribute property is a string that specifies the private member variable that the entity
class property’s value is stored in. This allows LINQ to SQL to bypass the property’s public accessors and
any business logic they contain and allows it to directly access the private member variable. If the
Storage attribute property is not specified, the property’s public accessors will be used by default.

UpdateCheck (UpdateCheck enum)

The UpdateCheck attribute property is an UpdateCheck enum that controls how optimistic concurrency
detection behaves for the class property and its mapped database column if no entity class mapped
property has an attribute property of IsVersion set to true. The three possible values are
UpdateCheck.Always, UpdateCheck.WhenChanged, and UpdateCheck.Never. If no entity class property
has an attribute property of IsVersion set to true, the value of the UpdateCheck attribute property will
default to Always. Read Chapter 17 for more information about this attribute property and its effect.

Association

The Association attribute is used to define relationships between two tables, such as a primary key to
foreign key relationship. In this context, the entity whose mapped table contains the primary key is
referred to as the parent, and the entity whose mapped table contains the foreign key is the child. Here
are the relevant portions of two entity classes containing an association:

The Association from the Parent (Customer) Entity Class

[Association(Name="FK_Orders_Customers", Storage="_Orders", OtherKey="CustomerID",

 DeleteRule="NO ACTION")]

public EntitySet<Order> Orders
{

The Association from the Child (Order) Entity Class

[Association(Name="FK_Orders_Customers", Storage="_Customer", ThisKey="CustomerID",

 IsForeignKey=true)]

public Customer Customer
{

For this discussion of the Association attribute and its properties, we are using the Customer

entity class as the parent example, and the Order entity class as the child example. Therefore, we have
provided the relevant Association attributes that exist in both the Customer and Order entity classes.

When discussing the Association attribute properties, some attribute properties will pertain to the
class in which the Association attribute exists, and other attribute properties will pertain to the other
associated entity class. In this context, the class in which the Association attribute exists is referred to
as the source class, and the other associated entity class is the target class. So, if we are discussing the
attribute properties for the Association attribute that is specified in the Customer entity class, the
Customer entity class is the source class, and the Order entity class is the target. If we are discussing the

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

544

attribute properties for the Association attribute that is specified in the Order entity class, the Order
entity class is the source class, and the Customer entity class is the target.

The Association attribute defines that the source entity class, Customer, has a relationship to the
target entity class, Order.

In the preceding examples, the Name attribute property is specified to provide a name for the
relationship. The Name attribute property’s value corresponds to the name of the foreign key constraint
in the database and will be used to create the foreign key constraint if the CreateDatabase method is
called. The Storage attribute property is also specified. Specifying the Storage attribute property allows
LINQ to SQL to bypass the property’s public accessors to get access to the entity class property’s value.

With associations of the primary key to foreign key variety, an entity class that is the parent in the
relationship will store the reference to the child entity class in an EntitySet<T> collection since there
may be many children. The entity class that is the child will store the reference to the parent entity class
in an EntityRef<T>, since there will be only one. Please read the sections titled “EntitySet<T>” and
“EntityRef<T>” later in this chapter, and see “Deferred Loading” and “Immediate Loading with the
DataLoadOptions Class” in Chapter 14 for more information about associations and their
characteristics.

DeleteOnNull (bool)

The DeleteOnNull attribute property is a bool that, if set to true, specifies that an entity object on the
child side of an association should be deleted if the reference to its parent is set to null.

This attribute property’s value is inferred by SQLMetal if there is a “Cascade” Delete Rule specified
for the foreign key constraint in the database and the foreign key column does not allow null.

DeleteRule (string)

The DeleteRule attribute property is a string that specifies the Delete Rule for a foreign key constraint.
It is used by LINQ to SQL only when the constraint is created in the database by the CreateDatabase
method.

The possible values are "NO ACTION", "CASCADE", "SET NULL", and "SET DEFAULT". Consult your
SQL Server documentation for the definition of each.

IsForeignKey (bool)

The IsForeignKey attribute property is a bool that, if set to true, specifies that the source entity class is
the side of the relationship containing the foreign key; therefore, it is the child side of the relationship.
This attribute property defaults to false.

In the Association attribute examples shown previously for the Customer and Order entity classes,
because the Association attribute specified for the Order entity class contains the IsForeignKey
attribute property whose value is set to true, the Order class is the child class in this relationship.

IsUnique (bool)

The IsUnique attribute property is a bool that, if true, specifies that a uniqueness constraint exists on
the foreign key, indicating a one-to-one relationship between the two entity classes. This attribute
property defaults to false.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

545

Name (string)

The Name attribute property is a string that specifies the name of the foreign key constraint. This will be
used to create the foreign key constraint if the CreateDatabase method is called. It is also used to
differentiate multiple relationships between the same two entities. In that case, if both sides of the
parent and child relationship specify a name, they must be the same.

If you do not have multiple relationships between the same two entity classes and you do not call
the CreateDatabase method, this attribute property is not necessary. There is no default value for this
attribute property.

OtherKey (string)

The OtherKey attribute property is a string that is a comma-delimited list of all the entity class
properties of the target entity class that make up the key, either primary or foreign, depending on which
side of the relationship the target entity is. If this attribute property is not specified, the primary key
members of the target entity class are used by default.

It is important to realize that the Association attribute specified on each side of the association
relationship, Customer and Order, specify where both sides’ keys are located. The Association
attribute specified in the Customer entity class specifies which Customer entity class properties contain
the key for the relationship and which Order entity class properties contain the key for the relationship.
Likewise, the Association attribute specified in the Order entity class specifies which Order entity class
properties contain the key for the relationship and which Customer entity class properties contain the
key for the relationship.

It often may not look as though each side always specifies both sides’ key locations. Because
typically on the parent side of the relationship the table’s primary key is the key used, the ThisKey
attribute property need not be specified, since the primary key is the default. And on the child side, the
OtherKey attribute property need not be specified, because the parent’s primary key is the default.
Therefore, it is common to see the OtherKey attribute property specified only on the parent side and the
ThisKey attribute property specified on the child side. But because of the default values, both the parent
and child know the keys on both sides.

Storage (string)

The Storage attribute property is a string that specifies the private member variable that the entity
class property’s value is stored in. This allows LINQ to SQL to bypass the entity class property’s public
accessors and directly access the private member variable. This allows any business logic in the
accessors to be bypassed. If the Storage attribute property is not specified, the property’s public
accessors will be used by default.

Microsoft recommends that both members of an association relationship be entity class properties
with separate entity class member variables for data storage and for the Storage attribute property to be
specified.

ThisKey (string)

The ThisKey attribute property is a string that is a comma-delimited list of all the entity class
properties of the source entity class that make up the key, either primary or foreign, depending on which
side of the relationship the source entity is, which is determined by the IsForeignKey attribute
property. If the ThisKey attribute property is not specified, the primary key members of the source
entity class are used by default.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

546

Since the example Association attribute shown previously for the Customer entity class does not
contain the IsForeignKey attribute property, we know that the Customer entity class is the parent side
of the relationship, the side containing the primary key. Because the Association attribute does not
specify the ThisKey attribute property, we know the Customer table’s primary key value will become the
foreign key in the associated table, Orders.

Because the Association attribute shown previously for the Order entity class specifies the
IsForeignKey attribute with a value of true, we know the Orders table will be the side of the
association containing the foreign key. And, because the Association attribute does specify the
ThisKey attribute property with a value of CustomerID, we know that the CustomerID column of the
Orders table will be where the foreign key is stored.

It is important to realize that the Association attribute specified on each side of the association
relationship, Customer and Order, specifies where both sides’ keys are located. The Association
attribute specified in the Customer entity class specifies which Customer entity class properties contain
the key for the relationship and which Order entity class properties contain the key for the relationship.
Likewise, the Association attribute specified in the Order entity class specifies which Order entity class
properties contain the key for the relationship and which Customer entity class properties contain the
key for the relationship.

It often may not look as though each side always specifies both sides’ key locations. Because
typically on the parent side of the relationship, the table’s primary key is the key used, the ThisKey
attribute property need not be specified since the primary key is the default. And on the child side, the
OtherKey attribute property need not be specified, because the parent’s primary key is the default.
Therefore, it is common to see the OtherKey attribute property specified only on the parent side and the
ThisKey attribute property specified on the child side. But because of the default values, both the parent
and child know the keys on both sides.

Function

The Function attribute defines that a class method, when called, will call a stored procedure or scalar-
valued or table-valued user-defined function. Here is the relevant portion of the derived DataContext
class for a stored procedure:

A Function Attrbiute Mapping a Method to a Stored Procedure in the Northwind Database

[Function(Name="dbo.Get Customer And Orders")]

[ResultType(typeof(GetCustomerAndOrdersResult1))]
[ResultType(typeof(GetCustomerAndOrdersResult2))]

public IMultipleResults GetCustomerAndOrders(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID)
{
 ...
}

From this, we can see that there is a method named GetCustomerAndOrders that will call the stored

procedure named Get Customer And Orders. We know the method is being mapped to a stored
procedure as opposed to a user-defined function because the IsComposable attribute property is not
specified and therefore defaulting to false, thereby mapping the method to a stored procedure. We can
also see that it returns multiple results shapes, because there are two ResultType attributes specified.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

547

Writing your derived DataContext class so that it can call a stored procedure is not quite as trivial as
mapping an entity class to a table. In addition to the appropriate attributes being specified, you must
also call the appropriate version of the DataContext class’s ExecuteMethodCall method. You will read
about this method in Chapter 16.

Of course, as is typical, this is necessary only when writing your own DataContext class, because
SQLMetal and the Object Relational Designer do it for you.

The relevant portion of the derived DataContext class for a user-defined function follows:

A Function Attribute Mapping a Method to a User-Defined Function in the Northwind Database

[Function(Name="dbo.MinUnitPriceByCategory", IsComposable=true)]

[return: Parameter(DbType="Money")]

public System.Nullable<decimal> MinUnitPriceByCategory(
 [Parameter(DbType="Int")] System.Nullable<int> categoryID)
{
 ...
}

From this, we can see that there is a method named MinUnitPriceByCategory that will call the

user-defined function named MinUnitPriceByCategory. We know the method is being mapped to a
user-defined function, as opposed to a stored procedure, because the IsComposable attribute property
is set to true. We can also see from the return attribute that the user-defined function will return a
value of type Money.

Writing your derived DataContext class so that it can call a user-defined function is not quite as
trivial as mapping an entity class to a table. In addition to the appropriate attributes being specified, you
must also call the DataContext class’s ExecuteMethodCall method for scalar-valued user-defined
functions or the CreateMethodCallQuery method for table-valued user-defined functions. You will read
about these methods in Chapter 16 as well.

Of course, as is typical, this is necessary only when writing your own DataContext class, because
SQLMetal and the Object Relational Designer do it for you.

IsComposable (bool)

The IsComposable attribute property is a bool that specifies whether the mapped function is calling a
stored procedure or a user-defined function. If the value of IsComposable is true, the method is being
mapped to a user-defined function. If the value of IsComposable is false, the method is being mapped
to a stored procedure. This attribute property’s value defaults to false if it is not specified, so a method
mapped with the Function attribute defaults to a stored procedure if the IsComposable attribute
property is not specified.

Name (string)

The Name attribute property is a string that specifies the actual name of the stored procedure or user-
defined function in the database. If the Name attribute property is not specified, the name of the stored
procedure or user-defined function is assumed to be the same as the name of the method.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

548

return

The return attribute is used to specify the returned data type from a stored procedure or user-defined
function. It typically contains a Parameter attribute.

A return Attribute from the Northwind Class

[Function(Name="dbo.MinUnitPriceByCategory", IsComposable=true)]
[return: Parameter(DbType="Money")]

public System.Nullable<decimal> MinUnitPriceByCategory(
 [Parameter(DbType="Int")] System.Nullable<int> categoryID)
{
 ...
}

In the preceding code, we can tell that the user-defined function being called will return a value of

type Money because of the return attribute and the embedded Parameter attribute’s specified DbType
attribute property.

ResultType

The ResultType attribute maps the data type returned by a stored procedure to a .NET class in which to
store the returned data. Stored procedures that return multiple shapes will specify multiple ResultType
attributes in their respective order.

ResultType Attributes from the Northwind Class

[Function(Name="dbo.Get Customer And Orders")]
[ResultType(typeof(GetCustomerAndOrdersResult1))]
[ResultType(typeof(GetCustomerAndOrdersResult2))]

public IMultipleResults GetCustomerAndOrders(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID)
{
 ...
}

From the preceding code, we can tell that the stored procedure this method is mapped to will first

return a shape of type GetCustomerAndOrdersResult1 followed by a shape of type
GetCustomerAndOrdersResult2. SQLMetal is kind enough to even generate entity classes for
GetCustomerAndOrdersResult1 and GetCustomerAndOrdersResult2.

Parameter

The Parameter attribute maps a method parameter to a parameter of a database stored procedure or
user-defined function. Here is the relevant portion of the derived DataContext class:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

549

A Parameter Attribute from the Northwind Class

[Function(Name="dbo.Get Customer And Orders")]
[ResultType(typeof(GetCustomerAndOrdersResult1))]
[ResultType(typeof(GetCustomerAndOrdersResult2))]
public IMultipleResults GetCustomerAndOrders(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID)
{
 ...
}

From this, we can see that the GetCustomerAndOrders method, which is mapped to a database

stored procedure named Get Customer And Orders, passes the stored procedure a parameter of type
NChar(5).

DbType (string)

The DbType attribute property is a string that specifies the database data type and modifiers of the
database stored procedure or user-defined function parameter.

Name (string)

The Name attribute property is a string that specifies the actual name of the parameter of the stored
procedure or user-defined function. If the Name attribute property is not specified, the name of the
database stored procedure or user-defined function parameter is assumed to be the same as the name of
the method parameter.

InheritanceMapping

The InheritanceMapping attribute is used to map a discriminator code to a base class or subclass of
that base class. A discriminator code is the value of an entity class column for the column specified as
the discriminator, which is defined as the entity class property whose IsDiscriminator attribute
property is set to true.

For an example, let’s examine an InheritanceMapping attribute:

An InheritanceMapping Attribute

[InheritanceMapping(Code = "G", Type = typeof(Shape), IsDefault = true)]

The preceding InheritanceMapping attribute defines that if a database record has the value "G" in

the discriminator column, which means its discriminator code is "G", instantiate that record as a Shape
object using the Shape class. Because the IsDefault attribute property is set to true, if the
discriminator code of a record doesn’t match any of the InheritanceMapping attributes’ Code values,
that record will be instantiated as a Shape object using the Shape class.

To use inheritance mapping, when a base entity class is declared, one of its entity class properties is
given the Column attribute property of IsDiscriminator, and that property’s value is set to true. This
means that the value of this column will determine, by discrimination, which class, be it the base class or
one of its subclasses, a database table record is an instance of. An InheritanceMapping attribute is

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

550

specified on the base class for each of its subclasses, as well as one for the base class itself. Of those
InheritanceMapping attributes, one and only one must be given an attribute property of IsDefault
with a value of true. This is so a database table record whose discriminator column does not match any
of the discriminator codes specified in any of the InheritanceMapping attributes can be instantiated
into a class. It is probably most common for the base class’s InheritanceMapping attribute to be
specified as the default InheritanceMapping attribute.

Again, all the InheritanceMapping attributes are specified on the base class only and associate a
discriminator code to the base class or one of its subclasses.

Since the Northwind database does not contain any tables used in this way, we will provide three
example classes.

Some Example Classes Demonstrating Inheritance Mapping

[Table]
[InheritanceMapping(Code = "G", Type = typeof(Shape), IsDefault = true)]
[InheritanceMapping(Code = "S", Type = typeof(Square))]
[InheritanceMapping(Code = "R", Type = typeof(Rectangle))]

public class Shape
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true,
 DbType = "Int NOT NULL IDENTITY")]
 public int Id;

 [Column(IsDiscriminator = true, DbType = "NVarChar(2)")]
 public string ShapeCode;

 [Column(DbType = "Int")]
 public int StartingX;

 [Column(DbType = "Int")]
 public int StartingY;
}

public class Square : Shape
{
 [Column(DbType = "Int")]
 public int Width;
}

public class Rectangle : Square
{
 [Column(DbType = "Int")]
 public int Length;
}

Here, we can see that we have mapped the Shape class to a table, and since we didn’t specify the

Name attribute property, the Shape class will be mapped by default to a table named Shape.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

551

Next, you will see three InheritanceMapping attributes. The first one defines that if the value of a
database Shape table record’s discriminator column is "G", then that record should be instantiated as a
Shape object using the Shape class. For our purposes, we chose "G" for generic, meaning it is a generic
undefined shape. Since it is the ShapeCode property in the Shape class that is the discriminator,
meaning it has an attribute property of IsDiscriminator set to true, if a record has a ShapeCode value
of "G", that record will get instantiated into a Shape object.

Also, you can see that the first InheritanceMapping attribute has the IsDefault attribute property
set to true, so if the value of a Shape record’s ShapeCode column matches none of the discriminator
codes specified—"G", "S", and "R"—the default mapping is used, and the record will be instantiated as
a Shape object.

The second InheritanceMapping attribute associates a discriminator code of "S" to the Square
class. So, if a record in the database Shape table has a ShapeCode of "S", then that record will be
instantiated into a Square object.

The third InheritanceMapping attribute associates a discriminator code of "R" to the Rectangle
class. So, if a record in the database Shape table has a ShapeCode of "R", then that record will be
instantiated into a Rectangle object.

Any record with a ShapeCode different from those specified will get instantiated into a Shape object,
because Shape is the default class as specified with the IsDefault attribute property.

■ NNote Inheritance mapping is discussed and examples are provided in Chapter 18.

Code (object)

The Code attribute property specifies what the discriminator code is for the mapping to the specified
class, which will be specified by the Type attribute property.

IsDefault (bool)

The IsDefault attribute property is a bool that specifies which InheritanceMapping attribute should
be used if a database table record’s discriminator column doesn’t match any of the discriminator codes
specified in any of the InheritanceMapping attributes.

Type (Type)

The Type attribute property specifies the class type to instantiate the record as when the discriminator
column matches the mapped discriminator code.

Data Type Compatibility

Some of the entity class attributes have a DbType attribute property where you can specify the database
column data type. This attribute property is used only when the database is created with the
CreateDatabase method. Since the mapping between .NET data types and SQL Server data types is not

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

552

one-to-one, you will need to specify the DbType attribute property if you plan on calling the
CreateDatabase method.

Because the .NET Common Language Runtime (CLR) data types that are used in your LINQ code are
not the same data types that the database uses, you should refer to the MSDN documentation for
information about SQL-to-CLR type mapping (LINQ to SQL). There is a matrix in that documentation
that defines the behavior when converting between CLR data types and SQL data types. You should be
aware that some data type conversions are not supported, and others can cause a loss of data depending
on the data types involved and the direction of the conversion.

However, we think that you will find the conversions work fine most of the time, and this will not
typically be an issue. While writing the examples for the LINQ to SQL chapters, we never encountered an
issue caused by the data type conversions. Of course, you should use common sense. If you are trying to
map obviously incompatible types, such as a .NET numeric data type to a SQL character data type, you
should expect some issues.

XML External Mapping File Schema
As we discuss in the section on SQLMetal in Chapter 13, not only can you map classes to the database
with entity classes, but you can also use an XML external mapping file. You will learn how to use the
XML external mapping file when we cover the constructors for the DataContext class in Chapter 16.

Also, as we discuss in Chapter 13, the easiest way to obtain an XML external mapping file is to call
the SQLMetal program and specify the /map option, and one will be generated for you. However, if you
intend to create the mapping file manually, you will need to know the schema.

Please refer to the MSDN documentation for the external mapping schema titled “External Mapping
Reference (LINQ to SQL).”

Projecting into Entity Classes vs. Nonentity Classes
When performing LINQ to SQL queries, you have two options for projecting the returned results. You
can project the results into an entity class, or you can project the results into a nonentity class, which
could be a named or anonymous class. There is a major difference between projecting into an entity
class versus a nonentity class.

When projecting into an entity class, that entity class gains the benefit of the DataContext object’s
identity tracking, change tracking, and change processing services. You may make changes to an entity
class and persist them to the database with the SubmitChanges method.

When projecting into a nonentity class, barring one specialized exception, you do not get the
benefits of the DataContext object’s identity tracking, change tracking, and change processing services.
This means you cannot change the nonentity class and have it persist using LINQ to SQL. This only
makes sense, since the class will not have the necessary attributes or a mapping file to map the class to
the database. And, if it does have the attributes or a mapping file, then by definition it is an entity class.

Here is an example of a query that projects into an entity class:

Projecting into an Entity Class Provides DataContext Services

IEnumerable<Customer> custs = from c in db.Customers
 select c;

After that query, we could make changes to any of the Customer entity objects in the custs

sequence, and we would be able to persist them by calling the SubmitChanges method.
Here is an example of a query that projects into a nonentity class:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

553

Projecting into a Nonentity Class Does Not Provide DataContext Services

var custs = from c in db.Customers
 select new { Id = c.CustomerID, Name = c.ContactName };

By projecting into the anonymous class, we will not be able to persist any changes we make to each

object in the custs sequence by calling the SubmitChanges method.
We mentioned that there is one specialized exception concerning gaining the benefits of identity

tracking, change tracking, and change processing when projecting into nonentity classes. This exception
occurs when the class projected into contains members that are entity classes. Listing 15-1 contains an
example.

Listing 15-1. Projecting into a Nonentity Class Containing Entity Classes

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

var cusorders = from o in db.Orders
 where o.Customer.CustomerID == "CONSH"

 orderby o.ShippedDate descending
 select new { Customer = o.Customer, Order = o };

// Grab the first order.
Order firstOrder = cusorders.First().Order;

// Now, let's save off the first order's shipcountry so we can reset it later.
string shipCountry = firstOrder.ShipCountry;
Console.WriteLine("Order is originally shipping to {0}", shipCountry);

// Now, We’ll change the order's ship country from UK to USA.
firstOrder.ShipCountry = "USA";
db.SubmitChanges();

// Query to see that the country was indeed changed.
string country = (from o in db.Orders
 where o.Customer.CustomerID == "CONSH"
 orderby o.ShippedDate descending
 select o.ShipCountry).FirstOrDefault<string>();

Console.WriteLine("Order is now shipping to {0}", country);

// Reset the order in the database so example can be re-run.
firstOrder.ShipCountry = shipCountry;
db.SubmitChanges();

In Listing 15-1, we query for the orders whose customer is "CONSH". We project the returned orders

into an anonymous type containing the Customer and each Order. The anonymous class itself does not

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

554

receive the DataContext services such as identity tracking, change tracking, and change processing, but
its components Customer and Order do, because they are entity classes. We then perform another query
on the previous query’s results to get the first Order. We then save a copy of the Order object’s original
ShipCountry, so we can restore it at the end of the example, and we display the original ShipCountry to
the screen. Next, we change the ShipCountry on the Order and save the change by calling the
SubmitChanges method. Then, we query the ShipCountry for this order from the database again and
display it just to prove that it was indeed changed in the database. This proves that the SubmitChanges
method worked, and that the entity class components of our anonymous type did gain the services of
the DataContext object. Then, we reset the ShipCountry to the original value and save so that the
example can be run again and no subsequent examples will be affected.

Here are the results of Listing 15-1:

Order is originally shipping to UK
Order is now shipping to USA

Listing 15-1 is an example where we projected the query results into a nonentity class type, but
because it was comprised of an entity class, we were able to gain the benefits of identity tracking, change
tracking, and change processing by the DataContext.

There is one interesting note about the preceding code. You will notice that the query that obtains a
reference to the first Order is in bold. We did this to catch your attention. Notice that we call the First
operator before selecting the portion of the sequence element we are interested in, the Order member.
We do this for performance enhancement, because in general the earlier you can narrow the results, the
better the performance.

Prefer Object Initialization to Parameterized Construction When Projecting
You are free to project into classes prior to the end of the query for subsequent query operations, but
when you do, prefer object initialization to parameterized construction. To understand why, let’s take a
look at Listing 15-2, which uses object initialization in the projection.

Listing 15-2. Projecting Using Object Initialization

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

var contacts = from c in db.Customers
 where c.City == "Buenos Aires"
 select new { Name = c.ContactName, Phone = c.Phone } into co
 orderby co.Name
 select co;

foreach (var contact in contacts)
{
 Console.WriteLine("{0} - {1}", contact.Name, contact.Phone);
}

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

555

Notice that, in Listing 15-2, we projected into an anonymous class and used object initialization to

populate the anonymous objects that get created. Let’s take a look at the output of Listing 15-2:

SELECT [t0].[ContactName] AS [Name], [t0].[Phone]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[City] = @p0
ORDER BY [t0].[ContactName]
-- @p0: Input String (Size = 12; Prec = 0; Scale = 0) [Buenos Aires]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 3.5.30729.4926

Patricio Simpson - (1) 135-5555
Sergio Gutiérrez - (1) 123-5555
Yvonne Moncada - (1) 135-5333

We are not interested in the output of the query’s results. We really want to see the SQL query that
was generated. So, you might ask, “Why the need for the foreach loop?” Well, without it, because of
query execution being deferred, the query would not actually execute.

The significant parts of the LINQ to SQL query for this discussion are the select and orderby
statements. In our LINQ to SQL query, we instruct the query to create a member in the anonymous class
named Name that is populated with the ContactName field from the Customers table. We then tell the
query to sort by the Name member of the anonymous object into which we projected. The DataContext
object has all of that information passed to it. The object initialization is effectively mapping a source
field, ContactName, from the Customer class to the destination field, Name, in the anonymous class, and
the DataContext object is privy to that mapping. From that information, it is able to know that we are
effectively sorting the Customers by the ContactName field, so it can generate the SQL query to do just
that. When you look at the generated SQL query, you can see that is exactly what it is doing.

Now let’s take a look at what happens when we project into a named class using parameterized
construction. First, we will need a named class. We will use this one:

The Named Class Used in Listing 15-3

class CustomerContact
{
 public string Name;
 public string Phone;

 public CustomerContact(string name, string phone)
 {
 Name = name;
 Phone = phone;
 }
}

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

556

Notice that there is a single constructor that takes two parameters, name and phone. Now, let’s take a
look at the same code as in Listing 15-2, except in Listing 15-3, the code will be modified to project into
the CustomerContact class using parameterized construction.

Listing 15-3. Projecting Using Parameterized Construction

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

var contacts = from c in db.Customers
 where c.City == "Buenos Aires"
 select new CustomerContact(c.ContactName, c.Phone) into co
 orderby co.Name
 select co;

foreach (var contact in contacts)
{
 Console.WriteLine("{0} - {1}", contact.Name, contact.Phone);
}

Again, we are focusing on the select and orderby statements. As you can see in Listing 15-3,

instead of projecting into an anonymous class, we are projecting into the CustomerContact class. And,
instead of using object initialization to initialize the created objects, we are using a parameterized
constructor. This code compiles just fine, but what happens when we run the example? The following
exception is thrown:

Unhandled Exception: System.NotSupportedException: The member
'LINQChapter15.CustomerContact.Name' has no supported translation to SQL.…

So, what happened? Looking at the preceding LINQ to SQL query, ask yourself, “How does the
DataContext know which field in the Customer class gets mapped to the CustomerContact.Name
member that we are trying to order by?” In Listing 15-2, because we passed it the field names of the
anonymous class, it knew the source field in the Customer class was ContactName, and it knew the
destination field in the anonymous class was Name. In Listing 15-3, that mapping does not occur in the
LINQ to SQL query, it happens in the constructor of the CustomerContact class, which the DataContext
is not privy to. Therefore, it has no idea what field in the source class, Customer, to order by when it
generates the SQL statement. And that spells trouble.

However, it is safe to use parameterized construction so long as nothing in the query after the
projection references the named class’s members, as Listing 15-4 demonstrates.

Listing 15-4. Projecting Using Parameterized Construction Without Referencing Members

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

557

db.Log = Console.Out;

var contacts = from c in db.Customers
 where c.City == "Buenos Aires"
 select new CustomerContact(c.ContactName, c.Phone);

foreach (var contact in contacts)
{
 Console.WriteLine("{0} - {1}", contact.Name, contact.Phone);
}

In Listing 15-4, since we are using query expression syntax and since query expression syntax

requires that the query end with a select statement, we are safe using parameterized construction in
that last select statement of the query. We’re safe, because nothing can come after the select
statement containing the parameterized constructor call that references the named class members. Here
are the results of Listing 15-4:

SELECT [t0].[ContactName], [t0].[Phone]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[City] = @p0
-- @p0: Input String (Size = 12; Prec = 0; Scale = 0) [Buenos Aires]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 3.5.30729.4926

Patricio Simpson - (1) 135-5555
Yvonne Moncada - (1) 135-5333
Sergio Gutiérrez - (1) 123-5555

However, since using standard dot notation syntax does not require the query to end with a select
statement, it is not safe to assume that the query will work just because the projection into a named class
using parameterized construction occurs in the last projection. Listing 15-5 is an example using
standard dot notation syntax with the last projection using parameterized construction, but because a
subsequent part of the query references the named class members, the query throws an exception.

Listing 15-5. Projecting Using Parameterized Construction Referencing Members

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

var contacts = db.Customers.Where(c => c.City == "Buenos Aires").
 Select(c => new CustomerContact(c.ContactName, c.Phone)).
 OrderBy(c => c.Name);

foreach (var contact in contacts)

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

558

{
 Console.WriteLine("{0} - {1}", contact.Name, contact.Phone);
}

The query in Listing 15-5 is very similar to the query in Listing 15-4 except we are using standard dot

notation syntax instead of query expression syntax, and we have tacked a call to the OrderBy operator
onto the end of the query. We are using parameterized construction in the final projection, but this
doesn’t work because the OrderBy operator is referencing a member of the named class. Here are the
results of Listing 15-5:

Unhandled Exception: System.NotSupportedException: The member
'LINQChapter15.CustomerContact.Name' has no supported translation to SQL.…

Because of these complexities, we recommend using object initialization instead of parameterized
construction whenever possible.

Extending Entity Classes with Partial Methods
In Chapter 2, we told you about partial methods, and this is where they become incredibly useful.
Microsoft determined where in the lifetime of an entity class developers were most likely interested in
being notified and therefore added calls to partial methods. Here is a list of the supported partial
methods that are called:

The Supported Partial Methods for an Entity Class

partial void OnLoaded();
partial void OnValidate(ChangeAction action);
partial void OnCreated();
partial void On[Property]Changing([Type] value);
partial void On[Property]Changed();

The last two methods listed will have the name of a property where we show "[Property]" and will

have the property’s data type where we have "[Type]". To demonstrate some of the partial methods
supported by entity classes, we will add the following class code for the Contact entity class:

An Additional Declaration for the Contact Class to Implement Some Partial Methods

namespace nwind
{
 public partial class Contact
 {
 partial void OnLoaded()
 {
 Console.WriteLine("OnLoaded() called.");
 }

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

559

 partial void OnCreated()
 {
 Console.WriteLine("OnCreated() called.");
 }

 partial void OnCompanyNameChanging(string value)
 {
 Console.WriteLine("OnCompanyNameChanging() called.");
 }

 partial void OnCompanyNameChanged()
 {
 Console.WriteLine("OnCompanyNameChanged() called.");
 }
 }
}

Notice that we specified the namespace as nwind. This is necessary because the namespace for our

declaration of the class must match the namespace of the class we are extending. Because we specified
the namespace nwind when we generated our entity classes with SQLMetal, we must declare our
partial Contact class to be in the nwind namespace too. In your production code, you would probably
want to create a separate module in which to keep this partial class declaration.

We have provided simple implementations for the OnLoaded, OnCreated,
OnCompanyNameChanging, and OnCompanyNameChanged methods that display a message to the console.
Now, let’s take a look at some code demonstrating the partial methods. In Listing 15-6, we query a
Contact record from the database and change its CompanyName property.

Listing 15-6. Querying a Class with Implemented Partial Methods

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Contact contact = db.Contacts.Where(c => c.ContactID == 11).SingleOrDefault();
Console.WriteLine("CompanyName = {0}", contact.CompanyName);

contact.CompanyName = "Joe's House of Booze";
Console.WriteLine("CompanyName = {0}", contact.CompanyName);

There is nothing special about the preceding code except that we have implemented some of the
partial methods that entity classes support. First, we query a contact and display its company’s name to
the console. Then, we change the contact’s company name and display it again to the console. Let’s
press Ctrl+F5 to see the output:

OnCreated() called.
OnLoaded() called.
CompanyName = B's Beverages

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

560

OnCompanyNameChanging() called.
OnCreated() called.
OnCompanyNameChanged() called.
CompanyName = Joe's House of Booze

As you can see, the OnCreated method was called, followed by the OnLoaded method. At this point,
the record has been retrieved from the database and loaded into a Contact entity object. You can then
see the output of the company’s name we sent to the console. Next, the OnCompanyNameChanging
method is called, followed by the only surprise to us, another call to the OnCreated method. Obviously,
the DataContext is creating another Contact entity object as part of its change tracking procedure.
Next, the OnCompanyNameChanged method is called, followed by our output of the new company name
to the console.

This demonstrates how you can extend entity classes using partial methods without modifying the
generated code.

Important System.Data.Linq API Classes
There are a handful of classes in the System.Data.Linq namespace that you will use on a regular basis
when using LINQ to SQL. The following section is meant to provide a brief overview of these classes,
their purposes, and where they fit in the scheme of LINQ to SQL.

EntitySet<T>
An entity class on the one side of a one-to-many relationship stores its associated many entity classes in
a class member of type EntitySet<T> where type T is the type of the associated entity class.

Since, in the Northwind database, the relationship between Customers and Orders is one-to-many,
in the Customer class, the Orders are stored in an EntitySet<Order>.
private EntitySet<Order> _Orders;

The EntitySet<T> class is a special collection used by LINQ to SQL. It implements the
IEnumerable<T> interface, which allows you to perform LINQ queries on it. It also implements the
ICollection<T> interface.

EntityRef<T>
An entity class on the many side of a one-to-many relationship stores its associated one entity class in a
class member of type EntityRef<T> where type T is the type of the associated entity class.

Since in the Northwind database, the relationship between Customers and Orders is one-to-many,
the Customer is stored in an EntityRef<Customer> in the Order class.
private EntityRef<Customer> _Customer;

Entity
When we are referencing an associated entity class that is on the one side of a one-to-many or one-to-
one relationship, we tend to think of the member variable as being the same type as the entity class. For

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

561

example, when we refer to an Order object’s Customer, we tend to think the Customer object is stored in
a Customer class member of the Order class. You should remember though that, in reality, the Customer
is stored in an EntityRef<Customer>. Should you need to actually reference the Customer object
referenced by the EntityRef<Customer> member, it can be referenced using the
EntityRef<Customer> object’s Entity property.

There are times when it is important to be cognizant of this fact, such as when writing your own
entity classes. If you look at the Order class generated by SQLMetal, you will notice that the public
property get and set methods for the Customer property use the EntityRef<Customer> object’s
Entity property to reference the Customer.

A Public Property Using the EntityRef<T>.Entity Property to Access the Actual Entity Object

private EntityRef<Customer> _Customer;
...
public Customer Customer
{
 get
 {
 return this._Customer.Entity;
 }
 set
 {
 Customer previousValue = this._Customer.Entity;
 ...
 }
}

HasLoadedOrAssignedValue
This property is a bool that lets you know if an entity class property stored in an EntityRef<T> has been
assigned a value or if one has been loaded into it.

It is typically used in the set methods for references to the one side of a one-to-many association to
prevent the entity class property containing the one side’s ID from becoming inconsistent with the
EntityRef<T> containing the reference to the one.

For example, let’s look at the set methods for the Order entity class properties CustomerID and
Customer:

The CustomerId set Method

public string CustomerID
{
 get
 {
 return this._CustomerID;
 }
 set

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

562

 {
 if ((this._CustomerID != value))
 {
 if (this._Customer.HasLoadedOrAssignedValue)
 {
 throw new System.Data.Linq.ForeignKeyReferenceAlreadyHasValueException();
 }
 this.OnCustomerIDChanging(value);
 this.SendPropertyChanging();
 this._CustomerID = value;
 this.SendPropertyChanged("CustomerID");
 this.OnCustomerIDChanged();
 }
 }
}

Notice that in the set method for the CustomerID property, if the EntityRef<T> storing the

Customer has the HasLoadedOrAssignedValue property set to true, an exception is thrown. This
prevents a developer from changing the CustomerID of an Order entity object if that Order already has a
Customer entity assigned to it. We cannot cause the Order entity object’s CustomerID and Customer to
become inconsistent because of this safeguard.

Contrast this with the fact that in the set method for the Customer property, the Customer
reference can be assigned if the HasLoadedOrAssignedValue property is set to false:

The Customer set Method

public Customer Customer
{
 get
 {
 return this._Customer.Entity;
 }
 set
 {
 Customer previousValue = this._Customer.Entity;
 if (((previousValue != value)
 || (this._Customer.HasLoadedOrAssignedValue == false)))
 {
 this.SendPropertyChanging();
 if ((previousValue != null))
 {
 this._Customer.Entity = null;
 previousValue.Orders.Remove(this);
 }
 this._Customer.Entity = value;
 if ((value != null))
 {

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

563

 value.Orders.Add(this);
 this._CustomerID = value.CustomerID;
 }
 else
 {
 this._CustomerID = default(string);
 }
 this.SendPropertyChanged("Customer");
 }
 }
}

Checking the HasLoadedOrAssignedValue property in each of these set methods prevents the

developer from causing the reference to become inconsistent between the CustomerID and the
Customer references.

Table<T>
This is the data type LINQ to SQL uses to interface with a table or view in a SQL Server database.
Typically, the derived DataContext class, often referred to as [Your]DataContext in the LINQ to SQL
chapters, will have a public property of type Table<T>, where type T is an entity class, for each database
table mapped in the derived DataContext.

So to reference the Customers database table of the Northwind database, there will typically be a
public property of type Table<Customer> named Customers in the derived DataContext. It would look
like this:

A Table<t> Property for the Customers Database Table

public System.Data.Linq.Table<Customer> Customers
{
 get
 {
 return this.GetTable<Customer>();
 }
}

Table<T> implements the IQueryable<T> interface, which itself implements IEnumerable<T>.

This means you can perform LINQ to SQL queries on it. This is the initial data source for most LINQ to
SQL queries.

IExecuteResult
When a stored procedure or user-defined function is called with the ExecuteMethodCall method, the
results are returned in an object implementing the IExecuteResult interface, like this:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

564

The ExecuteMethodCall Method Returns an IExecuteResult

IExecuteResult result = this.ExecuteMethodCall(...);

The IExecuteResult interface provides one property named ReturnValue and one method named

GetParameterValue for accessing the returned value and output parameters, respectively.

ReturnValue
All stored procedure results other than output parameters and scalar-valued user-defined function
results are returned via the IExecuteResult.ReturnValue variable.

To obtain access to the return value of a stored procedure or scalar-valued user-defined function,
you reference the returned object’s ReturnValue member. Your code should look something like this:

Accessing the Returned Value from a Stored Procedure Returning an Integer

IExecuteResult result = this.ExecuteMethodCall(...);
int returnCode = (int)(result.ReturnValue);

In Chapter 16, we will discuss the ExecuteMethodCall method and provide an example returning a

stored procedure’s returned integer.
If a stored procedure is returning data other than its return value, the ReturnValue variable will

implement either the ISingleResult<T> or IMultipleResults interface, whichever is appropriate
depending on how many data shapes are returned from the stored procedure.

GetParameterValue
To obtain access to a stored procedure’s output parameters, you call the GetParameterValue method
on the returned object, passing the method the zero-based index number of the parameter for which
you want the value. Assuming the stored procedure is returning the CompanyName in the third parameter,
your code should look something like this:

Accessing the Returned Paramters from a Stored Procedure

IExecuteResult result = this.ExecuteMethodCall(..., param1, param2, companyName);
string CompanyName = (string)(result.GetParameterValue(2));

In Chapter 16, we will discuss the ExecuteMethodCall method and provide an example accessing a

stored procedure’s output parameters.

ISingleResult<T>
When a stored procedure returns its results in a single shape, the results are returned in an object that
implements the ISingleResult<T> interface, where T is an entity class. That returned object
implementing ISingleResult<T> is the IExecuteResult.ReturnValue variable. Your code should
look similar to this:

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

565

Accessing the Returned Results When There Is One Shape

IExecuteResult result = this.ExecuteMethodCall(...);
ISingleResult<CustOrdersOrdersResult> results =
 (ISingleResult<CustOrdersOrdersResult>)(result.ReturnValue);

Notice that we simply cast the IExecuteResult object’s ReturnValue member to an

ISingleResult<T> to get access to the results.
Since ISingleResult<T> inherits from IEnumerable<T>, the good news is that you access the

returned results just as you would any other LINQ sequence.

Accessing the Results from ISingleResult<T>

foreach (CustomersByCityResult cust in results)
{
 ...
}

In Chapter 16, we will discuss the ExecuteMethodCall method and provide an example accessing a

stored procedure’s results when the stored procedure returns a single shape.

ReturnValue
The ISingleResult<T> interface provides a ReturnValue property that works just as it does in the
IExecuteResult interface. Please read the previous section for the IExecuteResult ReturnValue
property to understand how to access this property.

IMultipleResults
When a stored procedure returns its results in multiple shapes, the results are returned in an object that
implements the IMultipleResults interface. That returned object implementing IMultipleResults is
the IExecuteResult.ReturnValue variable. Your code should look similar to this:

Accessing the Returned Results When There Are Multiple Shapes

IExecuteResult result = this.ExecuteMethodCall(...);
IMultipleResults results = (IMultipleResults)(result.ReturnValue);

To obtain access to the multiple shapes that are returned, call the
IMultipleResults.GetResult<T> method we discuss below.

In Chapter 16, we will discuss the ExecuteMethodCall method and provide an example accessing a

stored procedure’s results when the stored procedure returns multiple shapes.
The IMultipleResults interface provides one property named ReturnValue for accessing the

stored procedure’s returned value and one method named GetResult<T> for retrieving an
IEnumerable<T> for each returned shape where type T is an entity class corresponding to the shape.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

566

ReturnValue
The IMultipleResults interface provides a ReturnValue property that works just as it does in the
IExecuteResults interface. Please read the previous section for the IExecuteResults ReturnValue
property to understand how to access this property.

GetResult<T>
The IMultipleResults interface provides a GetResult<T> method where type T represents the data
type storing the shape returned. The GetResult<T> method is used to obtain the repeating records of
the specified result shape, and the records are returned in an IEnumerable<T> where T is the entity class
used to store the shape record. Your code should look something like this:

Accessing Multiple Shapes Returned by a Stored Procedure

[StoredProcedure(Name="A Stored Procedure")]
[ResultType(typeof(Shape1))]
[ResultType(typeof(Shape2))]
...
IExecuteResult result = this.ExecuteMethodCall (...);
IMultipleResults results = (IMultipleResults)(result.ReturnValue);

foreach(Shape1 x in results.GetResult<Shape1>()) {…}

foreach(Shape2 y in results.GetResult<Shape2>()) {…}

We have included the attributes that would be before the method containing this code so that you

can see the context of the ResultType attributes and the shapes that are returned by the stored
procedure.

In the preceding code, we know that records that will be mapped to data type Shape1 will be
returned by the stored procedure first, followed by records mapped to data type Shape2. So, we
enumerate through the IEnumerable<Shape1> sequence that is returned from the first call to the
GetResult<T> method first, followed by enumerating through the IEnumerable<Shape2> sequence that
is returned by the second call to the GetResult<T> method. It is important that we know Shape1 records
are returned first, followed by Shape2 records, and that we retrieve them with the GetResult<T>
method in that same order.

In Chapter 16, we will discuss the ExecuteMethodCall method and provide an example accessing a
stored procedure’s returned multiple shapes.

Summary
This chapter provided an in-depth examination of LINQ to SQL entity classes, the complications of
writing your own, and their attributes and attribute properties.

It is important to remember that if you write your own entity classes, you will be responsible for
implementing change notifications and ensuring graph consistency. These are not trivial details and can
become complex to implement. Fortunately, both SQLMetal and the Object Relational Designer take
care of these complications for you.

CHAPTER 15 ■ LINQ TO SQL ENTITY CLASSES

567

Also, to write your own entity classes, you must have a thorough knowledge of the entity class
attributes and their properties. We covered each of these in this chapter and provided the quintessential
implementation of each by discussing the SQLMetal-generated entity classes for the Northwind
database.

We also covered the benefits of projecting your query results into entity classes as opposed to
nonentity classes. If you have no need to modify the data and persist the changes, nonentity classes are
generally fine. But if you want to be able to change the data that is returned and persist it back to the
database, projecting into entity classes is the way to go.

Last, we discussed some of the often-used classes in the System.Data.Linq namespace and how
they are used by LINQ to SQL.

At this point, you should be an expert on the anatomy of entity classes. We have discussed them in
depth and explained to you the generated code. Of course, these entity classes are typically referenced
by a class derived from the DataContext class, which we have yet to discuss in detail. Therefore, in the
next chapter, we will discuss the DataContext class in full detail.

C H A P T E R 16

■ ■ ■

569

The LINQ to SQL DataContext

In this chapter, we explain the DataContext class, what it can do for you, and how to make the most of
it. We discuss all of its major methods and provide examples of each. Understanding the DataContext
class is necessary to successfully employ LINQ to SQL, and by the time you have read this chapter, you
should be a master of the DataContext class.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated entity classes for it. Please read and follow the instructions in
Chapter 12’s “Prerequisites for Running the Examples” section.

Some Common Methods
To run the examples in this chapter, you will need some common methods that will be utilized by the
examples. Please read and follow the instructions in Chapter 12’s “Some Common Methods”
instructions.

Using the LINQ to SQL API
To run the examples in this chapter, you may need to add the appropriate references and using
directives to your project. Please read and follow the instructions in Chapter 12’s “Using the LINQ to SQL
API” section.

Additionally, for some of the examples in this chapter, you will also need to add a using directive for
the System.Data.Linq.Mapping namespace like this:

using System.Data.Linq.Mapping;

[Your]DataContext Class
Although we haven’t covered it yet, one of the LINQ to SQL classes you will frequently use is the
System.Data.Linq.DataContext class. This is the class you will use to establish your database
connection. When creating or generating entity classes, it is common for a class to be created that
derives from the DataContext class. This derived class will typically take on the name of the database it

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

570

will be connecting to. Since we are using the Northwind database for the examples in this chapter, our
derived database class will be named Northwind. However, since the name of the derived class changes
with the database being used, the name of the class will vary from code to code. For ease of reference in
the LINQ to SQL chapters, we will often refer to this derived class as the [Your]DataContext class. This
is your clue that we are talking about your created or generated class that is derived from the
DataContext class.

The DataContext Class
The DataContext class handles your connection to the database. It also handles database queries,
updates, inserts, identity tracking, change tracking, change processing, transactional integrity, and even
database creation. The DataContext class translates your queries of entity classes into SQL statements
that are performed on the connected database. It is a busy class.

Deriving the [Your]DataContext class from the DataContext class gives [Your]DataContext class
access to a host of common database methods, such as ExecuteQuery, ExecuteCommand, and
SubmitChanges. In addition to these inherited methods, the [Your]DataContext class will contain
properties of type System.Data.Linq.Table<T> for each table and view in the database for which you
desire to use LINQ to SQL, where each type T is an entity class mapped to a particular table or view.

For example, let’s take a look at the Northwind class that was generated for us by the SQLMetal tool.
It is the [Your]DataContext class for the Northwind database. Here is what a portion of ours looks like,
with the noteworthy portions in bold:

A Portion of the Generated Northwind Class

public partial class Northwind : System.Data.Linq.DataContext
{
 ...

 static Northwind()

 {
 }

 public Northwind(string connection) :
 base(connection, mappingSource)

 {
 OnCreated();
 }

 public Northwind(System.Data.IDbConnection connection) :
 base(connection, mappingSource)

 {
 OnCreated();
 }

 public Northwind(string connection,
 System.Data.Linq.Mapping.MappingSource mappingSource) :

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

571

 base(connection, mappingSource)

 {
 OnCreated();
 }

 public Northwind(System.Data.IDbConnection connection,
 System.Data.Linq.Mapping.MappingSource mappingSource) :
 base(connection, mappingSource)

 {
 OnCreated();
 }

 ...

 public System.Data.Linq.Table<Customer> Customers

 {
 get
 {
 return this.GetTable<Customer>();
 }
 }

 ...

}

As you can see, this class does indeed inherit from the DataContext class. You can also see that

there are five constructors. The default constructor is private since the visibility modifier is not specified,
so you won’t be instantiating a [Your]DataContext without parameters. Each of the public
[Your]DataContext constructors matches one of the inherited DataContext constructors and calls the
base DataContext class’s equivalent constructor in the initializer. In the body of the constructors, the
only code is a call to the OnCreated partial method. This allows the developer to implement an
OnCreated partial method that is called every time a [Your]DataContext object is instantiated.

Also in the Northwind class, there is a property named Customers of type Table<Customer> where
type Customer is an entity class. It is the Customer entity class that is mapped to the Northwind
database’s Customers table.

It is not necessary to actually write code that uses the [Your]DataContext class; it is possible to
work with the standard DataContext class instead. However, using the [Your]DataContext class does
make writing the code more convenient. For example, if you use the [Your]DataContext class, each
table is a property that can be accessed directly off the [Your]DataContext object. Listing 16-1 contains
an example.

Listing 16-1. An Example Demonstrating Table Access with a Property

Northwind db =
 new Northwind(@"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind");

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

572

IQueryable<Customer> query = from cust in db.Customers
 where cust.Country == "USA"
 select cust;

foreach(Customer c in query)
{
 Console.WriteLine("{0}", c.CompanyName);
}

■ NNote You may need to change the connection strings in the examples in this chapter for them to work.

In the preceding code, since we connect using the [Your]DataContext class, Northwind, we can
access the customers Table<Customer> as a property, Customers, of the [Your]DataContext class.
Here are the results of the code:

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

If, instead, we connect using the DataContext class itself, we must use the GetTable<T> method of
the DataContext object, as in Listing 16-2.

Listing 16-2. An Example Demonstrating Table Access with the GetTable<T> Method

DataContext dc =
 new DataContext(@"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind");

IQueryable<Customer> query = from cust in dc.GetTable<Customer>()
 where cust.Country == "USA"
 select cust;

foreach(Customer c in query)

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

573

{
 Console.WriteLine("{0}", c.CompanyName);
}

This code gives us the same results, though:

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

So, using the [Your]DataContext class is merely a convenience, but it’s one worth taking
advantage of whenever possible.

The DataContext Class Implements IDisposable
The DataContext class implements the IDisposable interface, and because of this, it shouldbe treated
properly as a disposable object. This means that if you create a new class that is composed of a
DataContext or [Your]DataContext class, meaning there is a has-a relationship between your new
class and the DataContext or [Your]DataContext class, the new class should implement the
IDisposable interface too. Designing classes to properly implement the IDisposable interface is
beyond the scope of this book, but many resources online delve into this topic. Another benefit of the
DataContext class implementing the IDisposable interface is that you can now utilize a using
statement to manage the DataContext or [Your]DataContext object.

Primary Purposes
In addition to all the methods we cover in this chapter, the DataContext class provides three main
services: identity tracking, change tracking, and change processing.

Identity Tracking
One of the issues that LINQ to SQL is designed to overcome is referred to as the object-relational
impedance mismatch. This term refers to the inherent difficulties caused by the fact that the most
commonly used databases are relational, while most modern programming languages are object
oriented. Because of this difference, problems arise.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

574

One such manifestation of the object-relational impedance mismatch is the way we expect identity
to behave. If we query the same record from a database in multiple places in our code, we expect that the
returned data will be stored in different locations in memory. We expect that modifying a record’s fields
in one part of the code will not affect that same record’s fields that were retrieved in another part of the
code. We expect this because we know that retrieved data is stored in different variables living at
different addresses in memory.

Contrast this with the way we expect objects to behave. We expect that when we have an object in
memory, say a Customer object, we expect that all places in the code having a reference to that same
customer will actually have a reference to the same location in memory. If we update that customer
object’s name property in one location of our program, we expect the customer we have a reference to in
another part of the code will have the new name.

The DataContext class identity tracking service is what provides this behavior for us. When a record
is queried from the database for the first time since the instantiation of the DataContext object, that
record is recorded in an identity table using its primary key, and an entity object is created and stored in
a cache. Subsequent queries that determine that the same record should be returned will first check the
identity table, and if the record exists in the identity table, the already existing entity object will be
returned from the cache. That is an important concept to understand, so we will reiterate it in a slightly
different way. When a query is executed, if a record in the database matches the search criteria and its
entity object is already cached, the already cached entity object is returned. This means that the actual
data returned by the query may not be the same as the record in the database. The query determines
which entities will be returned based on data in the database. But the DataContext object’s identity
tracking service determines what data is returned. This can lead to a problem we call the results set
cache mismatch.

The Results Set Cache Mismatch

The results set cache mismatch can occur when a record in the database is inconsistent with that same
record’s entity object in your DataContext object’s cache. When you perform a query, the actual
database is queried for records matching the query. If a record in the database matches the search
criteria for the query, that record’s entity object will be included in the returned results set. However, if a
record from the results set is already cached in the DataContext object’s cache of entity objects, the
cached entity object will be returned by the query, as opposed to reading the latest version from the
database.

The result is that if you have an entity object cached in your DataContext, if another context
updates a field for that entity object’s record in the database, and if you perform a LINQ query specifying
that field in the search criteria so that it matches the new value in the database, the record will be
included in the results set. However, since you already have it cached, you get the cached entity object
returned with the field not matching your search criteria.

It will probably be clearer if we provide an example. What we will do is first query for a specific
customer that we know will not match the search criteria we will provide for a subsequent query. We will
use customer LONEP. The region for customer LONEP is OR, so we will search for customers whose region
is WA. We will then display those customers whose region is WA. Next, we will update the region for
customer LONEP to WA using ADO.NET, just as if some other context did it externally to our process. At
this point, LONEP will have a region of OR in our entity object but WA in the database. Next, we will
perform that very same query again to retrieve all the customers whose region is WA. When you look in
the code, you will not see the query defined again, though. You will merely see us enumerate through the
returned sequence of custs. Remember that, because of deferred query execution, we need only
enumerate the results to cause the query to be executed again. Since the region for LONEP is WA in the
database, that record will be included in the results set. But, since that record’s entity object is already
cached, it will be the cached entity object that is returned, and that object still has a region of OR. We will

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

575

then display each returned entity object’s region. When customer LONEP is displayed, its region will be
OR, despite that our query specified it wanted customers whose region is WA. Listing 16-3 provides the
code to demonstrate this mismatch.

Listing 16-3. An Example Demonstrating the Results Set Cache Mismatch

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Let's get a cutomer to modify that will be outside our query of region == 'WA'.
Customer cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

Console.WriteLine("Customer {0} has region = {1}.{2}",
 cust.CustomerID, cust.Region, System.Environment.NewLine);

// Ok, LONEP's region is OR.

// Now, let's get a sequence of customers from 'WA', which will not include LONEP
// since his region is OR.
IEnumerable<Customer> custs = (from c in db.Customers
 where c.Region == "WA"
 select c);

Console.WriteLine("Customers from WA before ADO.NET change - start ...");
foreach(Customer c in custs)
{
 // Display each entity object's Region.
 Console.WriteLine("Customer {0}'s region is {1}.", c.CustomerID, c.Region);
}
Console.WriteLine("Customers from WA before ADO.NET change - end.{0}",
 System.Environment.NewLine);

// Now we will change LONEP's region to WA, which would have included it
// in that previous query's results.

// Change the customers' region through ADO.NET.
Console.WriteLine("Updating LONEP's region to WA in ADO.NET...");
ExecuteStatementInDb(
 "update Customers set Region = 'WA' where CustomerID = 'LONEP'");

Console.WriteLine("LONEP's region updated.{0}", System.Environment.NewLine);

Console.WriteLine("So LONEP's region is WA in database, but ...");
Console.WriteLine("Customer {0} has region = {1} in entity object.{2}",
 cust.CustomerID, cust.Region, System.Environment.NewLine);

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

576

// Now, LONEP's region is WA in database, but still OR in entity object.

// Now, let's perform the query again.
// Display the customers entity object's region again.
Console.WriteLine("Query entity objects after ADO.NET change - start ...");
foreach(Customer c in custs)
{
 // Display each entity object's Region.
 Console.WriteLine("Customer {0}'s region is {1}.", c.CustomerID, c.Region);
}

Console.WriteLine("Query entity objects after ADO.NET change - end.{0}",
 System.Environment.NewLine);

// We need to reset the changed values so that the code can be run
// more than once.
Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);
ExecuteStatementInDb(
 "update Customers set Region = 'OR' where CustomerID = 'LONEP'");

Here are the results:

Customer LONEP has region = OR.

Customers from WA before ADO.NET change - start ...
Customer LAZYK's region is WA.
Customer TRAIH's region is WA.
Customer WHITC's region is WA.
Customers from WA before ADO.NET change - end.

Updating LONEP's region to WA in ADO.NET...
Executing SQL statement against database with ADO.NET ...
Database updated.
LONEP's region updated.

So LONEP's region is WA in database, but ...
Customer LONEP has region = OR in entity object.

Query entity objects after ADO.NET change - start ...
Customer LAZYK's region is WA.
Customer LONEP's region is OR.
Customer TRAIH's region is WA.
Customer WHITC's region is WA.
Query entity objects after ADO.NET change - end.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

577

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see, even though we queried for customers in WA, LONEP is included in the results despite
that its region is OR. Sure, it’s true that in the database LONEP has a region of WA, but it does not in the
object we have a reference to in our code. Is anyone else getting a queasy feeling?

Another aspect of this behavior is that inserted entities cannot be queried back out, but deleted
entities can be, prior to calling the SubmitChanges method. Again, this is because even though we have
inserted an entity, when the query executes, the results set is determined by what is in the actual
database, not the DataContext object’s cache. Since the changes have not been submitted, the inserted
entity is not yet in the database. The opposite applies to deleted entities. Listing 16-4 contains an
example demonstrating this behavior.

Listing 16-4. Another Example Demonstrating the Results Set Cache Mismatch

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Console.WriteLine("First we will add customer LAWN.");
db.Customers.InsertOnSubmit(
 new Customer
 {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
 });

Console.WriteLine("Next we will query for customer LAWN.");
Customer cust = (from c in db.Customers
 where c.CustomerID == "LAWN"
 select c).SingleOrDefault<Customer>();
Console.WriteLine("Customer LAWN {0}.{1}",
 cust == null ? "does not exist" : "exists",
 System.Environment.NewLine);

Console.WriteLine("Now we will delete customer LONEP");

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

578

cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).SingleOrDefault<Customer>();
db.Customers.DeleteOnSubmit(cust);

Console.WriteLine("Next we will query for customer LONEP.");
cust = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).SingleOrDefault<Customer>();
Console.WriteLine("Customer LONEP {0}.{1}",
 cust == null ? "does not exist" : "exists",
 System.Environment.NewLine);

// No need to reset database since SubmitChanges() was not called.

In the previous code, we insert a customer, LAWN, and then query to see whether it exists. We then

delete a different customer, LONEP, and query to see whether it exists. We do all this without calling the
SubmitChanges method so that the cached entity objects have not been persisted to the database. Here
are the results of this code:

First we will add customer LAWN.
Next we will query for customer LAWN.
Customer LAWN does not exist.

Now we will delete customer LONEP
Next we will query for customer LONEP.
Customer LONEP exists.

We have been told by a Microsoft developer that this is intentional behavior, that the data retrieved
by a query is considered to be stale the moment you retrieve it, and that the data cached by the
DataContext is not meant to be cached for long periods of time. If you need better isolation and
consistency, he recommended you wrap it all in a transaction. Please read the section titled “Pessimistic
Concurrency” in Chapter 17 to see an example of doing this.

Change Tracking
Once the identity tracking service creates an entity object in its cache, change tracking begins for that
object. Change tracking works by storing the original values of an entity object. Change tracking for an
entity object continues until you call the SubmitChanges method. Calling the SubmitChanges method
causes the entity objects’ changes to be saved to the database, the original values to be forgotten, and
the changed values to become the original values. This allows change tracking to start over.

This works fine as long as the entity objects are retrieved from the database. However, merely
creating a new entity object by instantiating it will not provide any identity or change tracking until the
DataContext is aware of its existence. To make the DataContext aware of the entity object’s existence,
simply insert the entity object into one of the Table<T> properties. For example, in our Northwind class,
we have a Table<Customer> property named Customers. We can call the InsertOnSubmit method on

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

579

the Customers property to insert the entity object, a Customer, to the Table<Customer>. When this is
done, the DataContext will begin identity and change tracking on that entity object. Here is example
code inserting a customer:

db.Customers.InsertOnSubmit(
 new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"});

Once we call the InsertOnSubmit method, identity and change tracking for customer LAWN begins.
Initially, we found change tracking a little confusing. Understanding the basic concept is simple

enough, but feeling comfortable about how it was working did not come easy. Understanding change
tracking becomes even more important if you are writing your entity classes by hand. Be sure to read the
section titled “Change Notifications” in Chapter 15 to gain a complete understanding of how change
tracking works.

Change Processing
One of the more significant services the DataContext provides is change tracking for entity objects.
When you insert, change, or delete an entity object, the DataContext is monitoring what is happening.
The changes are cached by the DataContext until you call the SubmitChanges method.

When you call the SubmitChanges method, the DataContext object’s change processor manages
the update of the database. First, the change processor will insert any newly inserted entity objects to its
list of tracked entity objects. Next, it will order all changed entity objects based on their dependencies
resulting from foreign keys and unique constraints. Then, if no transaction is in scope, it will create a
transaction so that all SQL commands carried out during this invocation of the SubmitChanges method
will have transactional integrity. It uses SQL Server’s default isolation level of ReadCommitted, which
means that the data read will not be physically corrupted and only committed data will be read, but
since the lock is shared, nothing prevents the data from being changed before the end of the transaction.
Last, it enumerates through the ordered list of changed entity objects, creates the necessary SQL
statements, and executes them.

If any errors occur while enumerating the changed entity objects and, if the SubmitChanges method
is using a ConflictMode of FailOnFirstConflict, then the enumeration process aborts, the
transaction is rolled back (undoing all changes to the database), and an exception is thrown. If a
ConflictMode of ContinueOnConflict is specified, all changed entity objects will be enumerated and
processed despite any conflicts that occur, while the DataContext builds a list of the conflicts. But again,
the transaction is rolled back, undoing all changes to the database, and an exception is thrown.
However, although the changes have not persisted to the database, all of the entity objects’ changes still
exist in the entity objects. This gives the developer the opportunity to try to resolve the problem and to
call the SubmitChanges method again.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

580

If all the changes are made to the database successfully, the transaction is committed, and the
change tracking information for the changed entity objects is deleted so that change tracking can restart
fresh.

The Data Context Lifetime
One of the questions that is asked regularly is how long a DataContext object should be kept alive and
utilized. As we mentioned in “The Results Set Cache Mismatch” section, data retrieved and cached by
the DataContext is considered stale the moment it is retrieved. This means the longer you keep a
DataContext object alive, the staler the data can become. Not only does this create additional overhead,
it creates a greater likelihood of a results set cache mismatch occurring. Therefore it is highly
recommended to keep DataContext objects as short-lived as possible.

We recommend creating a DataContext object each time it is needed and then allowing it to go out
of scope after the SubmitChanges method has been called. Of course every situation is different, so this
is a judgment call. We would not create a single DataContext object and try to use it for the lifetime of a
desktop application. A good rule of thumb would be that a DataContext object should live for seconds,
not minutes or hours.

Some developers may be tempted to keep a DataContext object alive for longer periods of time and
rely on the Refresh method that we cover at the end of this chapter to prevent results set cache
mismatches from occurring. We think this a poor approach because then you are left with the decision
of how often and when you should call the Refresh method. Would you call it every time you use the
DataContext object? Unnecessarily calling the Refresh method will cause all of the cached data to be
refreshed from the database. This could lead to performance issues if a DataContext lives long enough.
That is a large price to pay just to eliminate the cost of instantiating a DataContext.

DataContext() and [Your]DataContext()
The DataContext class is typically derived from to create the [Your]DataContext class. It exists for the
purpose of connecting to the database and handling all database interaction. You will use one of the
following constructors to instantiate a DataContext or [Your]DataContext object.

Prototypes
The DataContext constructor has four prototypes we will cover.

The First DataContext Constructor Prototype

DataContext(string fileOrServerOrConnection);

This prototype of the constructor takes an ADO.NET connection string and is probably the one you

will use the majority of the time. This prototype is the one used by most of the LINQ to SQL examples in
this book.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

581

The Second DataContext Constructor Prototype

DataContext (System.Data.IDbConnection connection);

Because System.Data.SqlClient.SqlConnection inherits from

System.Data.Common.DbConnection, which implements System.Data.IDbConnection, you can
instantiate a DataContext or [Your]DataContext with a SqlConnection that you have already created.
This prototype of the constructor is useful when mixing LINQ to SQL code with already existing
ADO.NET code.

The Third DataContext Constructor Prototype

DataContext(string fileOrServerOrConnection,
 System.Data.Linq.MappingSource mapping);

This prototype of the constructor is useful when you don’t have a [Your]DataContext class and

instead have an XML mapping file. Sometimes, you may have an already existing business class to which
you cannot add the appropriate LINQ to SQL attributes. Perhaps you don’t even have the source code for
it. You can generate a mapping file with SQLMetal or write one by hand to work with an already existing
business class, or any other class for that matter. You provide a normal ADO.NET connection string to
establish the connection.

The Fourth DataContext Constructor Prototype

DataContext (System.Data.IDbConnection connection,
 System.Data.Linq.MappingSource mapping)

This prototype allows you to create a LINQ to SQL connection from an already existing ADO.NET

connection and to provide an XML mapping file. This version of the prototype is useful for those times
when you are combining LINQ to SQL code with already existing ADO.NET code and you don’t have
entity classes decorated with attributes.

Examples
For an example of the first DataContext constructor prototype, in Listing 16-5, we will connect to a
physical .mdf file using an ADO.NET type connection string.

Listing 16-5. The First DataContext Constructor Prototype Connecting to a Database File

DataContext dc = new DataContext(@"C:\Northwind.mdf");

IQueryable<Customer> query = from cust in dc.GetTable<Customer>()
 where cust.Country == "USA"
 select cust;

foreach (Customer c in query)
{

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

582

 Console.WriteLine("{0}", c.CompanyName);
}

■ NNote You will need to modify the path passed to the DataContext constructor so that it can find your .mdf

file.

We provide the path to the .mdf file to instantiate the DataContext object. Since we are creating a
DataContext and not a [Your]DataContext object, we must call the GetTable<T> method to access the
customers in the database. Here are the results:

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

Next we want to demonstrate the same basic code, except this time, in Listing 16-6, we will use our
[Your]DataContext class, which in this case is the Northwind class.

Listing 16-6. The First [Your]DataContext Constructor Prototype Connecting to a Database File

Northwind db = new Northwind(@"C:\Northwind.mdf");

IQueryable<Customer> query = from cust in db.Customers
 where cust.Country == "USA"
 select cust;

foreach(Customer c in query)
{
 Console.WriteLine("{0}", c.CompanyName);
}

Notice that instead of calling the GetTable<T> method, we can reference the Customers property to

access the customers in the database. Unsurprisingly, this code provides the same results:

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

583

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

For the sake of completeness, we will provide one more example of the first prototype, but this time
we will use a connection string to actually connect to a SQL Express database server containing the
attached Northwind database. And, because our normal practice will be to use the [Your]DataContext
class, we will use it in Listing 16-7.

Listing 16-7. The First [Your]DataContext Constructor Prototype Connecting to a Database

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> query = from cust in db.Customers
 where cust.Country == "USA"
 select cust;

foreach(Customer c in query)
{
 Console.WriteLine("{0}", c.CompanyName);
}

And the results are still the same:

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

584

The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

The second prototype for the DataContext class is useful when combining LINQ to SQL code with
ADO.NET code, and that is what Listing 16-8 does. First, we will create a SqlConnection and insert a
record in the Customers table using it. Then, we will use the SqlConnection to instantiate a
[Your]DataContext class. We will query the Customers table with LINQ to SQL and display the results.
Lastly, using ADO.NET, we will delete the record from the Customers table we inserted, query the
Customers table one last time using LINQ to SQL, and display the results.

Listing 16-8. The Second [Your]DataContext Constructor Prototype Connecting with a Shared

ADO.NET Connection

System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;");

string cmd = @"insert into Customers values ('LAWN', 'Lawn Wranglers',
 'Mr. Abe Henry', 'Owner', '1017 Maple Leaf Way', 'Ft. Worth', 'TX',
 '76104', 'USA', '(800) MOW-LAWN', '(800) MOW-LAWO')";

System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

sqlComm.Connection = sqlConn;
try
{
 sqlConn.Open();
 // Insert the record.
 sqlComm.ExecuteNonQuery();

 Northwind db = new Northwind(sqlConn);

 IQueryable<Customer> query = from cust in db.Customers
 where cust.Country == "USA"
 select cust;

 Console.WriteLine("Customers after insertion, but before deletion.");
 foreach (Customer c in query)
 {
 Console.WriteLine("{0}", c.CompanyName);
 }

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

585

 sqlComm.CommandText = "delete from Customers where CustomerID = 'LAWN'";
 // Delete the record.
 sqlComm.ExecuteNonQuery();

 Console.WriteLine("{0}{0}Customers after deletion.", System.Environment.NewLine);
 foreach (Customer c in query)
 {
 Console.WriteLine("{0}", c.CompanyName);
 }

}
finally
{
 // Close the connection.
 sqlComm.Connection.Close();
}

Notice that we defined the LINQ query only once, but we caused it to be performed twice by

enumerating the returned sequence twice. Remember, because of deferred query execution, the
definition of the LINQ query does not actually result in the query being performed. The query is
performed only when the results are enumerated. This is demonstrated by the fact that the results differ
between the two enumerations. Listing 16-8 also shows a nice integration of ADO.NET and LINQ to SQL
and just how well they can play together. Here are the results:

Customers after insertion, but before deletion.
Great Lakes Food Market
Hungry Coyote Import Store
Lawn Wranglers
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

Customers after deletion.
Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

586

Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

For an example of the third prototype, we won’t even use the Northwind entity classes. Pretend we
don’t even have them. Instead, we will use a Customer class we have written by hand and an abbreviated
mapping file. In truth, our handwritten Customer class is the SQLMetal-generated Customer class that
we have gutted to remove all LINQ to SQL attributes. Let’s take a look at our handwritten Customer class:

My Handwritten Customer Class

namespace Linqdev
{
 public partial class Customer
 {
 private string _CustomerID;
 private string _CompanyName;
 private string _ContactName;
 private string _ContactTitle;
 private string _Address;
 private string _City;
 private string _Region;
 private string _PostalCode;
 private string _Country;
 private string _Phone;
 private string _Fax;

 public Customer()
 {
 }

 public string CustomerID
 {
 get
 {
 return this._CustomerID;
 }
 set
 {
 if ((this._CustomerID != value))

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

587

 {
 this._CustomerID = value;
 }
 }
 }

 public string CompanyName
 {
 get
 {
 return this._CompanyName;
 }
 set
 {
 if ((this._CompanyName != value))
 {
 this._CompanyName = value;
 }
 }
 }

 public string ContactName
 {
 get
 {
 return this._ContactName;
 }
 set
 {
 if ((this._ContactName != value))
 {
 this._ContactName = value;
 }
 }
 }

 public string ContactTitle
 {
 get
 {
 return this._ContactTitle;
 }
 set
 {
 if ((this._ContactTitle != value))
 {
 this._ContactTitle = value;

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

588

 }
 }
 }

 public string Address
 {
 get
 {
 return this._Address;
 }
 set
 {
 if ((this._Address != value))
 {
 this._Address = value;
 }
 }
 }

 public string City
 {
 get
 {
 return this._City;
 }
 set
 {
 if ((this._City != value))
 {
 this._City = value;
 }
 }
 }

 public string Region
 {
 get
 {
 return this._Region;
 }
 set
 {
 if ((this._Region != value))
 {
 this._Region = value;
 }
 }

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

589

 }

 public string PostalCode
 {
 get
 {
 return this._PostalCode;
 }
 set
 {
 if ((this._PostalCode != value))
 {
 this._PostalCode = value;
 }
 }
 }

 public string Country
 {
 get
 {
 return this._Country;
 }
 set
 {
 if ((this._Country != value))
 {
 this._Country = value;
 }
 }
 }

 public string Phone
 {
 get
 {
 return this._Phone;
 }
 set
 {
 if ((this._Phone != value))
 {
 this._Phone = value;
 }
 }
 }

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

590

 public string Fax
 {
 get
 {
 return this._Fax;
 }
 set
 {
 if ((this._Fax != value))
 {
 this._Fax = value;
 }
 }
 }
 }
}

Now this is probably the worst handwritten entity class of all time. We don’t handle change

notifications, and we have deleted many of the portions of code that would make this a well-behaved
entity class. Please read Chapter 15 to learn how to write well-behaved entity classes.

We have specified that this class lives in the Linqdev namespace. This is important, because not
only will we need to specify this in our example code to differentiate between this Customer class and
the one in the nwind namespace, but this namespace must also be specified in the external mapping file.

What is important for this example, though, is that there is a property for each database field
mapped in the external mapping file. Now, let’s take a look at the external mapping file we will be using
for this example:

An Abbreviated External XML Mapping File

<?xml version="1.0" encoding="utf-8"?>
<Database Name="Northwind"
 xmlns="http://schemas.microsoft.com/linqtosql/mapping/2007">
 <Table Name="dbo.Customers" Member="Customers">
 <Type Name="Linqdev.Customer">
 <Column Name="CustomerID" Member="CustomerID" Storage="_CustomerID"
 DbType="NChar(5) NOT NULL" CanBeNull="false" IsPrimaryKey="true" />
 <Column Name="CompanyName" Member="CompanyName" Storage="_CompanyName"
 DbType="NVarChar(40) NOT NULL" CanBeNull="false" />
 <Column Name="ContactName" Member="ContactName" Storage="_ContactName"
 DbType="NVarChar(30)" />
 <Column Name="ContactTitle" Member="ContactTitle" Storage="_ContactTitle"
 DbType="NVarChar(30)" />
 <Column Name="Address" Member="Address" Storage="_Address"
 DbType="NVarChar(60)" />
 <Column Name="City" Member="City" Storage="_City" DbType="NVarChar(15)" />
 <Column Name="Region" Member="Region" Storage="_Region"
 DbType="NVarChar(15)" />

http://schemas.microsoft.com/linqtosql/mapping/2007

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

591

 <Column Name="PostalCode" Member="PostalCode" Storage="_PostalCode"
 DbType="NVarChar(10)" />
 <Column Name="Country" Member="Country" Storage="_Country"
 DbType="NVarChar(15)" />
 <Column Name="Phone" Member="Phone" Storage="_Phone" DbType="NVarChar(24)" />
 <Column Name="Fax" Member="Fax" Storage="_Fax" DbType="NVarChar(24)" />
 </Type>
 </Table>
</Database>

Notice that we have specified that the Customer class this mapping applies to is in the Linqdev

namespace.
We have placed this XML in a file named abbreviatednorthwindmap.xml and placed that file in

our bin\Debug directory.
In Listing 16-9 we will use this handwritten Customer class and external mapping file to perform a

LINQ to SQL query without using any attributes.

Listing 16-9. The Third DataContext Constructor Prototype Connecting to a Database and Using a

Mapping File

string mapPath = "abbreviatednorthwindmap.xml";
XmlMappingSource nwindMap =
 XmlMappingSource.FromXml(System.IO.File.ReadAllText(mapPath));

DataContext db = new DataContext(
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;",
 nwindMap);

IQueryable<Linqdev.Customer> query =
 from cust in db.GetTable<Linqdev.Customer>()
 where cust.Country == "USA"
 select cust;

foreach (Linqdev.Customer c in query)
{
 Console.WriteLine("{0}", c.CompanyName);
}

■ NNote We placed the abbreviatednorthwindmap.xml file in our Visual Studio project’s bin\Debug
directory for this example, since we are compiling and running with the Debug configuration.

As you can see, we instantiate the XmlMappingSource object from the mapping file and pass that
XmlMappingSource into the DataContext constructor. Also notice that we cannot simply access the
Customers Table<Customer> property in our DataContext object for the LINQ to SQL query, because

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

592

we are using the base DataContext class, as opposed to our [Your]DataContext class, and it doesn’t
exist.

Also notice that everywhere we reference the Customer class, we also explicitly state the Linqdev
namespace just to be sure we are not using the SQLMetal-generated Customer class that most of the
other examples are using.

Here are the results of Listing 16-9:

Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

Although this example uses a crude Customer class missing most of the code that makes a class a
well-behaved entity class, we wanted to show you one example using a mapping file and a class without
LINQ to SQL attributes.

The fourth prototype is a combination of the second and third prototypes, and Listing 16-10
contains an example.

Listing 16-10. The Fourth DataContext Constructor Prototype Connecting to a Database with a Shared
ADO.NET Connection and Using a Mapping File

System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;");

string cmd = @"insert into Customers values ('LAWN', 'Lawn Wranglers',
 'Mr. Abe Henry', 'Owner', '1017 Maple Leaf Way', 'Ft. Worth', 'TX',
 '76104', 'USA', '(800) MOW-LAWN', '(800) MOW-LAWO')";

System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

sqlComm.Connection = sqlConn;
try
{
 sqlConn.Open();
 // Insert the record.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

593

 sqlComm.ExecuteNonQuery();

 string mapPath = "abbreviatednorthwindmap.xml";
 XmlMappingSource nwindMap =
 XmlMappingSource.FromXml(System.IO.File.ReadAllText(mapPath));

 DataContext db = new DataContext(sqlConn, nwindMap);

 IQueryable<Linqdev.Customer> query =
 from cust in db.GetTable<Linqdev.Customer>()
 where cust.Country == "USA"
 select cust;

 Console.WriteLine("Customers after insertion, but before deletion.");
 foreach (Linqdev.Customer c in query)
 {
 Console.WriteLine("{0}", c.CompanyName);
 }

 sqlComm.CommandText = "delete from Customers where CustomerID = 'LAWN'";
 // Delete the record.
 sqlComm.ExecuteNonQuery();

 Console.WriteLine("{0}{0}Customers after deletion.", System.Environment.NewLine);
 foreach (Linqdev.Customer c in query)
 {
 Console.WriteLine("{0}", c.CompanyName);
 }
}
finally
{
 // Close the connection.
 sqlComm.Connection.Close();
}

Listing 16-10 depends on the Linqdev.Customer class and abbreviatednorthwindmap.xml

external mapping file just at Listing 16-9 does.
This is a nice example of using LINQ to SQL to query a database without attribute-decorated entity

class code and integrating with ADO.NET code. And, the results are just as we would expect:

Customers after insertion, but before deletion.
Great Lakes Food Market
Hungry Coyote Import Store
Lawn Wranglers
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

594

Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

Customers after deletion.
Great Lakes Food Market
Hungry Coyote Import Store
Lazy K Kountry Store
Let's Stop N Shop
Lonesome Pine Restaurant
Old World Delicatessen
Rattlesnake Canyon Grocery
Save-a-lot Markets
Split Rail Beer & Ale
The Big Cheese
The Cracker Box
Trail's Head Gourmet Provisioners
White Clover Markets

As you can see from the previous examples, getting a connected DataContext or
[Your]DataContext is not difficult.

SubmitChanges()
The DataContext will cache all changes made to entity objects until the SubmitChanges method is
called. The SubmitChanges method will initiate the change processor, and the changes to entity objects
will be persisted to the database.

If an ambient transaction is not available for the DataContext object to enlist with during the
SubmitChanges method call, a transaction will be created, and all changes will be made within the
transaction. This way if one transaction fails, all database changes can be rolled back.

If concurrency conflicts occur, a ChangeConflictException will be thrown, allowing you the
opportunity to try to resolve any conflicts and resubmit. And, what is really nice is that the DataContext
contains a ChangeConflicts collection that provides a ResolveAll method to do the resolution for you.
How cool is that?

Concurrency conflicts are covered in excruciating detail in Chapter 17.

Prototypes
The SubmitChanges method has two prototypes we will cover.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

595

The First SubmitChanges Prototype

void SubmitChanges()

This prototype of the method takes no arguments and defaults to FailOnFirstConflict for the

ConflictMode.

The Second SubmitChanges Prototype

void SubmitChanges(ConflictMode failureMode)

This prototype of the method allows you to specify the ConflictMode. The possible values are

ConflictMode.FailOnFirstConflict and ConflictMode.ContinueOnConflict.
ConflictMode.FailOnFirstConflict behaves just as it sounds, causing the SubmitChanges method to
throw a ChangeConflictException on the very first conflict that occurs.
ConflictMode.ContinueOnConflict attempts to make all the database updates so that they may all be
reported and resolved at once when the ChangeConflictException is thrown.

Conflicts are counted in terms of the number of records conflicting, not the number of fields
conflicting. You could have two fields from one record that conflict, but that causes only one conflict.

Examples
Since many of the examples in Chapter 14 call the SubmitChanges method, a trivial example of this
method is probably old hat to you by now. Instead of boring you with another basic example calling the
SubmitChanges method to merely persist changes to the database, we want to get a little more complex.

For an example of the first SubmitChanges prototype, we want to prove to you that the changes are
not made to the database until the SubmitChanges method is called. Because this example is more
complex than many of the previous examples, we will explain it as we go. Listing 16-11 contains the
example.

Listing 16-11. An Example of the First SubmitChanges Prototype

System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;");

try
{
 sqlConn.Open();

 string sqlQuery = "select ContactTitle from Customers where CustomerID =
'LAZYK'";
 string originalTitle = GetStringFromDb(sqlConn, sqlQuery);
 string title = originalTitle;
 Console.WriteLine("Title from database record: {0}", title);

 Northwind db = new Northwind(sqlConn);

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

596

 Customer c = (from cust in db.Customers
 where cust.CustomerID == "LAZYK"
 select cust).
 Single<Customer>();
 Console.WriteLine("Title from entity object : {0}", c.ContactTitle);

In the previous code, we create an ADO.NET database connection and open it. Next, we query the

database for the LAZYK customer’s ContactTitle using our common GetStringFromDb method and
display it. Then, we create a Northwind object using the ADO.NET database connection, query the same
customer using LINQ to SQL, and display their ContactTitle. At this point, the ContactTitle of each
should match.

 Console.WriteLine(String.Format(
 "{0}Change the title to 'Director of Marketing' in the entity object:",
 System.Environment.NewLine));
 c.ContactTitle = "Director of Marketing";

 title = GetStringFromDb(sqlConn, sqlQuery);
 Console.WriteLine("Title from database record: {0}", title);

 Customer c2 = (from cust in db.Customers
 where cust.CustomerID == "LAZYK"
 select cust).
 Single<Customer>();
 Console.WriteLine("Title from entity object : {0}", c2.ContactTitle);

In the previous code, we change the ContactTitle of the customer’s LINQ to SQL entity object.

Then, we query the ContactTitle from the database and the entity object again and display them. The
ContactTitle values should not match this time, because the change has not yet been persisted to the
database.

 db.SubmitChanges();
 Console.WriteLine(String.Format(
 "{0}SubmitChanges() method has been called.",
 System.Environment.NewLine));

 title = GetStringFromDb(sqlConn, sqlQuery);
 Console.WriteLine("Title from database record: {0}", title);

 Console.WriteLine("Restoring ContactTitle back to original value ...");
 c.ContactTitle = "Marketing Manager";
 db.SubmitChanges();
 Console.WriteLine("ContactTitle restored.");
}
finally
{
 sqlConn.Close();
}

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

597

We call the SubmitChanges method and then retrieve the ContactTitle from the database to

display again. This time, the value from the database should be updated, because the SubmitChanges
method has persisted the change to the database.

Last, we set the ContactTitle to the original value and persist it to the database using the
SubmitChanges method to restore the database to its original state so this example can be run multiple
times and no other examples will be affected.

That code is doing a lot, but its intent is to prove that the changes made to the entity object are not
persisted to the database until the SubmitChanges method is called. When you see a call to the
GetStringFromDb method, it is retrieving the ContactTitle directly from the database using ADO.NET.
Here are the results:

Title from database record: Marketing Manager
Title from entity object : Marketing Manager

Change the title to 'Director of Marketing' in the entity object:
Title from database record: Marketing Manager
Title from entity object : Director of Marketing

SubmitChanges() method has been called.
Title from database record: Director of Marketing
Restoring ContactTitle back to original value ...
ContactTitle restored.

As you can see in the previous results, the ContactTitle value is not changed in the database until
the SubmitChanges method is called.

For an example of the second SubmitChanges prototype, we intentionally induce concurrency
errors on two records by updating them with ADO.NET between the time we query the records with
LINQ to SQL, and the time we try to update them with LINQ to SQL. We will create two record conflicts
to demonstrate the difference between ConflictMode.FailOnFirstConflict and
ConflictMode.ContinueOnConflict.

Also, you will see code toward the bottom that will reset the ContactTitle values to their original
values in the database. This is to allow the code to be run multiple times. If, while running the code in
the debugger, you prevent the entire code from running, you may need to manually reset these values.

In the first example of the second prototype of the SubmitChanges method, Listing 16-12, we will set
the ConflictMode to ContinueOnConflict so that you can see it handle multiple conflicts first. Because
this example is complex, we will explain it a portion at a time.

Listing 16-12. The Second SubmitChanges Prototype Demonstrating ContinueOnConflict

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Console.WriteLine("Querying for the LAZYK Customer with LINQ.");
Customer cust1 = (from c in db.Customers
 where c.CustomerID == "LAZYK"

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

598

 select c).Single<Customer>();

Console.WriteLine("Querying for the LONEP Customer with LINQ.");
Customer cust2 = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

In the previous code, we create a Northwind DataContext and query two customers, LAZYK and
LONEP.

string cmd = @"update Customers set ContactTitle = 'Director of Marketing'
 where CustomerID = 'LAZYK';
 update Customers set ContactTitle = 'Director of Sales'
 where CustomerID = 'LONEP'";
ExecuteStatementInDb(cmd);

Next, in the preceding code, we update the ContactTitle value in the database for both customers
using our ExecuteStatementInDb common method, which uses ADO.NET to make the changes. At this
point, we have created the potential for concurrency conflicts for each record.

Console.WriteLine("Change ContactTitle in entity objects for LAZYK and LONEP.");
cust1.ContactTitle = "Vice President of Marketing";
cust2.ContactTitle = "Vice President of Sales";

In the previous code, we update the ContactTitle for each customer so that when we call the

SubmitChanges method in the next portion of code, the DataContext object’s change processor will try
to persist the changes for these two customers and detect the concurrency conflicts.

try
{
 Console.WriteLine("Calling SubmitChanges() ...");
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
 Console.WriteLine("SubmitChanges() called successfully.");
}

In the previous code, we call the SubmitChanges method. This will cause the DataContext change

processor to try to persist these two customers, but since the value for each customer’s ContactTitle
will be different in the database than when initially loaded from the database, a concurrency conflict will
be detected.

catch (ChangeConflictException ex)
{
 Console.WriteLine("Conflict(s) occurred calling SubmitChanges(): {0}.",
 ex.Message);

 foreach (ObjectChangeConflict objectConflict in db.ChangeConflicts)
 {
 Console.WriteLine("Conflict for {0} occurred.",
 ((Customer)objectConflict.Object).CustomerID);

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

599

 foreach (MemberChangeConflict memberConflict in objectConflict.MemberConflicts)
 {
 Console.WriteLine(" LINQ value = {0}{1} Database value = {2}",
 memberConflict.CurrentValue,

 System.Environment.NewLine,
 memberConflict.DatabaseValue);

 }
 }
}

In the preceding code, we catch the ChangeConflictException exception. This is where things get

interesting. Notice that first we enumerate the ChangeConflicts collection of the DataContext object,
db. This collection will store ObjectChangeConflict objects. Notice that an ObjectChangeConflict
object has a property named Object that references the actual entity object that the concurrency
conflict occurred during the persistence thereof. We simply cast that Object member as the data type of
the entity class to reference property values of the entity object. In this case, we access the CustomerID
property.

Then, for each ObjectChangeConflict object, we enumerate through its collection of
MemberChangeConflict objects and display the information from each that we are interested in. In this
case, we display the LINQ value and the value from the database.

Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);

cmd = @"update Customers set ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK';
 update Customers set ContactTitle = 'Sales Manager'
 where CustomerID = 'LONEP'";
ExecuteStatementInDb(cmd);

In the previous code, we simply restore the database to its original state so the example can be run

multiple times.
That is a lot of code to demonstrate this. Keep in mind that none of this enumeration through the

various conflict collections is necessary. We are merely demonstrating how you would do it and showing
some of the conflict information available, should you care.

Also, please notice that we are doing nothing in this example to resolve the conflicts. We are merely
reporting them.

Here are the results of the code:

Querying for the LAZYK Customer with LINQ.
Querying for the LONEP Customer with LINQ.
Executing SQL statement against database with ADO.NET ...
Database updated.
Change ContactTitle in entity objects for LAZYK and LONEP.
Calling SubmitChanges() ...

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

600

Conflict(s) occurred calling SubmitChanges(): 2 of 2 updates failed.
Conflict for LAZYK occurred.
 LINQ value = Vice President of Marketing
 Database value = Director of Marketing
Conflict for LONEP occurred.
 LINQ value = Vice President of Sales
 Database value = Director of Sales

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see, there were two conflicts, one for each of the two records for which we created a
conflict. This demonstrates that the change processor did not stop trying to persist the changes to the
database after the first conflict. This is because we passed a ConflictMode of ContinueOnConflict
when we called the SubmitChanges method.

Listing 16-13 is the same code except we pass a ConflictMode of FailOnFirstConflict when we
call the SubmitChanges method.

Listing 16-13. The Second SubmitChanges Prototype Demonstrating FailOnFirstConflict

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Console.WriteLine("Querying for the LAZYK Customer with LINQ.");
Customer cust1 = (from c in db.Customers
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

Console.WriteLine("Querying for the LONEP Customer with LINQ.");
Customer cust2 = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();

string cmd = @"update Customers set ContactTitle = 'Director of Marketing'
 where CustomerID = 'LAZYK';
 update Customers set ContactTitle = 'Director of Sales'
 where CustomerID = 'LONEP'";
ExecuteStatementInDb(cmd);

Console.WriteLine("Change ContactTitle in entity objects for LAZYK and LONEP.");
cust1.ContactTitle = "Vice President of Marketing";
cust2.ContactTitle = "Vice President of Sales";

try
{

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

601

 Console.WriteLine("Calling SubmitChanges() ...");
 db.SubmitChanges(ConflictMode.FailOnFirstConflict);
 Console.WriteLine("SubmitChanges() called successfully.");
}
catch (ChangeConflictException ex)
{
 Console.WriteLine("Conflict(s) occurred calling SubmitChanges(): {0}",
 ex.Message);

 foreach (ObjectChangeConflict objectConflict in db.ChangeConflicts)
 {
 Console.WriteLine("Conflict for {0} occurred.",
 ((Customer)objectConflict.Object).CustomerID);

 foreach (MemberChangeConflict memberConflict in objectConflict.MemberConflicts)
 {
 Console.WriteLine(" LINQ value = {0}{1} Database value = {2}",
 memberConflict.CurrentValue,
 System.Environment.NewLine,
 memberConflict.DatabaseValue);
 }
 }
}

Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);
cmd = @"update Customers set ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK';
 update Customers set ContactTitle = 'Sales Manager'
 where CustomerID = 'LONEP'";
ExecuteStatementInDb(cmd);

This time, the results should indicate that the processing of changes to the entity objects halts once

the first concurrency conflict is detected. Let’s take a look at the results:

Querying for the LAZYK Customer with LINQ.
Querying for the LONEP Customer with LINQ.
Executing SQL statement against database with ADO.NET ...
Database updated.
Change ContactTitle in entity objects for LAZYK and LONEP.
Calling SubmitChanges() ...
Conflict(s) occurred calling SubmitChanges(): Row not found or changed.
Conflict for LAZYK occurred.
 LINQ value = Vice President of Marketing
 Database value = Director of Marketing

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

602

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see, even though we induced two conflicts, the change processor stopped trying to
persist changes to the database once a conflict occurred, as evidenced by only one conflict being
reported.

DatabaseExists()
The DatabaseExists method can be used to determine whether a database already exists. The
determination of database existence is based on the connection string specified when instantiating the
DataContext. If you specify a path for an .mdf file, it will look for the database in that path with the
specified name. If you specify a server, it will check that server.

The DatabaseExists method is often used in conjunction with the DeleteDatabase and
CreateDatabase methods.

Prototypes
The DatabaseExists method has one prototype we will cover.

The Only DatabaseExists Prototype

bool DatabaseExists()

This method will return true if the database specified in the connection string when instantiating

the DataContext exists. Otherwise, it returns false.

Examples
Thankfully, this is a fairly simple method to demonstrate. In Listing 16-14, we will just instantiate a
DataContext and call the DatabaseExists method to see whether the Northwind database exists. And
of course, we already know that it does.

Listing 16-14. An Example of the DatabaseExists Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Console.WriteLine("The Northwind database {0}.",
 db.DatabaseExists() ? "exists" : "does not exist");

Here are the results:

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

603

The Northwind database exists.

For kicks, if you detach your Northwind database and run the example again, you will get these
results:

The Northwind database does not exist.

If you tried that, don’t forget to attach your Northwind database back so the other examples will
work.

CreateDatabase()
To make things even slicker, since the entity classes know so much about the structure of the database to
which they are mapped, Microsoft provides a method named CreateDatabase to actually create the
database.

You should realize, though, that it can only create the parts of the database that it knows about via
the entity class attributes or a mapping file. So, the content of things such as stored procedures, triggers,
user-defined functions, and check constraints will not be produced in a database created in this manner,
since there are no attributes specifying this information. For simple applications, this may be perfectly
acceptable, though.

■ CCaution Unlike most other changes that you make to a database through the DataContext, the
CreateDatabase method executes immediately. There is no need to call the SubmitChanges method, and the
execution is not deferred. This gives you the benefit of being able to create the database and begin inserting data

immediately.

Prototypes
The CreateDatabase method has one prototype we will cover.

The Only CreateDatabase Prototype

void CreateDatabase()

This method takes no arguments and returns nothing.

Examples
Again, this is a simple method to demonstrate, and Listing 16-15 contains the code.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

604

Listing 16-15. An Example of the CreateDatabase Method

Northwind db = new Northwind(@"C:\Northwnd.mdf");
db.CreateDatabase();

■ NNote We have intentionally spelled Northwnd without the letter i in Listing 16-15 so that it does not impact a

Northwind (with the letter i) database should you have one.

This code doesn’t produce any screen output, so there are no results to show. However, if we look in
the C:\ directory, we can see the Northwnd.mdf and Northwnd.ldf files. Also, if we look in SQL Server
Management Studio, we can see that the C:\Northwnd.mdf file is attached. This method would be best
combined with the DatabaseExists method. If you attempt to call the CreateDatabase method and
the database already exists, an exception will be thrown. To demonstrate this, merely run the code in
Listing 16-15 a second time, without deleting or detaching it from your SQL Server Management Studio
or Enterprise Manager, and you will get this output:

Unhandled Exception: System.Data.SqlClient.SqlException: Database 'C:\Northwnd.mdf'
already exists. Choose a different database name.
...

Also, don’t make the mistake of assuming you can just delete the two Northwind database files that
were created from the file system to eliminate the database so that you can run the example again. SQL
Server will still have it cataloged. You must delete or detach the database in a proper manner for the
CreateDatabase method to succeed.

You may want to delete or detach that newly created database to prevent confusion at some future
point, or you could just leave it in place for the next example, Listing 16-16, to delete.

DeleteDatabase()
LINQ to SQL gives us the ability to delete a database with the DataContext object’s DeleteDatabase
method. Attempting to delete a database that does not exist will throw an exception, so it would be best
to call this method only after checking for the existence of the database with the DatabaseExists
method.

■ CCaution Unlike most other changes that you make to a database through the DataContext, the
DeleteDatabase method executes immediately. There is no need to call the SubmitChanges method, and the

execution is not deferred.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

605

Prototypes
The DeleteDatabase method has one prototype we will cover.

The Only DeleteDatabase Prototype

void DeleteDatabase()

This method takes no arguments and returns nothing.

Examples
In Listing 16-16, we will delete the database we just created in Listing 16-15.

Listing 16-16. An Example of the DeleteDatabase Method

Northwind db = new Northwind(@"C:\Northwnd.mdf");
db.DeleteDatabase();

This example doesn’t create any screen output when run, as long as the database specified exists,

but after running it, you will find that the two database files that were created when calling the
CreateDatabase method are gone.

Calling this method when the database does not exist will cause the following exception to be
thrown:

Unhandled Exception: System.Data.SqlClient.SqlException: An attempt to attach an
auto-named database for file C:\Northwnd.mdf failed. A database with the same name
exists, or specified file cannot be opened, or it is located on UNC share.
...

CreateMethodCallQuery()
The first thing you need to know about the CreateMethodCallQuery method is that it is a protected
method. This means you are not able to call this method from your application code and that you must
derive a class from the DataContext class to be able to call it.

The CreateMethodCallQuery method is used to call table-valued user-defined functions. The
ExecuteMethodCall method is used to call scalar-valued user-defined functions, and we will discuss it
later in this chapter.

Prototypes
The CreateMethodCallQuery method has one prototype we will cover.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

606

The Only CreateMethodCallQuery Prototype

protected internal IQueryable<T> CreateMethodCallQuery<T>(
 object instance,
 System.Reflection.MethodInfo methodInfo,
 params object[] parameters)

The CreateMethodCallQuery method is passed a reference to the DataContext or

[Your]DataContext object of which the method that is calling the CreateMethodCallQuery method is
a member, the MethodInfo object for that calling method, and a params array of the parameters for the
table-valued user-defined function.

Examples
Because the CreateMethodCallQuery method is protected and can be called only from the
DataContext class or one derived from it, instead of providing an example that actually calls the
CreateMethodCallQuery method, we will discuss the method that SQLMetal generated for the extended
Northwind database’s ProductsUnderThisUnitPrice table-valued user-defined function. Here is that
method:

The SQLMetal-Generated Method Calling CreateMethodCallQuery

[Function(Name="dbo.ProductsUnderThisUnitPrice", IsComposable=true)]
public IQueryable<ProductsUnderThisUnitPriceResult>
 ProductsUnderThisUnitPrice(

 [Parameter(DbType="Money")] System.Nullable<decimal> price)
{
 return this.CreateMethodCallQuery<ProductsUnderThisUnitPriceResult>(
 this, ((MethodInfo)(MethodInfo.GetCurrentMethod())), price);

}

In the previous code, you can see that the ProductsUnderThisUnitPrice method is attributed with

the Function attribute, so we know it is going to call either a stored procedure or a user-defined
function named ProductsUnderThisUnitPrice. Because the IsComposable attribute property is set to
true, we know it is a user-defined function and not a stored procedure. Because the code that was
generated calls the CreateMethodCallQuery method, we know that the specified user-defined function
ProductsUnderThisUnitPrice is a table-valued user-defined function, not a scalar-valued user-
defined function.

For the arguments passed to the CreateMethodCallQuery method, the first argument is a reference
to the derived DataContext class SQLMetal generated. The second argument passed is the current
method’s MethodInfo object. This will allow the CreateMethodCallQuery method access to the
attributes, so it knows the necessary information to call the table-valued user-defined function, such as
its name. The third argument passed to the CreateMethodCallQuery method is the only parameter the
specified user-defined function accepts, which in this case is a price.

The value returned by the call to the CreateMethodCallQuery method will be returned by the
ProductsUnderThisUnitPrice method, and that is a sequence of

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

607

ProductsUnderThisUnitPriceResult objects. SQLMetal was nice enough to generate the
ProductsUnderThisUnitPriceResult class for us as well.

The code we discuss previously shows how to call the CreateMethodCallQuery method, but just to
provide some context, let’s look at an example calling the generated
ProductsUnderThisUnitPriceResult method, so you can see it all in action.

In Listing 16-17, we will make a simple call to the ProductsUnderThisUnitPriceResult method.

Listing 16-17. An Example Calling the ProductsUnderThisUnitPrice Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<ProductsUnderThisUnitPriceResult> results =
 db.ProductsUnderThisUnitPrice(new Decimal(5.50m));

foreach(ProductsUnderThisUnitPriceResult prod in results)
{
 Console.WriteLine("{0} - {1:C}", prod.ProductName, prod.UnitPrice);
}

Here are the results of this example:

Guaranà¡ Fantà¡stica - $4.50
Geitost - $2.50

ExecuteQuery()
There is no doubt that LINQ to SQL is awesome. Using the LINQ standard dot notation or expression
syntax makes crafting LINQ queries fun. But, at one time or another, we think we have all experienced
the desire to just perform a SQL query. Well, you can do that too with LINQ to SQL. In fact, you can do
that and still get back entity objects.

The ExecuteQuery method allows you to specify a SQL query as a string and to even provide
parameters for substitution into the string, just as you would when calling the String.Format method,
and it will translate the query results into a sequence of entity objects.

It’s just that simple. We hear what you are saying. What about SQL injection errors? Doesn’t the
appropriate way to do this require using parameters? Yes, it does. And, the ExecuteQuery method is
handling all that for you! We know you must be saying, “Show us an example, and pronto!”

Prototypes
The ExecuteQuery method has one prototype we will cover.

The Only ExecuteQuery Prototype

IEnumerable<T> ExecuteQuery<T>(string query, params object[] parameters)

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

608

This method takes at least one argument, a SQL query, and zero or more parameters. The query

string and optional parameters work just like the String.Format method. The method returns a
sequence of type T, where type T is an entity class.

Be aware that if you specify the value of a column for a where clause in the query string, you must
enclose char-based type columns with single quotes just as you would if you were making a normal SQL
query. But, if you provide the column’s value as a parameter, there is no need to enclose the parameter
specifier, such as {0}, in single quotes.

For a column in the query to be propagated into an actual entity object, the column’s name must
match one of the entity object’s mapped fields. Of course, you can accomplish this by appending "as
<columnname>" to the actual column name, where <columnname> is a mapped column in the entity
object.

Every mapped field does not need to be returned by the query, but primary keys certainly do. And,
you can retrieve fields in the query that do not map to any mapped field in the entity object, but they will
not get propagated to the entity object.

Examples
For a simple example calling the ExecuteQuery method, in Listing 16-18 we will query the Customers
table.

Listing 16-18. A Simple Example of the ExecuteQuery Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Customer> custs = db.ExecuteQuery<Customer>(
 @"select CustomerID, CompanyName, ContactName, ContactTitle
 from Customers where Region = {0}", "WA");

foreach (Customer c in custs)
{
 Console.WriteLine("ID = {0} : Name = {1} : Contact = {2}",
 c.CustomerID, c.CompanyName, c.ContactName);
}

There isn’t much to this example. Again notice that, because we are using the parameter

substitution feature of the method by specifying "WA" as a parameter instead of hard-coding it in the
query, we do not need to enclose the format specifier in single quotes. Here are the results:

ID = LAZYK : Name = Lazy K Kountry Store : Contact = John Steel
ID = TRAIH : Name = Trail's Head Gourmet Provisioners : Contact = Helvetius Nagy
ID = WHITC : Name = White Clover Markets : Contact = Karl Jablonski

If we want to make that same query, but without using parameter substitution, we would have to
enclose the "WA" portion in single quotes like a normal SQL query. Listing 16-19 contains the code.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

609

Listing 16-19. Another Simple Example of the ExecuteQuery Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Customer> custs = db.ExecuteQuery<Customer>(
 @"select CustomerID, CompanyName, ContactName, ContactTitle
 from Customers where Region = 'WA'");

foreach (Customer c in custs)
{
 Console.WriteLine("ID = {0} : Name = {1} : Contact = {2}",
 c.CustomerID, c.CompanyName, c.ContactName);
}

In case it is hard to detect, WA is enclosed in single quotes in that query string. The results of this

code are the same as for the previous example:

ID = LAZYK : Name = Lazy K Kountry Store : Contact = John Steel
ID = TRAIH : Name = Trail's Head Gourmet Provisioners : Contact = Helvetius Nagy
ID = WHITC : Name = White Clover Markets : Contact = Karl Jablonski

In addition to this, you can append a specified column name if the real column name doesn’t match
the column name in the database. Since you can perform joins in the query string, you could query
columns with a different name from a different table but specify their name as one of the mapped fields
in the entity class. Listing 16-20 contains an example.

Listing 16-20. An Example of the ExecuteQuery Method Specifying a Mapped Field Name

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Customer> custs = db.ExecuteQuery<Customer>(
 @"select CustomerID, Address + ', ' + City + ', ' + Region as Address
 from Customers where Region = 'WA'");

foreach (Customer c in custs)
{
 Console.WriteLine("Id = {0} : Address = {1}",
 c.CustomerID, c.Address);
}

The interesting part of this example is that we are concatenating multiple database columns and

string literals and specifying a mapped field name to get the address, city, and region into the single
Address member of the entity object. In this case, all the fields come from the same table, but they could
have come from a join on another table. Here are the results:

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

610

Id = LAZYK : Address = 12 Orchestra Terrace, Walla Walla, WA
Id = TRAIH : Address = 722 DaVinci Blvd., Kirkland, WA
Id = WHITC : Address = 305 - 14th Ave. S. Suite 3B, Seattle, WA

Of course, if you utilize this type of chicanery, don’t forget that if one of those returned entity objects
is modified and the SubmitChanges method is called, you could end up with some database records
containing questionable data. But used properly, this could be a very handy technique.

Translate()
The Translate method is similar to the ExecuteQuery method in that it translates the results of a SQL
query into a sequence of entity objects. Where it differs is that instead of passing a string containing a
SQL statement, you pass it an object of type System.Data.Common.DbDataReader, such as a
SqlDataReader. This method is useful for integrating LINQ to SQL code into existing ADO.NET code

Prototypes
The Translate method has one prototype we will cover.

The Only Translate Prototype

IEnumerable<T> Translate<T>(System.Data.Common.DbDataReader reader)

You pass the Translate method an object of type System.Data.Common.DbDataReader, and the

Translate method returns a sequence of the specified entity objects.

Examples
In Listing 16-21, we will create and execute a query using ADO.NET. We will then use the Translate
method to translate the results from the query into a sequence of Customer entity objects. Because
Listing 16-21 is somewhat more complex than typical, we will explain it as we go.

Listing 16-21. An Example of the Translate Method

System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated Security=SSPI;");

string cmd = @"select CustomerID, CompanyName, ContactName, ContactTitle
 from Customers where Region = 'WA'";

System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

611

sqlComm.Connection = sqlConn;
try
{
 sqlConn.Open();
 System.Data.SqlClient.SqlDataReader reader = sqlComm.ExecuteReader();

For this example, let’s pretend all the previous code already existed. Pretend this is legacy code that

we need to update, and we would like to take advantage of LINQ to accomplish our new task. As you can
see, there are no references to LINQ in the previous code. A SqlConnection is established, a query is
formed, a SqlCommand is created, the connection is opened, and the query is performed—all pretty
much a run-of-the-mill ADO.NET database query. Now, let’s add some LINQ code to do something.

 Northwind db = new Northwind(sqlConn);

 IEnumerable<Customer> custs = db.Translate<Customer>(reader);

 foreach (Customer c in custs)
 {
 Console.WriteLine("ID = {0} : Name = {1} : Contact = {2}",
 c.CustomerID, c.CompanyName, c.ContactName);
 }

In the previous code, we instantiate our Northwind DataContext using our ADO.NET

SqlConnection. We then call the Translate method, passing the already created reader so that the
query results can be converted into a sequence of entity objects that we can then enumerate and display
the results of.

Normally, since this is legacy code, there would be some more code doing something with the
results, but for this example, there is no point to have that code. All that is left is the method cleanup
code.

}
finally
{
 sqlComm.Connection.Close();
}

The previous code simply closes the connection. This example demonstrates how nicely LINQ to

SQL can play with ADO.NET. Let’s take a look at the results of Listing 16-21:

ID = LAZYK : Name = Lazy K Kountry Store : Contact = John Steel
ID = TRAIH : Name = Trail's Head Gourmet Provisioners : Contact = Helvetius Nagy
ID = WHITC : Name = White Clover Markets : Contact = Karl Jablonski

ExecuteCommand()
Like the ExecuteQuery method, the ExecuteCommand method allows you to specify an actual SQL
statement to execute against the database. This means you can use it to execute insert, update, or delete

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

612

statements, as well as execute stored procedures. Also, like with the ExecuteQuery method, you can
pass parameters into the method.

One thing to be aware of when calling the ExecuteCommand method is that it executes immediately,
and the SubmitChanges method does not need to be called.

Prototypes
The ExecuteCommand method has one prototype we will cover.

The Only ExecuteCommand Prototype

int ExecuteCommand(string command, params object[] parameters)

This method accepts a command string and zero or more optional parameters and returns an integer

indicating how many rows were affected by the query.
Be aware that if you specify the value of a column for a where clause in the command string itself, you

must enclose char-based type columns with single quotes just as you would if you were making a
normal SQL query. But, if you provide the column’s value as a parameter, there is no need to enclose the
parameter specifier, such as {0}, in single quotes.

Examples
In Listing 16-22, we will insert a record using the ExecuteCommand method. Since we always reverse any
changes we make to the database so subsequent examples are not affected, we will also use the
ExecuteCommand method to delete the inserted record.

Listing 16-22. An Example of the ExecuteCommand Method Used to Insert and Delete a Record

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Console.WriteLine("Inserting customer ...");
int rowsAffected = db.ExecuteCommand(
 @"insert into Customers values ({0}, 'Lawn Wranglers',
 'Mr. Abe Henry', 'Owner', '1017 Maple Leaf Way', 'Ft. Worth', 'TX',
 '76104', 'USA', '(800) MOW-LAWN', '(800) MOW-LAWO')",
 "LAWN");

Console.WriteLine("Insert complete.{0}", System.Environment.NewLine);

Console.WriteLine("There were {0} row(s) affected. Is customer in database?",
 rowsAffected);

Customer cust = (from c in db.Customers
 where c.CustomerID == "LAWN"

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

613

 select c).DefaultIfEmpty<Customer>().Single<Customer>();

Console.WriteLine("{0}{1}",
 cust != null ?
 "Yes, customer is in database." : "No, customer is not in database.",
 System.Environment.NewLine);

Console.WriteLine("Deleting customer ...");
rowsAffected =
 db.ExecuteCommand(@"delete from Customers where CustomerID = {0}", "LAWN");

Console.WriteLine("Delete complete.{0}", System.Environment.NewLine);

As you can see, there is not much to this example. We call the ExecuteCommand method and pass the

command string plus any parameters. We then perform a query using LINQ to SQL just to make sure the
record is indeed in the database and display the results of the query to the console. To clean up the
database, we call the ExecuteCommand method to delete the inserted record. This code produces the
following results:

Inserting customer ...
Insert complete.

There were 1 row(s) affected. Is customer in database?
Yes, customer is in database.

Deleting customer ...
Delete complete.

ExecuteMethodCall()
The first thing you need to know about the ExecuteMethodCall method is that it is a protected method.
This means you are not able to call this method from your application code and that you must derive a
class from the DataContext class to be able to call it.

The ExecuteMethodCall method is used to call stored procedures and scalar-valued user-defined
functions. To call table-valued user-defined functions, please read the section in this chapter about the
CreateMethodCallQuery method.

Prototypes
The ExecuteMethodCall method has one prototype we will cover.

The Only ExecuteMethodCall Prototype

protected internal IExecuteResult ExecuteMethodCall(
 object instance,

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

614

 System.Reflection.MethodInfo methodInfo,
 params object[] parameters)

The ExecuteMethodCall method is passed a reference to the DataContext or [Your]DataContext

object of which the method that is calling the ExecuteMethodCall method is a member, the
MethodInfo object for that calling method, and a params array of the parameters for the stored
procedure or scalar-valued user-defined function.

Since we must pass a MethodInfo object, notice that our method must be decorated with the
appropriate stored procedure or user-defined function attribute and attribute properties. LINQ to SQL
then uses the MethodInfo object to access the method’s Function attribute to obtain the name of the
stored procedure or scalar-valued user-defined function. It also uses the MethodInfo object to obtain
the parameter names and types.

The ExecuteMethodCall method returns an object implementing the IExecuteResult interface.
We cover this interface in Chapter 15.

If you use SQLMetal to generate your entity classes, it will create entity class methods that call the
ExecuteMethodCall method for the database’s stored procedures if you specify the /sprocs option,
and for the database’s user-defined functions if you specify the /functions option.

Examples
Before we discuss the code for the first example, we want to discuss the method named
CustomersCountByRegion that SQLMetal generated to call the database’s Customers Count By Region
stored procedure. Here is what the generated method looks like:

Using the ExecuteMethodCall Method to Call a Stored Procedure

[Function(Name="dbo.Customers Count By Region")]
[return: Parameter(DbType="Int")]
public int CustomersCountByRegion([Parameter(DbType="NVarChar(15)")] string param1)
{
 IExecuteResult result =
 this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 param1);
 return ((int)(result.ReturnValue));
}

As you can see, the CustomersCountByRegion method is passed a string parameter that is passed

as a parameter into the ExecuteMethodCall method, which is passed as a parameter to the Customers
Count By Region stored procedure.

The ExecuteMethodCall method returns a variable implementing IExecuteResult. To obtain the
integer return value, the CustomersCountByRegion method merely references the returned object’s
ReturnValue property and casts it to an int.

Now, let’s take a look at Listing 16-23 to see some code calling the generated
CustomersCountByRegion method.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

615

Listing 16-23. An Example Calling the Generated CustomersCountByRegion Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");
int rc = db.CustomersCountByRegion("WA");
Console.WriteLine("There are {0} customers in WA.", rc);

This is a very trivial example with no surprises. Here is the result:

There are 3 customers in WA.

Now, we want to discuss calling a stored procedure that returns an output parameter. Again, looking
at the SQLMetal-generated entity classes for the Northwind database, we will discuss the
CustOrderTotal method SQLMetal generated to call the CustOrderTotal stored procedure:

An Example Using the ExecuteMethodCall Method to Call a Stored Procedure That Returns an Output

Parameter

[Function(Name="dbo.CustOrderTotal")]
[return: Parameter(DbType="Int")]
public int CustOrderTotal(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID,
 [Parameter(Name="TotalSales", DbType="Money")] ref System.Nullable<decimal>
 totalSales)
{
 IExecuteResult result =
 this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 customerID,
 totalSales);

 totalSales = ((System.Nullable<decimal>)(result.GetParameterValue(1)));
 return ((int)(result.ReturnValue));
}

Notice that the CustOrderTotal method’s second parameter, totalSales, specifies the ref

keyword. This is a clue that the stored procedure is going to return this value. Notice that to get the value
after the call to the ExecuteMethodCall method, the code calls the GetParameterValue method on the
returned object implementing IExecuteResult and passes it 1, since we are interested in the second
parameter. Listing 16-24 calls the CustOrderTotal method.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

616

Listing 16-24. An Example Calling the Generated CustOrderTotal Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");
decimal? totalSales = 0;
int rc = db.CustOrderTotal("LAZYK", ref totalSales);
Console.WriteLine("Customer LAZYK has total sales of {0:C}.", totalSales);

Notice that we had to specify the ref keyword for the second parameter, totalSales. Here is the

result:

Customer LAZYK has total sales of $357.00.

Now, let’s take a look at an example that calls a stored procedure that returns its results in a single
shape. Since the Northwind database contains a stored procedure named Customers By City that
returns a single shape, that is the stored procedure we will discuss.

Let’s look at the SQLMetal-generated method that calls this stored procedure by calling the
ExecuteMethodCall method.

An Example Using the ExecuteMethodCall Method to Call a Stored Procedure That Returns a Single

Shape

[Function(Name="dbo.Customers By City")]
public ISingleResult<CustomersByCityResult>
 CustomersByCity([Parameter(DbType="NVarChar(20)")] string param1)
{
 IExecuteResult result =
 this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 param1);

 return ((ISingleResult<CustomersByCityResult>)(result.ReturnValue));
}

Notice that the generated method returns an object of type

ISingleResult<CustomersByCityResult>. The generated method obtains this object by casting the
returned object’s ReturnValue property to that type. SQLMetal was kind enough to even generate the
CustomersByCityResult class for us as well, although we won’t discuss it here. Listing 16-25 contains
code calling the generated CustomersByCity method.

Listing 16-25. An Example Calling the Generated CustomersByCity Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

617

ISingleResult<CustomersByCityResult> results = db.CustomersByCity("London");

foreach (CustomersByCityResult cust in results)
{
 Console.WriteLine("{0} - {1} - {2} - {3}", cust.CustomerID, cust.CompanyName,
 cust.ContactName, cust.City);
}

As you can see, we enumerate through the returned object of type

ISingleResult<CustomersByCityResult> just as though it is a LINQ sequence. This is because it is
derived from IEnumerable<T>, as we mentioned in Chapter 15. We then display the results to the
console. Here are the results:

AROUT - Around the Horn - Thomas Hardy - London
BSBEV - B's Beverages - Victoria Ashworth - London
CONSH - Consolidated Holdings - Elizabeth Brown - London
EASTC - Eastern Connection - Ann Devon - London
NORTS - North/South - Simon Crowther - London
SEVES - Seven Seas Imports - Hari Kumar – London

Now let’s take a look at some examples returning multiple result shapes. For those unfamiliar with
the term shape in this context, the shape of the results is dictated by the types of data that are returned.
When a query returns a customer’s ID and name, this is a shape. If a query returns an order ID, order
date, and shipping code, this is yet another shape. If a query returns both, a record containing a
customer’s ID and name and another, or perhaps more than one, record containing the order ID, order
date, and shipping code, this query returns multiple result shapes. Since stored procedures have this
ability, LINQ to SQL needs a way to address this, and it has one.

For the first example returning multiple shapes, let’s take the scenario where the shape of the result
is conditional. Fortunately, the extended Northwind database has a stored procedure of this type. The
name of that stored procedure is Whole Or Partial Customers Set. SQLMetal generated a method to
call that stored procedure for us named WholeOrPartialCustomersSet. Here it is:

An Example Using the ExecuteMethodCall Method to Call a Stored Procedure That Conditionally

Returns Different Shapes

[Function(Name="dbo.Whole Or Partial Customers Set")]
[ResultType(typeof(WholeOrPartialCustomersSetResult1))]
[ResultType(typeof(WholeOrPartialCustomersSetResult2))]
public IMultipleResults WholeOrPartialCustomersSet(
 [Parameter(DbType="Int")] System.Nullable<int> param1)
{
 IExecuteResult result =
 this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

618

 param1);

 return ((IMultipleResults)(result.ReturnValue));
}

Notice that there are two ResultType attributes specifying the two possible result shapes. SQLMetal

was also kind enough to generate the two specified classes for us. The developer calling the
WholeOrPartialCustomersSet method must be aware that the stored procedure returns a different
result shape based on the value of param1. Because we have examined the stored procedure, we know
that if param1 is equal to 1, the stored procedure will return all fields from the Customers table and
therefore will return a sequence of objects of type WholeOrPartialCustomersSetResult1. If the value
of param1 is equal to 2, an abbreviated set of fields will be returned in a sequence of objects of type
WholeOrPartialCustomersSetResult2.

Also notice that the return type from the WholeOrPartialCustomersSet method is
IMultipleResults. The method obtains this by casting the ReturnValue property of the object
returned by the ExecuteMethodCall method to an IMultipleResults. We discuss this interface in
Chapter 15.

In Listing 16-26, we provide an example calling the WholeOrPartialCustomersSet method.

Listing 16-26. An Example Calling the Generated WholeOrPartialCustomersSet Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IMultipleResults results = db.WholeOrPartialCustomersSet(1);

foreach (WholeOrPartialCustomersSetResult1 cust in
 results.GetResult<WholeOrPartialCustomersSetResult1>())
{
 Console.WriteLine("{0} - {1} - {2} - {3}", cust.CustomerID, cust.CompanyName,
 cust.ContactName, cust.City);
}

Notice that the results are of type IMultipleResults. We passed the value 1, so we know we will be

getting a sequence of type WholeOrPartialCustomersSetResult1. Also notice that to get to the results,
we call the GetResult<T> method on the IMultipleResults variable, where type T is the type of the
returned data. Here are the results:

LAZYK - Lazy K Kountry Store - John Steel - Walla Walla
TRAIH - Trail's Head Gourmet Provisioners - Helvetius Nagy – Kirkland
WHITC - White Clover Markets - Karl Jablonski – Seattle

That stored procedure retrieves only those customers whose region is "WA". Had we passed a value
of 2 when we called the WholeOrPartialCustomersSet method, we would have gotten a sequence of
type WholeOrPartialCustomersSetResult2, so every place in the preceding code where we specified a

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

619

type of WholeOrPartialCustomersSetResult1 would have to be changed to
WholeOrPartialCustomersSetResult2.

This just leaves us with the case of a stored procedure returning multiple shapes for the same call.
Here again, the extended Northwind database has just such a stored procedure, and its name is Get
Customer And Orders. First, let’s look at the method SQLMetal generated to call that stored procedure:

An Example Using the ExecuteMethodCall Method to Call a Stored Procedure That Returns Multiple

Shapes

[Function(Name="dbo.Get Customer And Orders")]
[ResultType(typeof(GetCustomerAndOrdersResult1))]
[ResultType(typeof(GetCustomerAndOrdersResult2))]
public IMultipleResults GetCustomerAndOrders(
 [Parameter(Name="CustomerID", DbType="NChar(5)")] string customerID)
{
 IExecuteResult result =
 this.ExecuteMethodCall(
 this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())),
 customerID);

 return ((IMultipleResults)(result.ReturnValue));
}

As you can see, the return type of the method is IMultipleResults. Since the stored procedure

returns multiple result shapes, it is our responsibility to know the order of the shapes being returned.
Because we have examined the Get Customer And Orders stored procedure, we know it will return the
record from the Customers table first, followed by the related records from the Orders table.

Listing 16-27 calls the generated method from the previous code.

Listing 16-27. An Example Calling the Generated GetCustomerAndOrders Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IMultipleResults results = db.GetCustomerAndOrders("LAZYK");

GetCustomerAndOrdersResult1 cust =
 results.GetResult<GetCustomerAndOrdersResult1>().Single();

Console.WriteLine("{0} orders:", cust.CompanyName);

foreach (GetCustomerAndOrdersResult2 order in
 results.GetResult<GetCustomerAndOrdersResult2>())
{
 Console.WriteLine("{0} - {1}", order.OrderID, order.OrderDate);
}

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

620

Because we know the stored procedure will return a single recording matching type

GetCustomerAndOrdersResult1, we know we can call the Single operator on the sequence containing
that type as long as we are confident the customer exists for the passed CustomerID. We could always
call the SingleOrDefault operator if we were not confident. We also know that after the single
GetCustomerAndOrdersResult1 object is returned, zero or more GetCustomerAndOrdersResult2
objects will be returned, so we enumerate through them displaying the data we are interested in. Here
are the results:

Lazy K Kountry Store orders:
10482 - 3/21/1997 12:00:00 AM
10545 - 5/22/1997 12:00:00 AM

This completes the stored procedure examples for the ExecuteMethodCall method. At the
beginning of the section on the ExecuteMethodCall method, we said this method was used to call
scalar-valued user-defined functions. So, let’s take a look at an example calling a scalar-valued user-
defined function.

First, let’s look at a SQLMetal-generated method calling the ExecuteMethodCall method to call a
scalar-valued user-defined function:

An Example Using the ExecuteMethodCall Method to Call a Scalar-Valued User-Defined Function

[Function(Name="dbo.MinUnitPriceByCategory", IsComposable=true)]
[return: Parameter(DbType="Money")]
public System.Nullable<decimal> MinUnitPriceByCategory(
 [Parameter(DbType="Int")] System.Nullable<int> categoryID)
{
 return ((System.Nullable<decimal>)(this.ExecuteMethodCall(this,
 ((MethodInfo)(MethodInfo.GetCurrentMethod())), categoryID).ReturnValue));
}

Notice that the scalar value returned by the stored procedure is obtained by referencing the
ReturnValue property of the object returned by the ExecuteMethodCall method.

We could create a simple example calling the generated MinUnitPriceByCategory method.
However, all the fun of a user-defined function comes when embedding it in a query like it was a built-in
SQL function.

Let’s take a look at an example, Listing 16-28, that embeds the MinUnitPriceByCategory method
in a query to identify all products that are the least expensive in their category.

Listing 16-28. An Example Embedding a User-Defined Function Within a Query

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Product> products = from p in db.Products
 where p.UnitPrice ==
 db.MinUnitPriceByCategory(p.CategoryID)

 select p;

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

621

foreach (Product p in products)
{
 Console.WriteLine("{0} - {1:C}", p.ProductName, p.UnitPrice);
}

In this example, we embed the call to the MinUnitPriceByCategory method—which in turn causes

a call to the scalar-valued user-defined function of the same name—in the where clause. Here are the
results:

Aniseed Syrup - $10.00
Konbu - $6.00
Teatime Chocolate Biscuits - $9.20
Guaranà¡ Fantà¡stica - $4.50
Geitost - $2.50
Filo Mix - $7.00
Tourtière - $7.45
Longlife Tofu - $10.00

GetCommand()
One potentially useful method is the GetCommand method. When the GetCommand method is called on
the DataContext object and passed a LINQ to SQL IQueryable, an object of type
System.Data.Common.DbCommand is returned. The returned DbCommand object contains access to several
key components that will be used by the passed query.

By retrieving the DbCommand object with the GetCommand method, you can obtain a reference to the
CommandText, CommandTimeout, Connection, Parameters, and Transaction objects, as well as others,
for the passed query. This allows you to not only examine those objects but to also modify them from
their default values without modifying the same values for all queries that will be performed by the
current instance of the DataContext. Perhaps for a particular query, you would like to increase the
CommandTimeout value, but you don’t want all the queries executed with the DataContext object to be
allowed this extended timeout period.

Prototypes
The GetCommand method has one prototype we will cover.

The Only GetCommand Prototype

System.Data.Common.DbCommand GetCommand(IQueryable query)

This method is passed a LINQ to SQL query in the form of an IQueryable and returns a

System.Data.Common.DbCommand for the passed LINQ query.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

622

Examples
In Listing 16-29, we will obtain the DbCommand object to change the CommandTimeout for a query and to
display the CommandText, which will be the SQL query itself.

Listing 16-29. An Example of the GetCommand Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<Customer> custs = from c in db.Customers
 where c.Region == "WA"
 select c;

System.Data.Common.DbCommand dbc = db.GetCommand(custs);

Console.WriteLine("Query's timeout is: {0}{1}", dbc.CommandTimeout,
 System.Environment.NewLine);

dbc.CommandTimeout = 1;

Console.WriteLine("Query's SQL is: {0}{1}",
 dbc.CommandText, System.Environment.NewLine);

Console.WriteLine("Query's timeout is: {0}{1}", dbc.CommandTimeout,
 System.Environment.NewLine);

foreach (Customer c in custs)
{
 Console.WriteLine("{0}", c.CompanyName);
}

There isn’t much to this example. We merely declare a query and pass it to the GetCommand method.

We then display the CommandTimeout value for the DbCommand object that was returned. Next, we set the
CommandTimeout value to 1 and display the SQL query itself and the new CommandTimeout value. Last,
we enumerate through the results returned by the query.

Here are the results of the code running on our machine:

Query's timeout is: 30

Query's SQL is: SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[Region] = @p0

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

623

Query's timeout is: 1

Lazy K Kountry Store
Trail's Head Gourmet Provisioners
White Clover Markets

Of course, if that query takes too long to execute on your machine, the query could time out, and
you would get different results.

GetChangeSet()
Sometimes, it may be useful to be able to obtain a list of all the entity objects that will be inserted,
changed, or deleted once the SubmitChanges method is called. The GetChangeSet method does just
that.

Prototypes
The GetChangeSet method has one prototype we will cover.

The Only GetChangeSet Prototype

ChangeSet GetChangeSet()

This method is passed nothing and returns a ChangeSet object. The ChangeSet object contains

collections of type IList<T> for the inserted, modified, and deleted entity objects, where type T is an
entity class. These collection properties are named Inserts, Updates, and Deletes, respectively.

You can then enumerate through each of these collections to examine the contained entity objects.

Examples
In Listing 16-30, we will modify, insert, and delete an entity object. We will then retrieve the ChangeSet
using the GetChangeSet method and enumerate through each collection.

Listing 16-30. An Example of the GetChangeSet Method

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = (from c in db.Customers
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();
cust.Region = "Washington";

db.Customers.InsertOnSubmit(
 new Customer

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

624

 {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
 });

Customer cust2 = (from c in db.Customers
 where c.CustomerID == "LONEP"
 select c).Single<Customer>();
db.Customers.DeleteOnSubmit(cust2);
cust2 = null;

ChangeSet changeSet = db.GetChangeSet();

Console.WriteLine("{0}First, the added entities:", System.Environment.NewLine);
foreach (Customer c in changeSet.Inserts)
{
 Console.WriteLine("Customer {0} will be added.", c.CompanyName);
}

Console.WriteLine("{0}Second, the modified entities:", System.Environment.NewLine);
foreach (Customer c in changeSet.Updates)
{
 Console.WriteLine("Customer {0} will be updated.", c.CompanyName);
}

Console.WriteLine("{0}Third, the removed entities:", System.Environment.NewLine);
foreach (Customer c in changeSet.Deletes)
{
 Console.WriteLine("Customer {0} will be deleted.", c.CompanyName);
}

In the previous example, we first modify the LAZYK customer’s Region. We then insert a customer,

LAWN, and delete customer LONEP. Next, we obtain the ChangeSet by calling the GetChangeSet method.
Then, we enumerate through each collection—Inserts, Updates, and Deletes—and display each
entity object in the respective collection.

Here are the results:

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

625

First, the added entities:
Customer Lawn Wranglers will be added.

Second, the modified entities:
Customer Lazy K Kountry Store will be updated.

Third, the removed entities:
Customer Lonesome Pine Restaurant will be deleted.

Of course, in the preceding example, we can enumerate through each of the collections assuming
every element is a Customer object, because we know they are. In many cases, though, there could be
more than one type of object in a collection, and you can’t make that assumption. In these situations,
you will have to write your enumeration code to handle multiple data types. The OfType operator could
be helpful for this purpose.

GetTable()
The GetTable method is used to get a reference to a Table sequence from a DataContext for a specific
mapped database table. This method is typically used only when the actual DataContext class is used,
as opposed to [Your]DataContext. Using [Your]DataContext class is the preferred technique,
because it will have a Table sequence property already having a reference for each mapped table.

Prototypes
The GetTable method has two prototypes we will cover.

The First GetTable Prototype

Table<T> GetTable<T>()

This method is provided a specified mapped entity type T and returns a Table sequence of type T.

The Second GetTable Prototype

ITable GetTable(Type type)

This method is passed a Type of entity object and returns the interface to the table. You can then use

this ITable interface as you desire. If you want to use the ITable interface as though it were a table, be
sure to cast it to an IQueryable<T>.

Examples
For an example of the first prototype, in Listing 16-31, we will use the standard DataContext class, as
opposed to our [Your]DataContext class, Northwind, to retrieve a specific customer.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

626

Listing 16-31. An Example of the First GetTable Prototype

DataContext db =
 new DataContext(@"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind");

Customer cust = (from c in db.GetTable<Customer>()
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

Console.WriteLine("Customer {0} retrieved.", cust.CompanyName);

Here, we call the GetTable method to get a reference to the Customer table so that we can retrieve a

specific customer. Here are the results:

Customer Lazy K Kountry Store retrieved.

For an example of the second prototype of the GetTable method, we will use a DataContext
instead of our [Your]DataContext. Listing 16-32 will be the same basic example as the previous except
using the second prototype.

Listing 16-32. An Example of the Second GetTable Prototype

DataContext db =
 new DataContext(@"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind");

Customer cust = (from c in ((IQueryable<Customer>)db.GetTable(typeof(Customer)))
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

Console.WriteLine("Customer {0} retrieved.", cust.CompanyName);

It should come as no surprise that the results for Listing 16-32 are the same as for Listing 16-31:

Customer Lazy K Kountry Store retrieved.

Refresh()
The Refresh method allows you to manually refresh entity objects from the database. In some situations,
this is done for you when you call the DataContext object’s ChangeConflicts collection’s ResolveAll
method if concurrency conflicts occur during a call to the SubmitChanges method. However, there may
be situations where you will never call the SubmitChanges method but want to get updates from the
database.

An example might be an application that displays read-only type status data for some entity, system,
or process. You may want the data refreshed from the database on some interval of time. The Refresh
method could be used for this purpose.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

627

With the Refresh method, you can refresh a single entity object, or a sequence of entity objects,
meaning the results of a LINQ to SQL query.

Prototypes
The Refresh method has three prototypes we will cover.

The First Refresh Prototype

void Refresh(RefreshMode mode, object entity)

This method takes a refresh mode and a single entity object and returns nothing.

The Second Refresh Prototype

void Refresh(RefreshMode mode, params object[] entities)

This method takes a refresh mode and a params array of entity objects and returns nothing.

The Third Refresh Prototype

void Refresh(RefreshMode mode, System.Collections.IEnumerable entities)

This method takes a refresh mode and a sequence of entity objects and returns nothing.
The RefreshMode enumeration has three possible values: KeepChanges, KeepCurrentValues, and

OverwriteCurrentValues. The Visual Studio documentation for the RefreshMode enumeration defines
these values as outlined in Table 16-1.

Tab le 1 6- 1. The RefreshMode Enumeration

Member name Description

KeepCurrentValues Forces the Refresh method to swap the original value with the
values retrieved from the database

KeepChanges Forces the Refresh method to keep the current value that has
been changed but updates the other values with the database
values

OverwriteCurrentValues Forces the Refresh method to override all the current values with
the values from the database

The behavior of each of these settings is discussed in more detail in Chapter 17.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

628

Examples
For an example of the first prototype, in Listing 16-33, we will query a customer using LINQ to SQL and
display its contact name and contact title. We will then change that customer’s contact name in the
database using ADO.NET. We will change the contact title in the entity object. Just to convince you that
the current entity object is not aware of the change to the database but does have the changed contact
title we just made, we will display the entity’s contact name and contact title again, and you will see the
contact name is unchanged, and the contact title is changed.

We will then call the Refresh method with a RefreshMode of KeepChanges and display the entity
object’s contact name and contact title once more, and you will see that it does indeed have the new
value of the contact name from the database, while at the same time maintaining our change to the
contact title.

We will then reset the contact name back to its original value just so the example can be run
multiple times. Listing 16-33 shows the code.

Listing 16-33. An Example of the First Refresh Method Prototype

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = (from c in db.Customers
 where c.CustomerID == "GREAL"
 select c).Single<Customer>();

Console.WriteLine("Customer's original name is {0}, ContactTitle is {1}.{2}",
 cust.ContactName, cust.ContactTitle, System.Environment.NewLine);

ExecuteStatementInDb(String.Format(
 @"update Customers set ContactName = 'Brad Radaker' where CustomerID =
'GREAL'"));

cust.ContactTitle = "Chief Technology Officer";

Console.WriteLine("Customer's name before refresh is {0}, ContactTitle is {1}.{2}",
 cust.ContactName, cust.ContactTitle, System.Environment.NewLine);

db.Refresh(RefreshMode.KeepChanges, cust);

Console.WriteLine("Customer's name after refresh is {0}, ContactTitle is {1}.{2}",
 cust.ContactName, cust.ContactTitle, System.Environment.NewLine);

// we need to reset the changed values so that the code can be run
// more than once.
Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);
ExecuteStatementInDb(String.Format(
 @"update Customers set ContactName = 'John Steel' where CustomerID = 'GREAL'"));

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

629

In the previous code, we make a LINQ to SQL query to obtain a reference to the Customer object.
We then display that Customer object’s ContactName and ContactTitle.

Next, we update that customer’s ContactName in the database using ADO.NET and update the
ContactTitle on our retrieved Customer entity object. At this point, our Customer entity object is
unaware that the ContactName has been changed in the database, and we prove this by displaying the
Customer object’s ContactName and ContactTitle to the console.

Then, we call the RefreshMethod with the KeepChanges RefreshMode. This should cause any
Customer object properties that have been changed in the database to be loaded into our entity object as
long as we have not changed them. In this case, since the ContactName has been changed in the
database, it should be refreshed from the database.

We then display the Customer object’s ContactName and ContactTitle, and this should show the
ContactName from the database and the ContactTitle we changed in our entity object.

Last, we clean up the database so the example can be run again and no subsequent examples are
affected.

Let’s take a look at the results of Listing 16-33:

Customer's original name is John Steel, ContactTitle is Marketing Manager.

Executing SQL statement against database with ADO.NET ...
Database updated.
Customer's name before refresh is John Steel, ContactTitle is Chief Technology
Officer.

Customer's name after refresh is Brad Radaker, ContactTitle is Chief Technology
Officer.

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see, the entity object is not aware that we changed the ContactName to "Brad Radaker"
in the database before we called the Refresh method, but once we call the Refresh method, it is.

For an example of the second prototype, in Listing 16-34, we will retrieve the customers whose
region is "WA" using LINQ to SQL. We will enumerate through the returned sequence of Customer
objects and display their CustomerID, Region, and Country. Then, using ADO.NET, we will update the
Country field for each customer in the database whose region is "WA". At this point, the value for the
Country field for those customers is different in the database than it is in the entity objects that have
been retrieved. We will enumerate through the sequence of retrieved customers again just to prove that
the entity objects are unaware of the change to the Region field in the database.

Next, we will call the ToArray operator on the sequence of Customer objects to obtain an array
containing Customer objects. We then call the Refresh method passing a RefreshMode of KeepChanges
and pass the first, second, and third elements of the array of Customer objects.

We then enumerate through the sequence of Customer entity objects one last time displaying each
Customer object’s CustomerID, Region, and Country to prove that the Country field has indeed been
refreshed from the database.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

630

Of course, we still have to restore the database to its original state, so we then use ADO.NET to set
the customer’s Country back to its original value in the database.

Here is the code for Listing 16-34.

Listing 16-34. An Example of the Second Refresh Method Prototype

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Customer> custs = (from c in db.Customers
 where c.Region == "WA"
 select c);

Console.WriteLine("Entity objects before ADO.NET change and Refresh() call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);
}

Console.WriteLine("{0}Updating customers' country to United States in ADO.NET...",
 System.Environment.NewLine);
ExecuteStatementInDb(String.Format(
 @"update Customers set Country = 'United States' where Region = 'WA'"));
Console.WriteLine("Customers' country updated.{0}", System.Environment.NewLine);

Console.WriteLine("Entity objects after ADO.NET change but before Refresh()
call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);
}

Customer[] custArray = custs.ToArray();

Console.WriteLine("{0}Refreshing params array of customer entity objects ...",
 System.Environment.NewLine);
db.Refresh(RefreshMode.KeepChanges, custArray[0], custArray[1], custArray[2]);

Console.WriteLine("Params array of Customer entity objects refreshed.{0}",
 System.Environment.NewLine);

Console.WriteLine("Entity objects after ADO.NET change and Refresh() call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);
}

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

631

// We need to reset the changed values so that the code can be run
// more than once.
Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);
ExecuteStatementInDb(String.Format(
 @"update Customers set Country = 'USA' where Region = 'WA'"));

The previous code doesn’t start getting interesting until the call to the ToArray operator. Once we

obtain the array of Customer objects, we call the RefreshMethod and pass custArray[0],
custArray[1], and custArray[2].

Let’s take a look at the results:

Entity objects before ADO.NET change and Refresh() call:
Customer LAZYK's region is WA, country is USA.
Customer TRAIH's region is WA, country is USA.
Customer WHITC's region is WA, country is USA.

Updating customers' country to United States in ADO.NET...
Executing SQL statement against database with ADO.NET ...
Database updated.
Customers' country updated.

Entity objects after ADO.NET change but before Refresh() call:
Customer LAZYK's region is WA, country is USA.
Customer TRAIH's region is WA, country is USA.
Customer WHITC's region is WA, country is USA.

Refreshing params array of customer entity objects ...
Params array of Customer entity objects refreshed.

Entity objects after ADO.NET change and Refresh() call:
Customer LAZYK's region is WA, country is United States.
Customer TRAIH's region is WA, country is United States.
Customer WHITC's region is WA, country is United States.

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see in the previous results, the changes we made to the Country field in the database are
not reflected in the Customer entity objects until we call the Refresh method.

In Listing 16-34, each entity object we refreshed was of the same data type, Customer. For the
second prototype of the Refresh method, it is not necessary that every entity object passed be the same
data type. We could have passed entity objects of different data types. In the case of Listing 16-34, it
would have actually been easier if we could have just passed a sequence of entity objects to the Refresh

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

632

method, because a sequence is what we had. Fortunately, the third prototype of the Refresh method
allows you to pass a sequence.

So, for an example of the third prototype, in Listing 16-35 we will use the same basic code as Listing
16-34, except instead of creating an array and passing explicitly stated elements to the Refresh method,
we will pass the sequence of retrieved Customer objects.

Listing 16-35. An Example of the Third Refresh Method Prototype

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IEnumerable<Customer> custs = (from c in db.Customers
 where c.Region == "WA"
 select c);

Console.WriteLine("Entity objects before ADO.NET change and Refresh() call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);
}

Console.WriteLine("{0}Updating customers' country to United States in ADO.NET...",
 System.Environment.NewLine);
ExecuteStatementInDb(String.Format(
 @"update Customers set Country = 'United States' where Region = 'WA'"));
Console.WriteLine("Customers' country updated.{0}", System.Environment.NewLine);

Console.WriteLine("Entity objects after ADO.NET change but before Refresh()
call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);
}

Console.WriteLine("{0}Refreshing sequence of customer entity objects ...",
 System.Environment.NewLine);
db.Refresh(RefreshMode.KeepChanges, custs);

Console.WriteLine("Sequence of Customer entity objects refreshed.{0}",
 System.Environment.NewLine);

Console.WriteLine("Entity objects after ADO.NET change and Refresh() call:");
foreach (Customer c in custs)
{
 Console.WriteLine("Customer {0}'s region is {1}, country is {2}.",
 c.CustomerID, c.Region, c.Country);

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

633

}

// We need to reset the changed values so that the code can be run
// more than once.
Console.WriteLine("{0}Resetting data to original values.",
 System.Environment.NewLine);
ExecuteStatementInDb(String.Format(
 @"update Customers set Country = 'USA' where Region = 'WA'"));

The code in Listing 16-35 is the same as Listing 16-34 except that when we call the Refresh method,

we pass the custs sequence. Let’s take a look at the results:

Entity objects before ADO.NET change and Refresh() call:
Customer LAZYK's region is WA, country is USA.
Customer TRAIH's region is WA, country is USA.
Customer WHITC's region is WA, country is USA.

Updating customers' country to United States in ADO.NET...
Executing SQL statement against database with ADO.NET ...
Database updated.
Customers' country updated.

Entity objects after ADO.NET change but before Refresh() call:
Customer LAZYK's region is WA, country is USA.
Customer TRAIH's region is WA, country is USA.
Customer WHITC's region is WA, country is USA.

Refreshing sequence of customer entity objects ...
Sequence of Customer entity objects refreshed.

Entity objects after ADO.NET change and Refresh() call:
Customer LAZYK's region is WA, country is United States.
Customer TRAIH's region is WA, country is United States.
Customer WHITC's region is WA, country is United States.

Resetting data to original values.
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see, despite that we updated the Country for the retrieved customers to "United
States" in the database, we didn’t see that change in the entity objects until we called the Refresh
method.

CHAPTER 16 ■ THE LINK TO SQL DATACONTEXT

634

Summary
We know it took a long time to get to the point of knowing what the DataContext class can do for you.
LINQ to SQL is not trivial because it encapsulates an understanding of LINQ with an understanding of
database queries and SQL. Because of this, there is a lot to know about LINQ to SQL, and much of what
there is to understand about the DataContext class is intertwined with entity classes; therefore,
something has to come first, and something has to come last.

Although there is a lot of information in this chapter, probably the most important topics to leave
this chapter understanding are how the three DataContext services—identity tracking, change tracking,
and change processing—work. Of course, none of those services has any value if you cannot even
instantiate a DataContext or [Your]DataContext object, so the constructors for the DataContext and
[Your]DataContext class are important as well.

 Other than the DataContext and [Your]DataContext constructors, the DataContext method you
will most likely use the most is the SubmitChanges method, because it is the method that you will call to
persist your changes to the database.

It is important to remember that, when you attempt to persist your changes to the database,
sometimes a concurrency conflict may arise and throw an exception. We have mentioned concurrency
conflicts many times so far in the LINQ to SQL chapters, but we have yet to discuss them in detail.
Therefore, in the next chapter, we will cover concurrency conflicts in depth.

C H A P T E R 17

■ ■ ■

635

LINQ to SQL Concurrency Conflicts

How many times have you heard us say that you must detect concurrency conflicts and resolve them? In
most of the preceding LINQ to SQL chapters, we mentioned concurrency conflicts, but we have yet to
discuss them in the level of detail they deserve. In this chapter, we will resolve that deficiency.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated entity classes for it. Please read and follow the instructions in
Chapter 12 titled “Prerequisites for Running the Examples.”

Some Common Methods
Additionally, to run the examples in this chapter, you will need some common methods that will be
utilized by the examples. Please read and follow the instructions in Chapter 12’s “Some Common
Methods” section.

Using the LINQ to SQL API
To run the examples in this chapter, you may need to add the appropriate references and using
directives to your project. Please read and follow the instructions in Chapter 12’s “Using the LINQ to SQL
API” section.

Concurrency Conflicts
When one database connection attempts to update a piece of data that has been changed by another
database connection since the record was read by the first database connection, a concurrency conflict
occurs. That is to say that if process 1 reads the data, followed by process 2 reading the same data, and
process 2 updates that same data before process one can, a concurrency conflict occurs when process 1
attempts to update the data. It is also true though that, if process 1 updates the data before process 2,
process 2 will get a concurrency conflict when it attempts to update the data. If multiple connections
can access a database and make changes, it is only a matter of time and luck before a concurrency
conflict occurs.

When a conflict occurs, an application must take some action to resolve it. For example, a web site
administrator may be on a page displaying data for a normal user that allows the administrator to

CHAPTER 17 ■ CONCURRENCY CONFLICTS

636

update that normal user’s data. If after the administrator’s page reads the normal user’s data from the
database, the normal user goes to a page displaying her data and makes a change, a conflict will occur
when the administrator saves his changes to the database. If a conflict did not occur, the normal user’s
changes would be overwritten and lost. An alternative is that the normal user’s changes could be saved,
and the administrator’s changes are lost. Which is the correct behavior at any given time is a complex
problem. The first step is to detect it. The second step is to resolve it.

There are two basic approaches for handling concurrency conflicts, optimistic and pessimistic.

Optimistic Concurrency
As the name would suggest, optimistic concurrency conflict handling takes the optimistic approach that
most of the time, a concurrency conflict will not happen. Therefore, no locks will be placed on the data
during a read of the database. If there is a conflict when attempting to update that same data, we will
address the conflict then. Optimistic concurrency conflict handling is more complicated than
pessimistic concurrency conflict handling, but it works better for most modern-day applications with
very large-scale quantities of users. Imagine how frustrating it would be if every time you wanted to view
an item at your favorite auction site, you couldn’t because someone else was looking at that same item
and the record was locked because that person might make a bid on that item. You wouldn’t be a happy
user for very long.

LINQ to SQL takes the optimistic concurrency conflict handling approach. Fortunately, LINQ to SQL
makes the detection and resolution of concurrency conflicts as simple as seems feasibly possible. It even
provides a method to handle the resolution for you if you like.

Conflict Detection
As we previously mentioned, the first step is detecting the conflict. LINQ to SQL has two approaches it
uses to detect concurrency conflicts. If the IsVersion Column attribute property is specified on an entity
class property and its value is true, then the value of that entity class property, and that property alone
will be used to determine whether a concurrency conflict occurred.

If no entity class property has an IsVersion attribute property set to true, LINQ to SQL allows you
to control which entity class properties participate in concurrency conflict detection with the Column
attribute UpdateCheck property specified on an entity class’s mapped property. The UpdateCheck
enumeration provides three possible values: Never, Always, and WhenChanged.

UpdateCheck

If the UpdateCheck attribute property for a mapped entity class property is set to UpdateCheck.Never,
that entity class property will not participate in concurrency conflict detection. If the UpdateCheck
property is set to UpdateCheck.Always, the entity class property will always participate in the
concurrency conflict detection regardless of whether the property’s value has changed since initially
being retrieved and cached by the DataContext. If the UpdateCheck property is set to
UpdateCheck.WhenChanged, the entity class property will participate in the update check only if its
value has been changed since being loaded into the DataContext object’s cache. If the UpdateCheck
attribute is not specified, it defaults to UpdateCheck.Always.

To understand how conflict detection technically works, it may help you to understand how it is
currently implemented. When you call the SubmitChanges method, the change processor generates the
necessary SQL statements to persist all changes in the entity objects to the database. When it needs to
update a record, instead of merely supplying the record’s primary key in the where clause to find the
appropriate record to update, it specifies the primary key, as well as potentially all columns participating

CHAPTER 17 ■ CONCURRENCY CONFLICTS

637

in conflict detection. If an entity class property’s UpdateCheck attribute property is specified as
UpdateCheck.Always, that property’s mapped column and its original value will always be specified in
the where clause. If the entity class property’s UpdateCheck property is specified as
UpdateCheck.WhenChanged, then only if the entity object’s current value for a property has been
changed from its original value will that property’s mapped column, and its original value be specified in
the where clause. If an entity class property’s UpdateCheck property is specified as UpdateCheck.Never,
that entity class property’s mapped column will not be specified in the where clause.

For example, assume that the Customer entity object specifies the UpdateCheck property for
CompanyName as UpdateCheck.Always, ContactName as UpdateCheck.WhenChanged, and
ContactTitle as UpdateCheck.Never. If all three of those entity class properties were modified in the
entity object for a customer, the generated SQL statement would look like this:

Update Customers
Set CompanyName = 'Art Sanders Park',
 ContactName = 'Samuel Arthur Sanders',
 ContactTitle = 'President'
Where CompanyName = 'Lonesome Pine Restaurant' AND
 ContactName = 'Fran Wilson' AND
 CustomerID = 'LONEP'

In that example, the column values in the where clause are the properties’ original values as read

from the database when the entity object was first retrieved, a SubmitChanges method call successfully
completed, or the Refresh method was called.

You can see that, since the CompanyName property’s UpdateCheck property is specified as
UpdateCheck.Always, it will be in the where clause whether or not it has changed in the entity object.
Since the ContactName property’s UpdateCheck property is specified as UpdateCheck.WhenChanged
and that entity class property’s value has changed in the entity object, it is included in the where clause.
And, since the ContactTitle property’s UpdateCheck property is specified as UpdateCheck.Never, it
was not specified in the where clause despite that the entity class property’s value has changed.

When that SQL statement is executed, if any of the entity class properties’ values specified in the
where clause do not match what is in the database, the record will not be found, so it will not get
updated. This is how concurrency conflicts are detected. If a conflict occurs, a
ChangeConflictException is thrown. Let’s examine Listing 17-1 to see exactly what the generated
update statement looks like.

Listing 17-1. Causing a Database Update to See How Concurrency Conflicts Are Detected

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.Log = Console.Out;

Customer cust = db.Customers.Where(c => c.CustomerID == "LONEP").SingleOrDefault();
string name = cust.ContactName; // to restore later.

cust.ContactName = "Neo Anderson";

db.SubmitChanges();

CHAPTER 17 ■ CONCURRENCY CONFLICTS

638

// Restore database.
cust.ContactName = name;
db.SubmitChanges();

There isn’t much to this query. In fact, the only thing worth pointing out about the query is that we

call the SingleOrDefault operator instead of the Single operator, like we typically have, just to provide
more protection against a record not being found. In this case, we know the record will be found, but we
want to start reminding you that you need to make sure the code safely handles these situations.

All that we are really interested in seeing is the generated update statement. Let’s look at the results:

SELECT [t0].[CustomerID], [t0].[CompanyName], [t0].[ContactName],
[t0].[ContactTitle], [t0].[Address], [t0].[City], [t0].[Region], [t0].[PostalCode],
[t0].[Country], [t0].[Phone], [t0].[Fax]
FROM [dbo].[Customers] AS [t0]
WHERE [t0].[CustomerID] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [LONEP]
-- Context: SqlProvider(Sql2008) Model: AttributedMetaModel Build: 3.5.30729.4926
UPDATE [dbo].[Customers]
SET [ContactName] = @p11
WHERE ([CustomerID] = @p0) AND ([CompanyName] = @p1) AND ([ContactName] = @p2) AND
([ContactTitle] = @p3) AND ([Address] = @p4) AND ([City] = @p5) AND ([Region] =
@p6)
AND ([PostalCode] = @p7) AND ([Country] = @p8) AND ([Phone] = @p9) AND ([Fax] =
@p10)
-- @p0: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [LONEP]
-- @p1: Input String (Size = 24; Prec = 0; Scale = 0) [Lonesome Pine Restaurant]
-- @p2: Input String (Size = 11; Prec = 0; Scale = 0) [Fran Wilson]
-- @p3: Input String (Size = 13; Prec = 0; Scale = 0) [Sales Manager]
-- @p4: Input String (Size = 18; Prec = 0; Scale = 0) [89 Chiaroscuro Rd.]
-- @p5: Input String (Size = 8; Prec = 0; Scale = 0) [Portland]
-- @p6: Input String (Size = 2; Prec = 0; Scale = 0) [OR]
-- @p7: Input String (Size = 5; Prec = 0; Scale = 0) [97219]
-- @p8: Input String (Size = 3; Prec = 0; Scale = 0) [USA]
-- @p9: Input String (Size = 14; Prec = 0; Scale = 0) [(503) 555-9573]
-- @p10: Input String (Size = 14; Prec = 0; Scale = 0) [(503) 555-9646]
-- @p11: Input String (Size = 12; Prec = 0; Scale = 0) [Neo Anderson]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

UPDATE [dbo].[Customers]
SET [ContactName] = @p11
WHERE ([CustomerID] = @p0) AND ([CompanyName] = @p1) AND ([ContactName] = @p2) AND
([ContactTitle] = @p3) AND ([Address] = @p4) AND ([City] = @p5) AND ([Region] =
@p6)
AND ([PostalCode] = @p7) AND ([Country] = @p8) AND ([Phone] = @p9) AND ([Fax] =
@p10)
-- @p0: Input StringFixedLength (Size = 5; Prec = 0; Scale = 0) [LONEP]

CHAPTER 17 ■ CONCURRENCY CONFLICTS

639

-- @p1: Input String (Size = 24; Prec = 0; Scale = 0) [Lonesome Pine Restaurant]
-- @p2: Input String (Size = 12; Prec = 0; Scale = 0) [Neo Anderson]
-- @p3: Input String (Size = 13; Prec = 0; Scale = 0) [Sales Manager]
-- @p4: Input String (Size = 18; Prec = 0; Scale = 0) [89 Chiaroscuro Rd.]
-- @p5: Input String (Size = 8; Prec = 0; Scale = 0) [Portland]
-- @p6: Input String (Size = 2; Prec = 0; Scale = 0) [OR]
-- @p7: Input String (Size = 5; Prec = 0; Scale = 0) [97219]
-- @p8: Input String (Size = 3; Prec = 0; Scale = 0) [USA]
-- @p9: Input String (Size = 14; Prec = 0; Scale = 0) [(503) 555-9573]
-- @p10: Input String (Size = 14; Prec = 0; Scale = 0) [(503) 555-9646]
-- @p11: Input String (Size = 11; Prec = 0; Scale = 0) [Fran Wilson]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Notice that in the first update statement, the where clause has specified that the ContactName must
equal "Fran Wilson", the original value of the ContactName. If some other process had changed the
ContactName since we read it, no record would have matched the where clause, so no record would have
been updated.

Since none of the entity class properties in the Customer entity class specifies the UpdateCheck
attribute property, they all default to UpdateCheck.Always, so all of the mapped entity class properties
are specified in the where clause of that update statement.

SubmitChanges()

The concurrency conflict detection occurs when the SubmitChanges method is called. When you call the
SubmitChanges method, you have the ability to specify whether the process of saving the changes to the
database should abort on the first conflict that occurs or whether it should attempt all changes,
collecting the conflicts. You control this behavior with the ConflictMode argument that may be passed
to the SubmitChanges method. If you pass ConflictMode.FailOnFirstConflict, as the name
suggests, the process will abort after the first conflict occurs. If you pass
ConflictMode.ContinueOnConflict, then the process will attempt all the necessary changes even if a
conflict occurs. If you choose not to specify a ConflictMode, the SubmitChanges method will default to
ConflictMode.FailOnFirstConflict.

Regardless of the ConflictMode you specify, if an ambient transaction is not in scope when the
SubmitChanges method is called, a transaction will be created for all database changes attempting to be
made during the invocation of the SubmitChanges method. If an ambient transaction is in scope, the
DataContext will enlist in the ambient transaction. If an exception is thrown during the SubmitChanges
method call, the transaction will be rolled back. This means that even the unconflicted entity objects
whose changes were successfully persisted to the database will be rolled back.

ChangeConflictException

If a concurrency conflict occurs, regardless of whether the ConflictMode is FailOnFirstConflict or
ContinueOnConflict, a ChangeConflictException will be thrown.

Catching the ChangeConflictException is how you detect when a concurrency conflict occurs.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

640

Conflict Resolution
Once you have detected the concurrency conflict by catching the ChangeConflictException, the next
step is most likely to resolve any conflicts. You could choose to take some other action, but resolving the
conflicts is the most likely one. When we first read that we would have to resolve conflicts, we envisioned
horribly complex code attempting to analyze what to do with each piece of data for every possible
circumstance. Fortunately, LINQ to SQL makes this easy by providing a ResolveAll and two Resolve
methods.

RefreshMode

When we actually resolve a conflict using the built-in LINQ to SQL resolution functionality by calling the
ResolveAll or a Resolve method, we control how the conflict is resolved by specifying a RefreshMode.
The three possible options are KeepChanges, KeepCurrentValues, and OverwriteCurrentValues.
These options control which data is retained in the entity object properties’ current values when the
DataContext object performs the resolution.

The RefreshMode.KeepChanges option tells the ResolveAll or a Resolve method to load the
changes from the database into the entity class properties’ current value for any column changed since
the data was initially loaded, unless the current user has also changed the property, in which case that
value will be kept. The order of priority of retaining the data, from lowest to highest, is as follows:
original entity class property values, reloaded changed database column values, current user’s changed
entity class property values.

The RefreshMode.KeepCurrentValues option tells the ResolveAll or Resolve method to keep the
current user’s original entity class property values and changes and to disregard any changes made to
the database since the data was initially loaded. The order of priority of retaining the data, from lowest to
highest, is as follows: original entity class property values, current user’s changed entity class property
values.

The RefreshMode.OverwriteCurrentValues option tells the ResolveAll or a Resolve method to
load the changes from the database for any columns changed since the data was initially loaded and to
disregard the current user’s entity class property changes. The order of priority of retaining the data,
from lowest to highest, is original entity class property values then reloaded changed column values.

Resolving Conflicts

There are three approaches to resolving conflicts: easiest, easy, and manual. The easiest approach is to
merely call the ResolveAll method on the DataContext.ChangeConflicts collection, passing a
RefreshMode and an optional bool specifying whether to automatically resolve deleted records.

Automatically resolving deleted records means to mark the corresponding deleted entity object as
being successfully deleted, even though it wasn’t because of the concurrency conflict so that the next
time the SubmitChanges method is called, the DataContext will not attempt to delete the deleted entity
object’s matching database record again. In essence, we are telling LINQ to SQL to pretend like it was
successfully deleted because someone else deleted it first, and that is alright.

The easy approach is to enumerate through each ObjectChangeConflict in the
DataContext.ChangeConflicts collection and call the Resolve method on each
ObjectChangeConflict.

If, however, you need some special handling, you always have the option to handle the resolution
yourself by enumerating through the DataContext object’s ChangeConflicts collection and then
enumerating through each ObjectChangeConflict object’s MemberConflicts collection, calling the

CHAPTER 17 ■ CONCURRENCY CONFLICTS

641

Resolve method on each MemberChangeConflict object in that collection. Even with manual
resolution, methods are provided to make this easy.

DataContext.ChangeConflicts.ResolveAll()

Resolving conflicts gets no easier than this. You merely catch the ChangeConflictException and call
the ResolveAll method on the DataContext.ChangeConflicts collection. All you have to do is decide
which RefreshMode to use and if you want to automatically resolve deleted records.

Using this approach will cause all conflicts to be resolved the same way based on the RefreshMode
passed. If you need more granular control when resolving the conflicts, use one of the slightly more
complex approaches we will cover after this approach.

In Listing 17-2, we will resolve conflicts using this approach. Because this example is somewhat
complex, we will describe it as we go.

Listing 17-2. An Example Resolving Conflicts with DataContext.ChangeConflicts.ResolveAll()

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();

ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

We create the Northwind DataContext, query a customer using LINQ to SQL, and make a change to

the retrieved customer’s ContactName column value in the database using ADO.NET. We have now set
up a potential concurrency conflict.

Now, we just need to make a change to our entity object and try to persist it to the database.

cust.ContactTitle = "President";
try
{
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
}
catch (ChangeConflictException)
{

Notice that we wrap the call to the SubmitChanges method in a try/catch block. To properly detect

concurrency conflicts, we catch the ChangeConflictException exception. Now, we just need to call the
ResolveAll method and try to persist the changes again.

 db.ChangeConflicts.ResolveAll(RefreshMode.KeepChanges);
 try
 {
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
 cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();

CHAPTER 17 ■ CONCURRENCY CONFLICTS

642

 Console.WriteLine("ContactName = {0} : ContactTitle = {1}",
 cust.ContactName, cust.ContactTitle);
 }
 catch (ChangeConflictException)
 {
 Console.WriteLine("Conflict again, aborting.");
 }
}

In the preceding code, we call the ResolveAll method and pass a RefreshMode of KeepChanges.

We then call the SubmitChanges method again, which is wrapped in its own try/catch block. Then, we
query the customer from the database again and display the customer’s ContactName and
ContactTitle just to prove that neither the ADO.NET change nor our LINQ to SQL change was lost. If
that call to the SubmitChanges method throws an exception, we will just report it and abort the effort.

All that is left to do is to restore the database so the example can be run more than once.

// Reset the database.
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'John Steel', ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK'"));

If you look closely, disregarding the code to cause the conflict, which you wouldn’t normally write,

and the code to restore the database at the end of the example, which you also wouldn’t normally write,
resolving concurrency conflicts with this approach is pretty simple. You wrap the call to the
SubmitChanges method in a try/catch block, catch the ChangeConflictException exception, call the
ResolveAll method, and repeat the call to the SubmitChanges method. That’s about all there is to it.
Let’s look at the results of Listing 17-2.

Executing SQL statement against database with ADO.NET ...
Database updated.
ContactName = Samuel Arthur Sanders : ContactTitle = President
Executing SQL statement against database with ADO.NET ...
Database updated.

As you can see in the results, both the ADO.NET change to the ContactName and our LINQ to SQL
change to the ContactTitle were persisted to the database. This is a very simple approach for resolving
concurrency conflicts.

ObjectChangeConflict.Resolve()

If resolving all conflicts with the same RefreshMode isn’t going to work for you, you can take the
approach of enumerating through all the conflicts in the DataContext.ChangeConflicts collection
and handling each individually. You would handle each one by calling the Resolve method on it. This
allows you the ability to pass a different RefreshMode value for each conflict.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

643

Resolving conflicts at this level is akin to resolving them at the entity object level. The RefreshMode
passed will apply to every entity class property in a conflicted entity object. If you need more control
than this allows, consider using the manual approach that we will discuss after this approach.

In Listing 17-3, we demonstrate this approach. The code will be the same as Listing 17-2 except that
the call to the DataContext.ChangeConflicts.ResolveAll method will be replaced with an
enumeration of the ChangeConflicts collection.

Listing 17-3. An Example Resolving Conflicts with ObjectChangeConflict.Resolve()

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();

ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

cust.ContactTitle = "President";
try
{
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
}
catch (ChangeConflictException)
{
 foreach (ObjectChangeConflict conflict in db.ChangeConflicts)
 {
 Console.WriteLine("Conflict occurred in customer {0}.",
 ((Customer)conflict.Object).CustomerID);
 Console.WriteLine("Calling Resolve ...");
 conflict.Resolve(RefreshMode.KeepChanges);
 Console.WriteLine("Conflict resolved.{0}", System.Environment.NewLine);
 }

 try
 {
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
 cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();
 Console.WriteLine("ContactName = {0} : ContactTitle = {1}",
 cust.ContactName, cust.ContactTitle);
 }
 catch (ChangeConflictException)
 {
 Console.WriteLine("Conflict again, aborting.");
 }

CHAPTER 17 ■ CONCURRENCY CONFLICTS

644

}

// Reset the database.
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'John Steel', ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK'"));

Notice that, instead of calling the DataContext.ChangeConflicts.ResolveAll method, we

enumerate the ChangeConflicts collection and call the Resolve method on each
ObjectChangeConflict object in the collection. Then, as in the previous listing, we call the
SubmitChanges method again, query the customer again, and display the relevant entity class
properties. Of course, we then restore the database.

Here are the results of Listing 17-3:

Executing SQL statement against database with ADO.NET ...
Database updated.
Conflict occurred in customer LAZYK.
Calling Resolve ...
Conflict resolved.

ContactName = Samuel Arthur Sanders : ContactTitle = President
Executing SQL statement against database with ADO.NET ...
Database updated.

That worked just as we would want. In real production code, you may want to loop on the call to the
SubmitChanges method and the conflict resolution just to handle the case of bad luck with additional
conflicts occurring in that small window of opportunity. If you do, we would make sure you limit the
loop to prevent getting stuck in an infinite loop, just in case something is seriously wrong.

MemberChangeConflict.Resolve()

In the first approach, we call a method to resolve all conflicts the same way. This is the easiest approach
to resolve conflicts. In the second approach, we call a method to resolve a conflict for a single conflicted
entity object. This provides the flexibility of resolving each entity object in a different manner. This is the
easy way. What’s left? The manual way is the only approach left.

Don’t let our description intimidate you. Even with the manual approach, concurrency conflict
detection is simpler than you might expect. Taking this approach allows you to apply different
RefreshMode values to individual entity object properties.

Like the second resolution approach, we will enumerate through the
DataContext.ChangeConflicts collection’s ObectChangeConflict objects. But, instead of calling the
Resolve method on each ObectChangeConflict object, we will enumerate through its
MemberConflicts collection and call each MemberChangeConflict object’s Resolve method.

At this level, a MemberChangeConflict object pertains to a specific entity class property from a
conflicted entity class object. This allows you to deviate from a common RefreshMode for any entity
class property you choose.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

645

This Resolve method allows you to pass either a RefreshMode or the actual value you want the
current value to be. This allows great flexibility.

For an example of manual conflict resolution, in Listing 17-4 let’s pretend there is a requirement
that if there is ever a conflict with the ContactName column in the database, the code must leave the
database value as it is, but any other column in a record may be updated.

To implement this, we will use the same basic code as in Listing 17-3, but instead of calling the
Resolve method on the ObjectChangeConflict object, we will enumerate through each object’s
MemberConflicts collection. Then, for each MemberChangeConflict object in that collection, if the
entity object property in conflict is the ContactName property, we will maintain the value in the database
by passing a RefreshMode of RefreshMode.OverwriteCurrentValues to the Resolve method. If the
conflicted entity object property is not the ContactName property, we will maintain our value by passing
a RefreshMode of RefreshMode.KeepChanges to the Resolve method.

Also, to make the example more interesting, when we update the database with ADO.NET to create
a conflict, we will also update the ContactTitle column too. This will cause two entity object properties
to be conflicted. One, the ContactName, should be handled so that the database value is maintained. The
other, the ContactTitle, should be handled so that the LINQ to SQL value is maintained.

Let’s look at Listing 17-4.

Listing 17-4. An Example of Manually Resolving Conflicts

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

Customer cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();

ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders',
 ContactTitle = 'CEO'

 where CustomerID = 'LAZYK'"));

cust.ContactName = "Viola Sanders";
cust.ContactTitle = "President";
try
{
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
}
catch (ChangeConflictException)
{
 foreach (ObjectChangeConflict conflict in db.ChangeConflicts)
 {
 Console.WriteLine("Conflict occurred in customer {0}.",
 ((Customer)conflict.Object).CustomerID);
 foreach (MemberChangeConflict memberConflict in conflict.MemberConflicts)
 {
 Console.WriteLine("Calling Resolve for {0} ...",
 memberConflict.Member.Name);

CHAPTER 17 ■ CONCURRENCY CONFLICTS

646

 if (memberConflict.Member.Name.Equals("ContactName"))
 {
 memberConflict.Resolve(RefreshMode.OverwriteCurrentValues);
 }
 else
 {
 memberConflict.Resolve(RefreshMode.KeepChanges);
 }

 Console.WriteLine("Conflict resolved.{0}", System.Environment.NewLine);
 }

 }

 try
 {
 db.SubmitChanges(ConflictMode.ContinueOnConflict);
 cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();
 Console.WriteLine("ContactName = {0} : ContactTitle = {1}",
 cust.ContactName, cust.ContactTitle);
 }
 catch (ChangeConflictException)
 {
 Console.WriteLine("Conflict again, aborting.");
 }
}

// Reset the database.
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'John Steel', ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK'"));

One of the significant changes is that we also update the ContactTitle with ADO.NET. This causes

two entity object properties to be conflicted when we call the SubmitChanges method. Then, instead of
calling the Resolve method on the ObjectChangeConflict object, we enumerate through its
MemberConflicts collection examining each entity object property. If the property is the ContactName
entity object property, we call the Resolve method with a RefreshMode of
RefreshMode.OverwriteCurrentValues to maintain the value from the database. If the entity object
property is not the ContactName property, we call the Resolve method with a RefreshMode of
RefreshMode.KeepChanges to maintain the value set in our LINQ to SQL code.

We know you can hardly wait. Let’s look at the results of Listing 17-4:

Executing SQL statement against database with ADO.NET ...
Database updated.
Conflict occurred in customer LAZYK.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

647

Calling Resolve for ContactName ...
Conflict resolved.

Calling Resolve for ContactTitle ...
Conflict resolved.

ContactName = Samuel Arthur Sanders : ContactTitle = President
Executing SQL statement against database with ADO.NET ...
Database updated.

You can see in the results that both the ContactName and ContactTitle entity object properties
were conflicted and resolved. Also, by examining the output of the ContactName and ContactTitle
properties at the end, you can see that the value from the database was maintained for the ContactName
property, but the value for the ContactTitle from the database was ignored, and the value set by LINQ
to SQL was maintained. This is just exactly what we were looking for.

The actual code handling the conflict resolution manually is really not that bad. But, of course, all
this effort is only necessary for specialized conflict resolution.

Pessimistic Concurrency
Just as its name implies, pessimistic concurrency assumes the worst—that you can just count on the fact
that a record you read will be conflicted by the time you can update it. Fortunately, we have the ability to
do this as well. It’s as simple as wrapping the read and the update to the database in a transaction.

With the pessimistic concurrency approach, there are no actual conflicts to resolve, because the
database is locked by your transaction, so no one else can be modifying it behind your back.

To test this, we will create a TransactionScope object and obtain an entity object for customer
LAZYK. Then, we will create another TransactionScope object with a TransactionScopeOption of
RequiresNew. We do this so the ADO.NET code does not participate in the ambient transaction created
by the previously created TransactionScope object. After that, we will attempt to update that same
record in the database using ADO.NET. Since there is already an open transaction locking the database,
the ADO.NET update statement will be blocked and eventually timeout. Next, we will update the entity
object’s ContactName, call the SubmitChanges method, query the customer again to display the
ContactName to prove it was updated by LINQ to SQL, and complete the transaction.

■ NNote You must add a reference to the System.Transactions.dll assembly to your project for the following

example to compile.

Listing 17-5 contains the code for this example.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

648

Listing 17-5. An Example of Pessimistic Concurrency

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

using (System.Transactions.TransactionScope transaction =
 new System.Transactions.TransactionScope())

{
 Customer cust =
 db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();

 try
 {
 Console.WriteLine("Let's try to update LAZYK's ContactName with ADO.NET.");
 Console.WriteLine(" Please be patient, we have to wait for timeout ...");
 using (System.Transactions.TransactionScope t2 =
 new System.Transactions.TransactionScope(
 System.Transactions.TransactionScopeOption.RequiresNew))

 {
 ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

 t2.Complete();
 }

 Console.WriteLine("LAZYK's ContactName updated.{0}",
 System.Environment.NewLine);
 }
 catch (Exception ex)
 {
 Console.WriteLine(
 "Exception occurred trying to update LAZYK with ADO.NET:{0} {1}{0}",
 System.Environment.NewLine, ex.Message);
 }

 cust.ContactName = "Viola Sanders";
 db.SubmitChanges();

 cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();
 Console.WriteLine("Customer Contact Name: {0}", cust.ContactName);

 transaction.Complete();
}

CHAPTER 17 ■ CONCURRENCY CONFLICTS

649

// Reset the database.
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'John Steel',
 ContactTitle = 'Marketing Manager'
 where CustomerID = 'LAZYK'"));

■ TTip If you get an exception of type “MSDTC on server ‘[server]\SQLEXPRESS’ is unavailable” when working
with any of the examples using the TransactionScope object, make sure the service named Distributed

Transaction Coordinator is started.

This code is not quite as complex as it may look at first. The first thing we do is create a
TransactionScope object. We have now taken a pessimistic concurrency approach, preventing anyone
from modifying our data. Next, we query our customer using LINQ to SQL. Then, we create another
TransactionScope object to prevent the ADO.NET code we are about to call from participating in our
original TransactionScope object’s transaction. After creating the second TransactionScope object,
we attempt to update the customer in the database using ADO.NET. The ADO.NET code will not be able
to perform the update because of our initial transaction and a timeout exception will be thrown. We
then change the ContactName for the customer, persist that change to the database by calling the
SubmitChanges method, query the customer again, and display the customer’s ContactName to prove
the change was persisted. We then complete the original transaction by calling the Complete method on
it.

Of course, as always, we reset the database at the end of the code. Here are the results of Listing 17-
5:

Let's try to update LAZYK's ContactName with ADO.NET.
 Please be patient, we have to wait for timeout ...
Executing SQL statement against database with ADO.NET ...
Exception occurred trying to update LAZYK with ADO.NET:
 Timeout expired. The timeout period elapsed prior to completion of the operation
or the server is not responding.
The statement has been terminated.

Customer Contact Name: Viola Sanders
Executing SQL statement against database with ADO.NET ...
Database updated.

Notice that when we attempt to update the database with ADO.NET, a timeout exception occurs.
Don’t get fooled by deferred query execution. Remember that many of the LINQ operators are

deferred. In the case of this example, our LINQ to SQL query is calling the SingleOrDefault operator, so
the query is not deferred, thereby requiring that the query must be declared inside the scope of the
TransactionScope object. Had we not called the SingleOrDefault operator, that query could have
been declared before the creation of the TransactionScope object, as long as the actual query got

CHAPTER 17 ■ CONCURRENCY CONFLICTS

650

executed inside the TransactionScope object’s scope. Therefore, we could have merely had the LINQ
query return an IEnumerable<T> sequence prior to the creation of the TransactionScope object and
then inside the scope of the TransactionScope object call the SingleOrDefault operator on that
returned sequence, returning the single Customer matching our query.

When using this approach, you should always be conscious of just how much work you are doing
inside the scope of the TransactionScope object because you will have the relevant records in the
database locked during that time.

An Alternative Approach for Middle Tiers and Servers
An alternative approach exists for handling concurrency conflicts when they occur on a middle tier or
server. Sometimes, when a concurrency conflict occurs, it may be easier to just create a new
DataContext, apply changes, and call the SubmitChanges method again.

Consider for example an ASP.NET web application. Because of the connectionless nature of the
browser client to web server communication, you very well may be creating the DataContext new every
time an HTTP post is made to the web server and a LINQ to SQL query needs to be made. Remember
that since data read from the database is immediately considered stale, it is not a good idea to keep a
DataContext object open for very long with the intent to make changes.

When a user first goes to a web page and the data is retrieved, it may not make sense to hang on to
the DataContext object waiting for a postback to attempt to update that data. The DataContext will not
survive while waiting for the postback anyway, unless it is somehow persisted between connections,
such as in session state. But even if it does survive, the delay between the connections could be very long
and may never even occur. The longer you wait between the database read that occurred when first
rendering the page and the attempted database update on a subsequent postback, the more stale your
data is going to be. Rather than attempting to hold onto the DataContext for this type of scenario, it may
make more sense to just create a DataContext on each postback when data needs to be saved. If this is
the case and a concurrency conflict occurs, there may be little harm in creating another DataContext,
reapplying the changes, and calling the SubmitChanges method again. And because the delay will be so
short between the time you first read the data on the postback, apply your changes, and call the
SubmitChanges method, it is unlikely that you will have concurrency conflicts in the first attempt, much
less a second.

If you decide to take this approach, on the postback, after constructing the new DataContext, you
could retrieve the necessary entity object as we just discussed, or there is another approach. Instead of
retrieving the entity object, you could create a new entity object, populate the necessary properties with
the appropriate values, and attach it to the appropriate table using the Table<T> object’s Attach
method. At this point, it’s as though the entity object was retrieved from the database barring the fact
that every field in the object may not be populated.

Prior to attaching an entity object to a Table<T>, you must set the necessary entity class properties
to the appropriate values. This doesn’t mean you have to query the database to get the values; they could
come from anywhere, such as another tier. The necessary entity class properties include all entity class
properties making up the primary key or establishing identity, all entity class properties you are going to
change, and all entity class properties that participate in the update check. You must include the entity
class properties establishing identity so that the DataContext can properly track identity of the entity
class object. You must include all entity class properties you are going to change so that they can be
updated and so concurrency conflict detection can work properly. Also, you must include all the entity
class properties participating in the update check for the concurrency conflict detection. If the entity
class has an entity class property specifying the IsVersion attribute property with a value of true for
the Column attribute, that entity class property must be set prior to calling the Attach method.

Let’s take a look at how this is done in Listing 17-6.

CHAPTER 17 ■ CONCURRENCY CONFLICTS

651

Listing 17-6. An Example of Using Attach() to Attach a Newly Constructed Entity Object

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

// Create an entity object.
Console.WriteLine("Constructing an empty Customer object.");
Customer cust = new Customer();

// First, all fields establishing identity must get set.
Console.WriteLine("Setting the primary keys.");
cust.CustomerID = "LAZYK";

// Next, every field that will change must be set.
Console.WriteLine("Setting the fields we will change.");
cust.ContactName = "John Steel";

// Last, all fields participating in update check must be set.
// Unfortunately, for the Customer entity class, that is all of them.
Console.WriteLine("Setting all fields participating in update check.");
cust.CompanyName = "Lazy K Kountry Store";
cust.ContactTitle = "Marketing Manager";
cust.Address = "12 Orchestra Terrace";
cust.City = "Walla Walla";
cust.Region = "WA";
cust.PostalCode = "99362";
cust.Country = "USA";
cust.Phone = "(509) 555-7969";
cust.Fax = "(509) 555-6221";

// Now let's attach to the Customers Table<T>;
Console.WriteLine("Attaching to the Customers Table<Customer>.");
db.Customers.Attach(cust);

// At this point we can make our changes and call SubmitChanges().
Console.WriteLine("Making our changes and calling SubmitChanges().");
cust.ContactName = "Vickey Rattz";
db.SubmitChanges();

cust = db.Customers.Where(c => c.CustomerID == "LAZYK").SingleOrDefault();
Console.WriteLine("ContactName in database = {0}", cust.ContactName);

Console.WriteLine("Restoring changes and calling SubmitChanges().");
cust.ContactName = "John Steel";
db.SubmitChanges();

CHAPTER 17 ■ CONCURRENCY CONFLICTS

652

As you can see, we set our primary key entity class properties, the entity class properties we are
going to change, and the entity class properties participating in update check. As we mentioned
previously, we must set these properties to the appropriate values. That doesn’t mean that we have to
query the database, though. Perhaps we stored them in hidden variables or view state, or they were
passed from another tier. We then call the Attach method on the Customers Table<Customer>. Next,
we make our changes and finally call the SubmitChanges method. Next, we query the customer from the
database and display the ContactName just to prove it was indeed changed in the database. Then, as
always, we restore the database to its previous state. Let’s look at the output of Listing 17-6:

Constructing an empty Customer object.
Setting the primary keys.
Setting the fields we will change.
Setting all fields participating in update check.
Attaching to the Customers Table<Customer>.
Making our changes and calling SubmitChanges().
ContactName in database = Vickey Rattz
Restoring changes and calling SubmitChanges().

Inserting or deleting entity class objects does not require this approach. You may merely insert or
delete an entity class object prior to calling the SubmitChanges method. See the sections “Inserts” and
“Deletes” in Chapter 14.

Summary
Well, it was a long time coming. We mentioned concurrency conflict detection and resolution countless
times in the preceding LINQ to SQL chapters. It was time for us to pay the piper and give you the scoop.

We are quite impressed with how simple LINQ to SQL has made detecting and resolving
concurrency conflicts, and we hope you are too. We hope you have found an inner peace with this often
intimidating topic.

We are nearly finished with our LINQ to SQL journey. In the next and final chapter, we will try to
wrap up LINQ to SQL with \some miscellaneous information.

C H A P T E R 18

■ ■ ■

653

Additional LINQ to SQL Capabilities

In this final LINQ to SQL chapter, we will finish up with just a few miscellaneous topics. First on the list
are database views, followed by entity class inheritance, and finally, we want to talk a little more about
transactions.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated entity classes for it. Please read and follow the instructions in
Chapter 12’s “Prerequisites for Running the Examples” section.

Using the LINQ to SQL API
To run the examples in this chapter, you may need to add the appropriate references and using
directives to your project. Please read and follow the instructions in Chapter 12’s “Using the LINQ to SQL
API” section.

Using the LINQ to XML API
Some of the examples in this chapter require the addition of a using directive for the System.Xml.Linq
namespace.

Database Views
When we generate the entity classes for the Northwind database in Chapter 12, we specify the /views
option to have entity class mappings for database views created, but we have yet to mention views and
how to query them. The entity class generation tools, SQLMetal and the Object Relational Designer,
declare a Table<T> property in the [Your]DataContext class for each database view and create a
corresponding entity class T. You query them just like tables. In general, they behave just like tables
except that they are read-only.

Because the entity classes generated for views do not contain entity class properties that are
mapped as primary keys, they are read-only. If you consider that without primary keys, the DataContext
has no effective way to provide identity tracking, this makes sense.

For example, the Northwind database has a view named Category Sales for 1997. Because of this,
SQLMetal generated a public property named CategorySalesFor1997s:

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

654

A Public Property for a Database View

public System.Data.Linq.Table<CategorySalesFor1997> CategorySalesFor1997s
{
 get
 {
 return this.GetTable<CategorySalesFor1997>();
 }
}

SQLMetal also generated a CategorySalesFor1997 entity class for us. Let’s take a look at querying a

database view in Listing 18-1.

Listing 18-1. Querying a Database View

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

IQueryable<CategorySalesFor1997> seq = from c in db.CategorySalesFor1997s
 where c.CategorySales > (decimal)100000.00
 orderby c.CategorySales descending
 select c;

foreach (CategorySalesFor1997 c in seq)
{
 Console.WriteLine("{0} : {1:C}", c.CategoryName, c.CategorySales);
}

Notice that in Listing 18-1, we query the view just like a table. Let’s take a look at the results:

Dairy Products : $114,749.78
Beverages : $102,074.31

As we mentioned, views are read-only. In Listing 18-2, we will attempt to insert a record into a view.

Listing 18-2. Attempting to Insert a Record into a View That Will Not Succeed

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");

db.CategorySalesFor1997s.InsertOnSubmit(
 new CategorySalesFor1997
 { CategoryName = "Legumes", CategorySales = 79043.92m });

Notice that in Listing 18-2 we do not even bother to call the SubmitChanges method. This is because
we know the code will not make it that far without an exception being thrown. Let’s look at the results:

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

655

Unhandled Exception: System.InvalidOperationException: Can't perform Create, Update
or Delete operations on 'Table(CategorySalesFor1997)' because it has no primary
key.

...

Allow us to provide a warning, though. Although the InsertOnSubmit and DeleteOnSubmit
methods will throw exceptions when called on a Table<T> mapped to a database view, nothing will
prevent you from making changes to a view’s entity object’s property. You can change the property’s
value and even call the SubmitChanges method without an exception being thrown, but the change to
the view’s entity object property will not be persisted to the database.

Entity Class Inheritance
So far, in all our LINQ to SQL discussion, there has been a single entity class mapped to a single table for
any table that has an entity class mapped to it. Thus, the mapping between entity classes and tables has
been one-to-one so far.

■ CCaution The example used in this section creates a data model containing Square and Rectangle classes.
Geometrically speaking, a square is a rectangle, but a rectangle is not necessarily a square. However, in the data
model created for this example, the reverse relationship is true. This class model defines a rectangle to be derived
from a square. Therefore, a rectangle is a square, but a square is not necessarily a rectangle. The reasoning for

this is explained in the text.

LINQ to SQL also offers an alternative to this, known as entity class inheritance. Entity class
inheritance allows a class hierarchy to be mapped to a single database table. For that single database
table, there must be a base entity class, and the appropriate entity class attribute mappings for the
database table must be specified. That base class will contain all properties common to every class in the
hierarchy deriving from the base class, while the derived classes will contain only the properties that are
specific to that derived class, as is typical with any object model. Here is an example of a base entity class
without mapped derived classes:

Our Base Entity Class Without Mapped Derived Classes

[Table]
public class Shape
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true,
 DbType = "Int NOT NULL IDENTITY")]
 public int Id;

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

656

 [Column(IsDiscriminator = true, DbType = "NVarChar(2)")]
 public string ShapeCode;

 [Column(DbType = "Int")]
 public int StartingX;

 [Column(DbType = "Int")]
 public int StartingY;
}

As you can see, we have specified the Table attribute, and since no Name attribute property has been

specified, the base entity class is mapped to the table by the same name as the class, so it is mapped to
the Shape table. Don’t worry that you do not have a Shape table at this time. We will use the
DataContext object’s CreateDatabase method later to create the database for us. At this time, no
derived classes have been mapped. Later, we will return to this base entity class to map some derived
classes.

The idea behind entity class inheritance is that the single database table, Shape, has a database
column whose value indicates which entity class the record should be constructed into when it is
retrieved by LINQ to SQL. That column is known as the discriminator column and is specified using the
Column attribute’s IsDiscriminator attribute property.

A value in the discriminator column is known as the discriminator value or discriminator code.
When mapping your base entity class to the database table, in addition to the Table attribute, you
specify InheritanceMapping attributes to map discriminator codes to classes derived from the base
entity class. But at this time, in the preceding Shape class, no inheritance has been mapped.

Notice that we have several public members, each being mapped to a database column, and the
database column types have been specified. Specifying the database column types is necessary in our
case, because we will be calling the CreateDatabase method later, and to do so, it must know the
appropriate type. Also notice that for the ShapeCode member, we have specified that the
IsDiscriminator attribute property is set to true, thereby making it the discriminator column. This
means the ShapeCode database column will dictate the entity class type used to construct each record
into an entity class object.

In this class, we have members for the Id, the ShapeCode, and the starting X and Y coordinates for
the shape on the screen. At this time, those are the only members we foresee being common to every
shape.

You may then create a class hierarchy by deriving classes from this base class. The derived classes
must inherit from the base entity class. The derived classes will not specify the Table attribute but will
specify Column attributes for each public member that will be mapped to the database. Here are our
derived entity classes:

Our Derived Entity Classes

public class Square : Shape
{
 [Column(DBType = "Int")]
 public int Width;
}

public class Rectangle : Square

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

657

{
 [Column(DBType = "Int")]
 public int Length;
}

First, for this example, you must forget about the geometric definition for square and rectangle; that

is, geometrically speaking, a square is a rectangle, but a rectangle is not necessarily a square. In this
entity class inheritance example, because a square’s sides must be equal, only one dimension value is
needed, width. Since a rectangle needs a width and a length, it will inherit from the square and add a
member for the length. In this sense, from a class inheritance perspective, a rectangle is a square, but a
square is not a rectangle. Although this is backward from the geometric definition, it fits our inheritance
entity class model.

The public members of each of those classes are the members deemed specific to each class. For
example, since a Square needs a width, it has a Width property. Since the Rectangle inherits from the
Square, in addition to the inherited Width property, it needs a Length property.

We now have our derived classes. All we are missing is the mapping between the discriminator
values, and the base and derived entity classes. Adding the necessary InheritanceMapping attributes,
our base class now looks like this:

Our Base Entity Class with Derived Class Mappings

[Table]
[InheritanceMapping(Code = "G", Type = typeof(Shape), IsDefault = true)]
[InheritanceMapping(Code = "S", Type = typeof(Square))]
[InheritanceMapping(Code = "R", Type = typeof(Rectangle))]

public class Shape
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true,
 DbType = "Int NOT NULL IDENTITY")]
 public int Id;

 [Column(IsDiscriminator = true, DbType = "NVarChar(2)")]
 public string ShapeCode;

 [Column(DbType = "Int")]
 public int StartingX;

 [Column(DbType = "Int")]
 public int StartingY;
}

The added mappings map the different discriminator values of the discriminator column to entity

classes. Since the ShapeCode column is the discriminator column, if a record has the value "G" in that
column, that record will get constructed into a Shape class. If a record has an "S" value in the ShapeCode
column, that record will get constructed into a Square class. And, if a record has an "R" value in the
ShapeCode column, that record will get constructed into a Rectangle class.

Additionally, there must always be a default mapping for when the discriminator column value does
not match any discriminator value mapped to an entity class. You specify which mapping is the default

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

658

with the IsDefault attribute property. In this example, the mapping to the Shape class is the default. So,
if a record has the value "Q" in the ShapeCode column, that record will get constructed into a Shape
object by default since it doesn’t match any of the specified discriminator codes.

That pretty much covers the concept and mappings of entity class inheritance. Now, let’s take a look
at the entire DataContext:

Our Entire DataContext Class

public partial class TestDB : DataContext
{
 public Table<Shape> Shapes;

 public TestDB(string connection) :
 base(connection)
 {
 }

 public TestDB(System.Data.IDbConnection connection) :
 base(connection)
 {
 }

 public TestDB(string connection,
 System.Data.Linq.Mapping.MappingSource mappingSource) :
 base(connection, mappingSource)
 {
 }

 public TestDB(System.Data.IDbConnection connection,
 System.Data.Linq.Mapping.MappingSource mappingSource) :
 base(connection, mappingSource)
 {
 }
}

[Table]
[InheritanceMapping(Code = "G", Type = typeof(Shape), IsDefault = true)]
[InheritanceMapping(Code = "S", Type = typeof(Square))]
[InheritanceMapping(Code = "R", Type = typeof(Rectangle))]
public class Shape
{
 [Column(IsPrimaryKey = true, IsDbGenerated = true,
 DbType = "Int NOT NULL IDENTITY")]
 public int Id;

 [Column(IsDiscriminator = true, DbType = "NVarChar(2)")]
 public string ShapeCode;

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

659

 [Column(DbType = "Int")]
 public int StartingX;

 [Column(DbType = "Int")]
 public int StartingY;
}

public class Square : Shape
{
 [Column(DbType = "Int")]
 public int Width;
}

public class Rectangle : Square
{
 [Column(DbType = "Int")]
 public int Length;
}

There is nothing new here other than putting the previously mentioned classes in a

[Your]DataContext named TestDB and adding some constructors for it. Now, in Listing 18-3, we will
call some code to actually create the database.

Listing 18-3. Code Creati ng Ou r Entity Class Inh eri tance Sample D at abase

TestDB db = new TestDB(@"Data Source=.\SQLEXPRESS;Initial Catalog=TestDB");
db.CreateDatabase();

That code doesn’t have any screen output, but if you check your database server, you should see a

database named TestDB with a single table named Shape. Check the Shape table to convince yourself
that no records exist. Now that we have a table, let’s create some data using LINQ to SQL in Listing 18-4.

Listing 18-4. Code Creating Some Data for Our Entity Class Inheritance Sample Database

TestDB db = new TestDB(@"Data Source=.\SQLEXPRESS;Initial Catalog=TestDB");

db.Shapes.InsertOnSubmit(new Square { Width = 4 });
db.Shapes.InsertOnSubmit(new Rectangle { Width = 3, Length = 6 });
db.Shapes.InsertOnSubmit(new Rectangle { Width = 11, Length = 5 });
db.Shapes.InsertOnSubmit(new Square { Width = 6 });
db.Shapes.InsertOnSubmit(new Rectangle { Width = 4, Length = 7 });
db.Shapes.InsertOnSubmit(new Square { Width = 9 });

db.SubmitChanges();

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

660

There is nothing new in that code. We create our DataContext and entity class objects and insert
those objects into the Shapes table. Then, we call the SubmitChanges method to persist them to the
database. After running this code, you should see the records in Table 18-1 in the Shape table in the
TestDB database.

Tab le 1 8- 1. The Results of the Previous Example

Id ShapeCode StartingX StartingY Length Width

1 S 0 0 NULL 4

2 R 0 0 6 3

3 R 0 0 5 11

4 S 0 0 NULL 6

5 R 0 0 7 4

6 S 0 0 NULL 9

Since the Id column is an identity column, the values will change if you run the code more than

once.
Now, we will perform a couple of queries on the table. First, in Listing 18-5, we will query for the

squares, which will include rectangles since rectangles inherit from squares. Then we will query for just
the rectangles:

Listing 18-5. Code Querying Our Entity Class Inheritance Sample Database

TestDB db = new TestDB(@"Data Source=.\SQLEXPRESS;Initial Catalog=TestDB");

// First we get all squares which will include rectangles.
IQueryable<Shape> squares = from s in db.Shapes
 where s is Square

 select s;

Console.WriteLine("The following squares exist.");
foreach (Shape s in squares)
{
 Console.WriteLine("{0} : {1}", s.Id, s.ToString());
}

// Now I'll get just the rectangles.
IQueryable<Shape> rectangles = from r in db.Shapes
 where r is Rectangle

 select r;

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

661

Console.WriteLine("{0}The following rectangles exist.",
System.Environment.NewLine);
foreach (Shape r in rectangles)
{
 Console.WriteLine("{0} : {1}", r.Id, r.ToString());
}

In Listing 18-5, we basically perform the same query twice, except in the first one, we query only

those records that get instantiated into squares, which includes rectangles because of our class
inheritance. In the second query, we query the records that get instantiated into rectangles, which will
exclude squares. Here are the results:

The following squares exist.
1 : LINQChapter18.Square
2 : LINQChapter18.Rectangle
3 : LINQChapter18.Rectangle
4 : LINQChapter18.Square
5 : LINQChapter18.Rectangle
6 : LINQChapter18.Square

The following rectangles exist.
2 : LINQChapter18.Rectangle
3 : LINQChapter18.Rectangle
5 : LINQChapter18.Rectangle

Entity class inheritance can be a useful technique for constructing an entity hierarchy from the
database.

Transactions
We have already told you that when the SubmitChanges method is called, if a transaction is not already
in scope, the SubmitChanges method will create a transaction for you. In doing so, all database
modifications attempted during a single SubmitChanges call will be wrapped within a single transaction.
This is very convenient, but what if you need the transaction to extend beyond the scope of a single
SubmitChanges method call?

We want to provide an example demonstrating how you would make updates made by multiple
SubmitChanges method calls enlist in the same transaction. Even better, we want the SubmitChanges
method calls to be updating different databases. In Listing 18-6, we will make changes to a record in
both the Northwind database and the TestDB database we just created in the “Entity Class Inheritance”
section. Normally, each call to the SubmitChanges method on each of those DataContext objects would
be wrapped in its own individual transaction. In our example, we want both calls to the SubmitChanges
method to be enlisted in the same transaction.

Since Listing 18-6 will have a little more going on than the typical example does, we will explain it as
we go.

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

662

■ NNote For the next example, a reference to the System.Transactions.dll assembly must be added to your

project.

Listing 18-6. Enlisting in Ambient Transactions

Northwind db = new Northwind(@"Data Source=.\SQLEXPRESS;Initial
Catalog=Northwind");
TestDB testDb = new TestDB(@"Data Source=.\SQLEXPRESS;Initial Catalog=TestDB");

Customer cust = db.Customers.Where(c => c.CustomerID == "LONEP").SingleOrDefault();
cust.ContactName = "Barbara Penczek";

Rectangle rect = (Rectangle)testDb.Shapes.Where(s => s.Id == 3).SingleOrDefault();
rect.Width = 15;

In the preceding code, we create our DataContext object for each database. We then query an
entity object from each and make a change to each entity object.
try
{
 using (System.Transactions.TransactionScope scope =
 new System.Transactions.TransactionScope())
 {
 db.SubmitChanges();
 testDb.SubmitChanges();
 throw (new Exception("Just to rollback the transaction."));
 // A warning will result because the next line cannot be reached.
 scope.Complete();
 }
}
catch (Exception ex)
{
 Console.WriteLine(ex.Message);
}

■ NNote Please be aware that since there is code after the exception is thrown, a compiler warning will be

produced since the scope.Complete method call is unreachable code.

In the preceding code, we instantiate a TransactionScope object so that there is an ambient
transaction for the DataContext objects to enlist in for each call to the SubmitChanges method. After we
call the SubmitChanges method on each DataContext, we intentionally throw an exception so that the
scope.Complete method is not called and the transaction is rolled back.

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

663

Had we not wrapped the calls to the SubmitChanges method within the scope of the
TransactionScope object, each SubmitChanges method call would have had its own transaction, and
its changes would have been committed once the call successfully completed.

Once the exception is thrown in the preceding code, the transaction goes out of scope, and since the
Complete method was not called, the transaction is rolled back. At this point, all of the changes made to
the database have been rolled back.

db.Refresh(System.Data.Linq.RefreshMode.OverwriteCurrentValues, cust);
Console.WriteLine("Contact Name = {0}", cust.ContactName);

testDb.Refresh(System.Data.Linq.RefreshMode.OverwriteCurrentValues, rect);
Console.WriteLine("Rectangle Width = {0}", rect.Width);

It is important to remember that, even though the changes were not successfully persisted to the

database, the entity objects still contain the modified data. Remember, even when the SubmitChanges
method does not complete successfully, the changes are maintained in the entity objects so that you can
resolve concurrency conflicts and call the SubmitChanges method again. In this case, the
SubmitChanges methods even completed successfully. Also, as you may recall from the “The Results Set
Cache Mismatch” section in Chapter 16, querying the objects from the database again will not result in
getting the current values from the database. The database query will only determine which entities
should be included in the results set for the query. If those entities are already cached in the
DataContext, the cached entity objects will be returned. So, to truly know what the values for the
previously queried entity objects are in the database, the entity objects must first be refreshed by calling
the Refresh method.

So, for each of the two retrieved entity objects, we first refresh it and then display to the console the
entity object property we changed to prove that the changes were indeed rolled back. Let’s look at the
results:

Just to rollback the transaction.
Contact Name = Fran Wilson
Rectangle Width = 11

As you can see, the values were rolled back in the database.

■ TTip If you get an exception of type “MSDTC on server [server]\SQLEXPRESS’ is unavailable” when working with
any of the examples using the TransactionScope object, make sure the service named Distributed Transaction

Coordinator is started.

Summary
In this chapter, we demonstrated how to perform queries on database views. Remember, they effectively
get mapped as read-only tables, so you already know how to query them.

CHAPTER 18 ■ ADDITIONAL SQL CAPABILITIES

664

Next, we covered entity class inheritance. This is a convenient technique to allow records from a single
table to be instantiated into differing but related by inheritance class objects. Last, we delved a little
deeper into transactions by demonstrating how to make your LINQ to SQL database updates enlist in
ambient transactions.

P A R T 6

■ ■ ■

665

LINQ to Entities

C H A P T E R 19

■ ■ ■

667

LINQ to Entities Introduction

Listing 19-1. A Simple Example Updating the ContactName of a Customer in the Northwind Database

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// retrieve customer LAZY K
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

// Update the contact name
cust.ContactName = "Ned Plimpton";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 context.Refresh(RefreshMode.ClientWins,
 context.Customers);
 context.SaveChanges();
}

■ NNote This example requires generation of an entity data model, which we will cover later in this chapter.

In Listing 19-1, we used LINQ to Entities to query the record whose CustomerID field is "LAZYK"
from the Northwind database’s Customers table and to return a Customer object representing that
record. We then updated the Customer object’s ContactName property and saved the change to the
database by calling the SaveChanges method. Press Ctrl+F5 to run Listing 19-1. There is no console
output, but if you check the database, you should see that the ContactName for customer LAZYK is now
"Ned Plimpton".

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

668

■ NNote This example makes a change to the data in the database without changing it back. The original value of
the ContactName for customer LAZYK is "John Steel". You should change this back so that no subsequent
examples behave improperly. You can change it manually, or you can just change the example code and run the

example again.

This book uses an extended version of the Northwind database. Please read the “Obtaining the
Appropriate Version of the Northwind Database” section later in this chapter for details.

Introducing LINQ to Entities
In Chapter 12, we explained that LINQ to SQL is an entry-level object/relational mapping system. LINQ
to Entities is part of the ADO.NET Entity Framework, which offers more flexibility and more features
than LINQ to SQL does but which has lingered behind LINQ to SQL in terms of adoption because of
increased complexity and earlier releases that lacked key features.

Listing 19-1 does the same thing as Listing 12-1, which we used to introduce LINQ to SQL. Take a
moment to compare Listings 19-1 and 12-1, and you’ll see that they look pretty similar.

The Entity Framework is designed to work with any ADO-supported database out of the box (rather
than just SQL Server) and even has its own dialect of vendor-neutral SQL that you can use as an
alternative to LINQ. In fact, the Entity Framework does so much that it could fill its own book. In this
book, we’ll show you how to get up and running with an emphasis on the parts of the Entity Framework
that relate to LINQ to Entities, but we will be barely scratching the surface of all the Entity Framework
features.

You might be confused about the names. After all, didn’t we just spend the past few chapters talking
about entity classes as part of LINQ to SQL? The answer is yes—LINQ to SQL and the Entity Framework
do some of the same things, so some terms are common to both.

Much as with LINQ to SQL, LINQ to Entities lets you work with objects that represent the data in
your database—perform LINQ queries, change values, and add and delete objects. And, just as with
LINQ to SQL, the first step toward using these features is to generate the classes that map the contents of
your database into objects—something we do by creating an entity data model (EDM). The EDM
contains the set of objects and properties that we will use to interact with our data.

In Listing 19-1, we first had to instantiate an instance of the NorthwindEntities class. That class is
derived from the System.Data.Objects.ObjectContext class, and we will cover this class in-depth in
the following chapters. This is the entry point into the EDM—much like the DataContext class is for
LINQ to SQL. The NorthwindEntities class creates the connection to the database for us when we
create a new instance and takes care of storing changes for us when we call the SaveChanges method.

Next, we retrieved a single customer from the database into a Customer object. That Customer
object is an instantiation of the Customer entity class, which is part of the entity data model. We show
you how to generate the EDM for the Northwind database later in this chapter. After we retrieved the
Customer, we updated one of the object’s properties and called the SaveChanges method to write the
changes to the database. We wrapped the SaveChanges method in a try/catch block to deal with any
potential concurrency conflicts—we’ll show you how to handle concurrency issues in Chapter 20.

Before you can run this example or any of the others in this chapter, you will need to create an entity
data model for the Northwind database. Please read the “Prerequisites for Running the Examples”
section for details.

As we did with LINQ to SQL, we will start off by giving you an overview of the key parts of LINQ to
Entities. Some of what we say about LINQ to Entities will be in the form of comparison to LINQ to SQL,

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

669

so if you have not read those chapters, you should do so before proceeding. In the first example at the
beginning of this chapter, we are using a derived ObjectContext class, which is the
NorthwindEntities class; an entity class, which is the Customer class; concurrency conflict detection
and resolution; and database updates via the SaveChanges method. We need to give you some
background on each of these components before we begin so that you will have a basic understanding of
the foundation of LINQ to Entities and the broader ADO.NET Entity Framework.

The ObjectContext
The ObjectContext class is the key to accessing an entity data model and is the equivalent of the
DataContext class that we saw in LINQ to SQL. The ObjectContext class is responsible for creating and
managing the connection to the database, tracking changes, and managing persistence. We’ll go into
etail later, but for now it is enough to know that it is the ObjectContext class that is connecting us to the
database when we create a new instance of NorthwindEntities, and it is the same class that tracks the
changes we made to the Customer object and that translates it to a SQL statement that persisted our
change when we called the SaveChanges method.

Usually, you use a class derived from ObjectContext, created for you when you generate the EDM
from a database. We show you how to do this for the Northwind database later in this chapter. The name
is chosen for you based on the name of the database, in the form [Database]Entities. You can see
from Listing 19-1 that we ended up with a class called NorthwindEntities for the Northwind database.

The derived class, [Database]Entities, will have an ObjectSet<T> property for each database
table you select when you create the EDM, where T is the type of entity class that is created to represent a
record in that table. For example, the NorthwindEntities class we used in Listing 19-1 has a public
property called Customers, which is an OrderSet<Customer>. We used this in the listing to perform a
LINQ query against the set of customers.

Entity Classes
Entity classes in the Entity Framework have a lot in common with those we covered in the LINQ to SQL
chapter. They are .NET types that provide a mapping to the relational data structure of the database. The
Entity Framework allows for very sophisticated mapping between entity classes and relational data,
which can span different databases and be abstracted in some interesting ways. We are going to keep
things simple in this book because we want to focus on the LINQ aspects—but if you need heavy-duty
ORM features, the Entity Framework is a candidate you should consider.

You will be able to detect the existence of entity classes in our examples when you see classes or
objects that have the singular form of a Northwind database table name. For example, in Listing 19-1, we
use a class named Customer. Because Customer is the singular form of Customers and the Northwind
database has a table named Customers, this is your clue that the Customer class is an entity class for the
Northwind database’s Customers table.

The entity data model Wizard, which you’ll see shortly, has an option to pluralize the names of
tables when creating entity classes—so when it finds a database table called Customers, it creates an
entity class called Customer to represent an item in that table. This is the same approach as with the
/pluralize option for SQLMetal that you saw in Chapter 12, and it can really make a difference to code
readability when it is used.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

670

Associations
An association is the term used to designate a primary key to foreign key relationship between two entity
classes. In a one-to-many relationship, the result of an association is that the parent class, the class
containing the primary key, contains a collection of the child classes, the classes having the foreign key.

The collection is stored in an EntityCollection<T>, where T is the type of the child entity class.
For many-to-many relationships, each entity class maintains an EntityCollection<T>, where T is the
other entity type in the relationship.

The entity collections are accessible using public properties with the name of the foreign key. So, for
example, to access orders associated with a customer in the Northwind database, you would access the
Customer.Orders property, which will return an EntityCollection<Order>.

The benefit of associations between entity types is that it allows you to navigate through your data
seamlessly and without having to take into account the fact that the data may be contained in multiple
tables or even across multiple databases.

Prerequisites for Running the Examples
This and the following LINQ to Entities chapters use the same extended Northwind database that we
used for the LINQ to SQL chapters. We need to generate an entity data model for the Northwind
database.

Obtaining the Appropriate Version of the Northwind Database
For consistency, we have used the same extended version of Microsoft’s Northwind sample database
that we used for the LINQ to SQL chapters. We have included the extended version of the Northwind
database with the source code for this book, which you can download from the Apress site.

Generating the Northwind Entity Data Model
You can generate EDMs either using the EdmGen command-line tool or using Visual Studio 2010. We will
show you how to use the graphical Visual Studio wizard. First, right-click your project, select Add New
Item from the pop-up context menu, and then select ADO.NET Entity Data Model from the list. Edit the
name of the data model. Since we are using the Northwind database, we used the name
NorthwindDataModel.edmx. Click the Add button, and the Entity Data Model Wizard will start, as
shown by Figure 19-1.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

671

Figure 1 9- 1 . The first screen of the Entity Data Model Wizard

You can create an entity data model from scratch or have one generated from a database. We want
to generate an EDM for the Northwind database, so select the “Generate from database” option in the
wizard, and click Next to move to the data connection screen, shown by Figure 19-2.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

672

Figure 1 9- 2 . The data connection screen from the Entity Data Model Wizard

You use this screen to select the database from which the EDM will be generated. In the figure, we
have selected the extended Northwind database, which we have previously attached to SQL Server 2008.
What you see will differ based on the location of your database. You will at least see a server name other
than shuttle, which is one of our development machines. Select the connection you want, and click
Next to move to the next wizard screen, shown by Figure 19-3.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

673

Figure 1 9- 3 . The entity data model database objects screen

In this view, you select the tables, views, and stored procedures from the database that will be
included in your EDM. You can also elect to have object names pluralized or singularized (so that objects
generated from the Customers table are called Customer, for example) and include foreign keys. For our
purposes, we want everything from the database in the model, so select all the boxes you see in Figure
19-3. Click Finish to close the wizard and generate the model. It can take a few minutes to generate the
model, but when the process has been completed, your Visual Studio should look something like Figure
19-4.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

674

Figure 19-4. The Northwind EDM

The main part of the display shows you the entity model that has been created. You can see the
properties of each entity class and the relationship between them. You will see a number of warnings
about the data model; these arise because the extended Northwind database has some omissions. We
will ignore these errors, but in a production project, you should read them carefully. Finally, note that
the EDM wizard has added some new references to your project; these are required by the Entity
Framework and should not be removed. And that’s it—you have generated an entity data model for the
extended Northwind database. In the next section, we’ll give you a very brief overview of how to use it.

Using the LINQ to Entities API
The assemblies that you need to use LINQ to Entities are added to your project automatically when you
generate the entity data model. And, unlike LINQ to SQL, you don’t need to import a namespace to use
the entity classes—the Entity Data Model Wizard generates the entity data models in the default
namespace for your project.

IQueryable<T>
You will see that in many of the examples in this chapter and the subsequent LINQ to Entities chapters,
we work with sequences of type IQueryable<T>, where T is the type of an entity class. These are the type
of sequences that are typically returned by LINQ to Entities queries—just like they are for LINQ to SQL.
They will often appear to work just like an IEnumerable<T> sequence, and that is no coincidence. The

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

675

IQueryable<T> interface implements the IEnumerable<T> interface. Here is the definition of
IQueryable<T>:

interface IQueryable<T> : IEnumerable<T>, IQueryable

Because of this inheritance, you can treat an IQueryable<T> sequence like an IEnumerable<T>

sequence.

Some Common Methods
As we demonstrate some of the features of LINQ to Entities, we need to be able to query or modify the
database external to the Entity Framework. To highlight the LINQ to Entities code and to eliminate as
many of the trivial details as possible (while at the same time providing useful examples), we have
created some common methods. Be sure to add these common methods to your source modules as
appropriate when testing the examples in the LINQ to SQL chapters.

GetStringFromDb()
A common method that will come in handy is a method to obtain a simple string from the database
using standard ADO.NET (Listing 19-2). This will allow us to examine what is actually in the database, as
opposed to what LINQ to Entities is showing us.

Listing 19-2. GetStringFromDb: A Method for Retrieving a String Using ADO.NET

static private string GetStringFromDb(string sqlQuery) {

 string connection =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated
Security=SSPI;";

 System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(connection);

 if (sqlConn.State != ConnectionState.Open) {
 sqlConn.Open();
 }

 System.Data.SqlClient.SqlCommand sqlCommand =
 new System.Data.SqlClient.SqlCommand(sqlQuery, sqlConn);

 System.Data.SqlClient.SqlDataReader sqlDataReader = sqlCommand.ExecuteReader();
 string result = null;

 try {
 if (!sqlDataReader.Read()) {

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

676

 throw (new Exception(
 String.Format("Unexpected exception executing query [{0}].",
sqlQuery)));
 } else {
 if (!sqlDataReader.IsDBNull(0)) {
 result = sqlDataReader.GetString(0);
 }
 }
 } finally {
 // always call Close when done reading.
 sqlDataReader.Close();
 sqlConn.Close();
 }

 return (result);
}

To call the GetStringFromDb method, a string containing a SQL query is passed into the method.

The method creates and opens a new connection to the database.
Next, a SqlCommand is created by passing the query and connection into the constructor. Then, a

SqlDataReader is obtained by calling the ExecuteReader method on the SqlCommand. The
SqlDataReader is read by calling its Read method, and if data was read and the returned first column’s
value is not null, then the returned first column value is retrieved with the GetString method. Finally,
the SqlDataReader and the SqlConnection are closed, and the first column value is returned to the
calling method.

ExecuteStatementInDb()
Sometimes, we will need to execute nonquery SQL statements such as insert, update, and delete in
ADO.NET to modify the state of the database external to the Entity Framework. For that purpose, we
have created the ExecuteStatementInDb method (see Listing 19-3).

Listing 19-3. ExecuteStatementInDb: A Method for Executing Insert, Updates, and Deletes in

ADO.NET

static private void ExecuteStatementInDb(string cmd) {
 string connection =
 @"Data Source=.\SQLEXPRESS;Initial Catalog=Northwind;Integrated
Security=SSPI;";

 System.Data.SqlClient.SqlConnection sqlConn =
 new System.Data.SqlClient.SqlConnection(connection);

 if (sqlConn.State != ConnectionState.Open) {
 sqlConn.Open();
 }

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

677

 System.Data.SqlClient.SqlCommand sqlComm =
 new System.Data.SqlClient.SqlCommand(cmd);

 sqlComm.Connection = sqlConn;
 try {
 Console.WriteLine("Executing SQL statement against database with ADO.NET
...");
 sqlComm.ExecuteNonQuery();
 Console.WriteLine("Database updated.");
 } finally {
 // Close the connection.
 sqlComm.Connection.Close();
 }
}

To call the ExecuteStatementInDb method, a string is passed containing a SQL command. A

SqlConnection is created followed by a SqlCommand. The SqlConnection is assigned to the
SqlCommand. The SqlConnection is then opened, and the SQL command is executed by calling the
SqlCommand object’s ExecuteNonQuery method. Finally, the SqlConnection is closed.

Summary
In this chapter, we have introduced you to the Entity Framework and LINQ to Entities, as well as to some
of the basic elements, such as ObjectContext objects, entity classes, and associations.

We showed you how to generate an entity data model for the extended Northwind database, which
contains the entity classes you will use to work with the Northwind data. These entity classes will be
used throughout the LINQ to Entities examples. We also provided a couple of common methods that
some of the examples in the subsequent LINQ to Entities chapters will rely on. The next step is to show
you how to use LINQ to Entities and the Entity Framework to perform common database operations,
and that is exactly what the next chapter is about.

CHAPTER 19 ■ LINQ TO ENTITIES INTRODUCTION

678

C H A P T E R 20

■ ■ ■

 679

LINQ to Entities Operations

In this chapter, we’ll show you how to perform the typical database operations with LINQ to Entities.
We’ll show you how to perform the following:

• Inserts

• Queries

• Updates

• Deletes

To show you how to perform these operations, we’ll need to use the ObjectContext class and
features of the entity classes. We explain these in detail in Chapter 21, but for now just remember that
the ObjectContext class maintains and manages our connection to the database, and the entity classes
represent data in database tables and the relationships between tables.

If you have read the LINQ to SQL chapters, then you will already understand a lot of the principles
that you will see in this chapter. If you have not read the LINQ to SQL part of this book, you might like to
do so now. For ease of comparison, we use the same examples when describing LINQ to Entities as we
did for LINQ to SQL wherever possible.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated an entity data model for it. Please read and follow Chapter 19’s
“Prerequisites for Running the Examples” section.

Some Common Methods
Additionally, to run the examples in this chapter, you will need some common methods that will be
utilized by the examples. Please read and follow Chapter 19’s “Some Common Methods” sections.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

680

Standard Database Operations
In this section, we show you how to perform some standard database operations. These examples are
meant to demonstrate the basic concepts. As such, they do not include error checking or exception
handling.

For example, since many of the basic operations we discuss make changes to the database, those
that make changes should detect and resolve concurrency conflicts. But, for the sake of simplicity, these
examples will not demonstrate these principles until we reach the “Managing Concurrency” section at
the end of the chapter.

Inserts
Four steps are required to perform an insert. The first is to create an ObjectContext. This is the first step
for all LINQ to Entities operations, and you’ll see us do this in all of the examples. Once you have an
object context, you can create a new instance of an entity type, for example the Customer type, and
populate its fields. The populated entity type is then added to the ObjectSet<T>. The final step is to save
the new data using the SaveChanges method. Listing 20-1 demonstrates these four steps.

Listing 20-1. The Four Steps for Inserting a Record

// step 1. Create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// Step 2. Create a new customer object
Customer cust = new Customer() {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
};

// Step 3. Add to the ObjectSet<Customer>
context.Customers.AddObject(cust);

// Step 4. Save the changes
context.SaveChanges();

// Query the record.
Customer customer = context.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);

// Reset the database so the example can be run more than once.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 681

Console.WriteLine("Deleting the added customer LAWN.");
context.DeleteObject(customer);
context.SaveChanges();

You can see that we have numbered the steps in the example code. For the first step, we create an

ObjectContext by creating a new instance of our derived class NorthwindEntities. For the second
step, we create a new instance of the Customer entity type and use object initialization to populate the
fields. In the third set, we add the new Customer instance to the collection of Customers by calling the
AddObject method on the Customers property of the ObjectContext. Remember from Chapter 19 that
this property is the ObjectSet<Customer> for our database. For the final step, we call the SaveChanges
method to store the new record in the database.

The remainder of the code queries the data to ensure that our new record has been created and then
deletes it so that you can run the example repeatedly without any problems. Wherever possible, we will
reset the database at the end of our examples.

Creating Partially Populated Entity Types
In Listing 20-1, we create a new entity type explicitly, but we could have used a different technique.
Entity Framework entity types include a static method called Create[T], where [T] is the name of the
type. For example, the Customer entity type will include a method called CreateCustomer, and the
Order entity type will include a method called CreateOrder. These methods have parameters for each
entity type field that cannot be set to null. Figure 20-1 shows the Northwind Customers table in the SQL
Server Management Studio. You can see that all the columns can contain null values except for
CustomerID and CompanyName.

Figure 20-1. The Northwind Customers table

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

682

So, the static Customer.CreateCustomer method has the following signature, with required
parameters for the field that cannot be left without values.

public static Customer CreateCustomer(
 String customerID,
 String companyName);

The advantage of using the Create[T] methods is avoid the prospect of exceptions when trying to

persist an entity type that has null for a non-nullable field. Listing 20-2 demonstrates how to create and
add a record using this technique.

Listing 20-2. Creating an Entity Type with the Create[T] Method

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// create a new customer object
Customer cust = Customer.CreateCustomer("LAWN", "Lawn Wranglers");

// populate the nullable fields
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

// add the new customer to the Customers ObjectSet
context.Customers.AddObject(cust);

// save the changes
context.SaveChanges();

// Query the record.
Customer customer = context.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);

// Reset the database so the example can be run more than once.
Console.WriteLine("Deleting the added customer LAWN.");
context.DeleteObject(customer);
context.SaveChanges();

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 683

You can see that we create the new Customer instance using the static CreateCustomer method,
supplying values for the two fields that cannot be null. We then use the public properties of the
Customer type to set the other values we need.

Inserting Attached Entity Objects
The ObjectContext class detects attachments between entity objects and ensures that they are
persisted to the database automatically when you call the SaveChanges method. Remember that entity
objects are attached when there is a foreign key relationship between them. Listing 20-3 demonstrates
how this works.

Listing 20-3. Inserting an Attached Entity Object

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO",
 Orders = {
 new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",
 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
 }
 }
};

// add the new Customer
context.Customers.AddObject(cust);

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

684

// save the changes
context.SaveChanges();

// query to make sure the record is there
Customer customer = context.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);
foreach (Order order in customer.Orders) {
 Console.WriteLine("{0} - {1}", order.CustomerID, order.OrderDate);
}

// This part of the code resets the database
context.DeleteObject(cust);
context.SaveChanges();

In the example, we created a new Customer object and initialized the Orders collection property

with a single new order. When we called the SaveChanges method, the ObjectContext persisted both
the Customer and the Order—we didn’t have to explicitly add the Order to the Orders ObjectSet.

You don’t have to create attached objects together in this way. You can create them separately and
then associate them with each other later. Listing 20-4 demonstrates how to do this.

Listing 20-4. Attaching Objects After They Have Been Created

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// create the new customer
Customer cust = new Customer {
 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
};

// create the new order
Order ord = new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 685

 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",
 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
};

// attach the order to the customer
cust.Orders.Add(ord);

// add the new Customer
context.Customers.AddObject(cust);

// save the changes
context.SaveChanges();

// query to make sure the record is there
Customer customer = context.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);
foreach (Order order in customer.Orders) {
 Console.WriteLine("{0} - {1}", order.CustomerID, order.OrderDate);
}

// This part of the code resets the database
context.DeleteObject(cust);
context.SaveChanges();

We created the Customer and Order objects separately and then attached them by calling the

Orders.Add method to place the Order in the ObjectSet<Order> collection maintained by the
Customer. When we called the SaveChanges method, the ObjectContext detected the new Order and
persisted it to the database.

In Listings 20-3 and 20-4, we associated objects in a one-to-many relationship by calling the
AddObject method on the Customer object (the one) and passed in the new Order object (the many).
You can make the association in the other direction. For example, set the value of the Order.Customer
property to be the new Customer object. The ObjectContext will still detect both new entity objects and
persist them for you. Listing 20-5 demonstrates this.

Listing 20-5. Attaching Objects in the Other Direction

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// create the new customer
Customer cust = new Customer {

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

686

 CustomerID = "LAWN",
 CompanyName = "Lawn Wranglers",
 ContactName = "Mr. Abe Henry",
 ContactTitle = "Owner",
 Address = "1017 Maple Leaf Way",
 City = "Ft. Worth",
 Region = "TX",
 PostalCode = "76104",
 Country = "USA",
 Phone = "(800) MOW-LAWN",
 Fax = "(800) MOW-LAWO"
};

// create the new order
Order ord = new Order {
 CustomerID = "LAWN",
 EmployeeID = 4,
 OrderDate = DateTime.Now,
 RequiredDate = DateTime.Now.AddDays(7),
 ShipVia = 3,
 Freight = new Decimal(24.66),
 ShipName = "Lawn Wranglers",
 ShipAddress = "1017 Maple Leaf Way",
 ShipCity = "Ft. Worth",
 ShipRegion = "TX",
 ShipPostalCode = "76104",
 ShipCountry = "USA"
};

// attach the customer to the order
ord.Customer = cust;

// add the new Order to the context
context.Orders.AddObject(ord);

// save the changes
context.SaveChanges();

// query to make sure the record is there
Customer customer = context.Customers.Where(c => c.CustomerID == "LAWN").First();
Console.WriteLine("{0} - {1}", customer.CompanyName, customer.ContactName);
Console.WriteLine("Customer has {0} orders", customer.Orders.Count());

// This part of the code resets the database
context.DeleteObject(ord);
context.DeleteObject(cust);
context.SaveChanges();

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 687

You will see that we had to delete the Customer and Order objects separately this time. If you make

the association in this direction, you have to take responsibility for deleting them explicitly. If we
compile and run this code, we get the some surprising results:

Lawn Wranglers - Mr. Abe Henry
Customer has 0 orders
Press any key to continue . . .

Huh? The Customer was found, but what happened to our Order? Well, you’ll have to wait until
Chapter 21 for an explanation. For the moment, know that the best way to attach objects in a one-to-
many relationship is by adding them to the appropriate ObjectSet on the parent side of the
relationship. Also, just because you can do something doesn’t mean you should.

Queries
Querying using LINQ to Entities is very similar to using LINQ to SQL. However, there are some wrinkles
and differences.

Basic Queries
Just like LINQ to SQL, LINQ to Entities queries return an IQueryable<T>. You can use the result of a
LINQ to Entities query just as you would a LINQ to SQL query. Listing 20-6 contains a demonstration.

Listing 20-6. Obtaining an IQueryable<T> Result from LINQ to Entities

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IQueryable<Customer> custs = from c in context.Customers
 where c.City == "London"
 select c;

foreach (Customer cust in custs) {
 Console.WriteLine("Customer: {0}", cust.CompanyName);
}

As you can see, we perform a query using the Customers property of the ObjectContext as the

source and receive an IQueryable<Customer> as the result. Here is the output from compiling and
running Listing 20-6:

Customer: Around the Horn
Customer: B's Beverages
Customer: Consolidated Holdings
Customer: Eastern Connection
Customer: North/South

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

688

Customer: Seven Seas Imports

Compiled Queries
LINQ to Entities supports compiling queries to improve performance. The static
CompiledQuery.Compile method takes a query and returns a Func that accepts an ObjectContext and
up to 16 parameters that you can use in the query. The best way of explaining this is with an example.
Listing 20-7 contains two LINQ to Entities queries that obtain the set of customers based in London and
Paris.

Listing 20-7. Similar LINQ to Entities Queries

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// query for London-based customers
IQueryable<Customer> londonCustomers = from customer in context.Customers
 where customer.City == "LONDON"
 select customer;
// print out the names of the london customers
foreach (Customer cust in londonCustomers) {
 Console.WriteLine("London customer: {0}", cust.CompanyName);
}

// query for Paris-based customers
IQueryable<Customer> parisCustomers = from customer in context.Customers
 where customer.City == "PARIS"
 select customer;
// print out the names of the Paris customers
foreach (Customer cust in parisCustomers) {
 Console.WriteLine("Paris customer: {0}", cust.CompanyName);
}

We define the same query for each city—only the name of the city changes. Running the code in

Listing 20-7 produces the following results:

London customer: Around the Horn
London customer: B's Beverages
London customer: Consolidated Holdings
London customer: Eastern Connection
London customer: North/South
London customer: Seven Seas Imports
Paris customer: Paris spécialités
Paris customer: Spécialités du monde

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 689

To create a compiled version of the query in Listing 20-7, we call the CompiledQuery.Compile
method, as shown next. The first argument is always the ObjectContext for your entity data model. The
last argument is the result from the query—in our case, an IQueryable<Customer>. The other
arguments are the parameters you want to pass to the query to make it reusable. After all, there is no
point compiling a query if you can’t use it more than once. For our example, we want to be able to
specify different cities, so we have one string argument.

Func<NorthwindEntities, string, IQueryable<Customer>> compiledQuery
 = CompiledQuery.Compile<NorthwindEntities, string, IQueryable<Customer>>(
 (ctx, city) =>
 from customer in ctx.Customers
 where customer.City == city
 select customer);

The return type from the Compile method is a Func that is strongly typed to match the types you

specified for the Compile method itself. In our case, we get a Func<NorthwindEntities, string,
IQueryable<Customer>>. Now to reuse this query, we simply call the function and supply the
parameters. Listing 20-8 shows you how to do this.

Listing 20-8. Using a Compiled LINQ to Entities Query

// define the compiled query
Func<NorthwindEntities, string, IQueryable<Customer>> compiledQuery
 = CompiledQuery.Compile<NorthwindEntities, string, IQueryable<Customer>>(
 (ctx, city) =>
 from customer in ctx.Customers
 where customer.City == city
 select customer);

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// define the cities we are interested in
string[] cities = new string[] { "London", "Paris" };

// call the compiled query for each city
foreach (string city in cities) {
 IQueryable<Customer> custs = compiledQuery(context, city);
 foreach (Customer cust in custs) {
 Console.WriteLine("{0} customer: {1}", city, cust.CompanyName);
 }
}

We define the compiled query function and then call it for each city that we are interested in. The

query is compiled the first time that we use it, which can offer a performance improvement, especially
for complex queries. The results from Listing 20-8 are shown here:

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

690

London customer: Around the Horn
London customer: B's Beverages
London customer: Consolidated Holdings
London customer: Eastern Connection
London customer: North/South
London customer: Seven Seas Imports
Paris customer: Paris spécialités
Paris customer: Spécialités du monde

Seeing the SQL Statement
It can often be useful to see the SQL statement that your LINQ to Entities query is translated into.
Unfortunately, there is no convenient way of doing this for all SQL statements that are created by an
ObjectContext instance. You can, however, see the SQL statement that a single LINQ to Entities query
will generate by casting the IQueryable<T> result from a LINQ to Entities query to the concrete
ObjectQuery class and calling the ToTraceString method. Listing 20-9 demonstrates how to do this.

Listing 20-9. Displaying the SQL Statement

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// query for London-based customers
IQueryable<Customer> londonCustomers = from customer in context.Customers
 where customer.City == "LONDON"
 select customer;

// ensure that the database connection is open
if (context.Connection.State != ConnectionState.Open) {
 context.Connection.Open();
}

// display the sql statement
string sqlStatement = (londonCustomers as ObjectQuery).ToTraceString();
Console.WriteLine(sqlStatement);

In Listing 20-9, we define a query that will select all the Northwind customers that are based in

London. We then make sure that there is an open connection to the database. We’ll cover the
ObjectContext members we used to do this in detail in Chapter 21, but for now just know that you will
get an exception if you try to get the SQL statement from a query without an open connection.

To get the SQL statement, we cast the IQueryable<Customer> that is the result enumeration from
the LINQ query to an ObjectQuery and call the ToTraceString method. This returns a string containing
the SQL statement that our query is translated into, which we write to the console. Compiling and
running the code in Listing 20-9 gives the following output:

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 691

SELECT
[Extent1].[CustomerID] AS [CustomerID],
[Extent1].[CompanyName] AS [CompanyName],
[Extent1].[ContactName] AS [ContactName],
[Extent1].[ContactTitle] AS [ContactTitle],
[Extent1].[Address] AS [Address],
[Extent1].[City] AS [City],
[Extent1].[Region] AS [Region],
[Extent1].[PostalCode] AS [PostalCode],
[Extent1].[Country] AS [Country],
[Extent1].[Phone] AS [Phone],
[Extent1].[Fax] AS [Fax]
FROM [dbo].[Customers] AS [Extent1]
WHERE N'LONDON' = [Extent1].[City]

Getting hold of the SQL statement this way doesn’t execute the query—it just translates from a LINQ
to Entities query to a SQL statement. We’ll readily admit that this is an inelegant technique. Although we
do use this approach, we tend to favor the SQL Server Profiler. If you don’t have this tool (it is not
included with the Express edition that ships with Visual Studio 2010, for example), then we recommend
the free, open source SQL profiler from Anjlab, which you can find at
http://sites.google.com/site/sqlprofiler. Using a profiler allows you to see all the SQL
statements sent to your database and not just do so on a per-query basis.

Loading Related Objects
Entity types are associated when there is a foreign-key relationship between them. Entity objects (that is,
instances of entity types) are related to one another through a specific foreign key value. For example,
the Northwind Customer and Order entity types are associated, and the Customer object for Round the
Horn and the Order objects for Round the Horn are related. LINQ to Entities makes it easy to navigate
through your data by automatically dealing associations for you . Behind-the-scenes related objects are
loaded so that your code work seamlessly. However, it is worth paying attention to how related objects
are being loaded.

Lazy Loading
Lazy object loading is the default behavior for LINQ to Entities. Related objects are loaded only from the
database when you access the association property in an entity type. You never load data that you don’t
want—this is a just-in-time loading strategy—but it means that you can end up with a surprising
number of SQL queries being generated by your code. Listing 20-10 demonstrates this issue.

Listing 20-10. The Effect of Lazy Object Loading

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IQueryable<Customer> custs = from c in context.Customers
 where c.Country == "UK" &&
 c.City == "London"

http://sites.google.com/site/sqlprofiler
Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

692

 orderby c.CustomerID
 select c;

foreach (Customer cust in custs) {
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 Order firstOrder = cust.Orders.First();
 Console.WriteLine(" {0}", firstOrder.OrderID);
}

In Listing 20-10, we query for customers who are in London, UK and order the results by the

CustomerID field. We then write out the company name and contact name for each company, along
with the OrderID of the first order associated with the customer. Compiling and running the code in
Listing 20-10 produces the following results—there are six matching customers:

Around the Horn - Thomas Hardy
 10355
B's Beverages - Victoria Ashworth
 10289
Consolidated Holdings - Elizabeth Brown
 10435
Eastern Connection - Ann Devon
 10364
North/South - Simon Crowther
 10517
Seven Seas Imports - Hari Kumar
 10359

Cleverly, the Orders related to each Customer are not loaded until we access the Customer.Orders
field. When we do this, the Entity Framework seamlessly queries the database and loads the data we
want—nice and easy. None of the other entity objects related to the Customer type has been loaded.

Depending on your project, this approach is either genius or total madness. It can be genius
because you get just what you need from the database just when you need it. It can be madness because
even a simple LINQ query can result in many queries to the database. In the case of Listing 20-10, we end
up generating up to seven SQL queries—one to get the list of London, UK–based customers and then six
to get the set of orders for customer that matched. For some projects, seven queries for such a simple
piece of code would be too many, and in the following sections, we’ll show you some alternative
approaches.

We said up to seven queries for Listing 20-10 because the Entity Framework caches data to improve
performance. Some of the data that would otherwise have led to a request may already be cached. You
can disable lazy loading by setting an option in the ObjectContext as follows:

context.ContextOptions.LazyLoadingEnabled = false;

You will cause an exception if you disable lazy loading and attempt to access a related entity

object—unless you use one of the other techniques shown next to ensure that the data is loaded.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 693

Eager Loading
When you know exactly what data you require when you code, as we did in the previous listing, you can
use the Include method to load related entity objects as part of your LINQ to Entities query. You apply
the Include method to your query, specifying the name of the association property between the type
you are querying and the type you want to load as a string—in our case, the property that associated the
Customer type with the Order type is the Orders property, so we would call the Include method with
the string argument "Orders". Listing 20-11 demonstrates eager loading for the query we used in Listing
20-10.

Listing 20-11. Eager Loading of the Orders Data

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IQueryable<Customer> custs = from c in context.Customers
 .Include("Orders")
 where c.Country == "UK" &&
 c.City == "London"
 orderby c.CustomerID
 select c;

foreach (Customer cust in custs) {
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 Order firstOrder = cust.Orders.First();
 Console.WriteLine(" {0}", firstOrder.OrderID);
}

When we compile and run the code in Listing 20-11, we get the same results as for Listing 20-10, but

only one SQL query is issued to the database, shown here:

[Project1].[Freight] AS [Freight],
[Project1].[ShipName] AS [ShipName],
[Project1].[ShipAddress] AS [ShipAddress],
[Project1].[ShipCity] AS [ShipCity],
[Project1].[ShipRegion] AS [ShipRegion],
[Project1].[ShipPostalCode] AS [ShipPostalCode],
[Project1].[ShipCountry] AS [ShipCountry]
FROM (SELECT
 [Extent1].[CustomerID] AS [CustomerID],
 [Extent1].[CompanyName] AS [CompanyName],
 [Extent1].[ContactName] AS [ContactName],
 [Extent1].[ContactTitle] AS [ContactTitle],
 [Extent1].[Address] AS [Address],
 [Extent1].[City] AS [City],
 [Extent1].[Region] AS [Region],
 [Extent1].[PostalCode] AS [PostalCode],
 [Extent1].[Country] AS [Country],

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

694

 [Extent1].[Phone] AS [Phone],
 [Extent1].[Fax] AS [Fax],
 1 AS [C1],
 [Extent2].[OrderID] AS [OrderID],
 [Extent2].[CustomerID] AS [CustomerID1],
 [Extent2].[EmployeeID] AS [EmployeeID],
 [Extent2].[OrderDate] AS [OrderDate],
 [Extent2].[RequiredDate] AS [RequiredDate],
 [Extent2].[ShippedDate] AS [ShippedDate],
 [Extent2].[ShipVia] AS [ShipVia],
 [Extent2].[Freight] AS [Freight],
 [Extent2].[ShipName] AS [ShipName],
 [Extent2].[ShipAddress] AS [ShipAddress],
 [Extent2].[ShipCity] AS [ShipCity],
 [Extent2].[ShipRegion] AS [ShipRegion],
 [Extent2].[ShipPostalCode] AS [ShipPostalCode],
 [Extent2].[ShipCountry] AS [ShipCountry],
 CASE WHEN ([Extent2].[OrderID] IS NULL) THEN CAST(NULL AS int) ELSE 1 END AS
[C2]
 FROM [dbo].[Customers] AS [Extent1]
 LEFT OUTER JOIN [dbo].[Orders] AS [Extent2] ON [Extent1].[CustomerID] =
[Extent2].[CustomerID]
 WHERE (N'UK' = [Extent1].[Country]) AND (N'London' = [Extent1].[City])
) AS [Project1]
ORDER BY [Project1].[CustomerID] ASC, [Project1].[C2] ASC

You can eagerly load any number of related entity types by applying the Include method for each
type you want to eagerly load. Listing 20-12 shows a query for Orders that eagerly loads the related
Shipper and Customer entity types.

Listing 20-12. Eagerly Loading Multiple Related Entity Types

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IQueryable<Order> orders = context.Orders
 .Include("Shipper")
 .Include("Customer")
 .Where(c => c.ShipCountry == "France")
 .Select(c => c);

foreach (Order ord in orders) {
 Console.WriteLine("OrderID: {0}, Shipper: {1}, Contact: {2}",
 ord.OrderID,
 ord.Shipper.CompanyName,

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 695

 ord.Customer.ContactName);
}

In the LINQ query, we Include the Shipper and Customer entity types, which results in one SQL

query to the database, even though we access fields from three different entity types. The results from
running this query are shown here:

OrderID: 10248, Shipper: Federal Shipping, Contact: Paul Henriot
OrderID: 10251, Shipper: Speedy Express, Contact: Mary Saveley
OrderID: 10265, Shipper: Speedy Express, Contact: Frédérique Citeaux
OrderID: 10274, Shipper: Speedy Express, Contact: Paul Henriot
OrderID: 10295, Shipper: United Package, Contact: Paul Henriot
OrderID: 10297, Shipper: United Package, Contact: Frédérique Citeaux
OrderID: 10311, Shipper: Federal Shipping, Contact: Janine Labrune
OrderID: 10331, Shipper: Speedy Express, Contact: Laurence Lebihan
...

Explicit Loading
If you want total control, then explicit loading is for you. You specify which related entity objects are
loaded by using the EntityCollection.Load method. Listing 20-13 demonstrates how to selectively
load related entity objects.

Listing 20-13. Explicit Loading to Control Database Queries

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// disable lazy loading
context.ContextOptions.LazyLoadingEnabled = false;

IQueryable<Customer> custs = context.Customers
 .Where(c => c.Country == "UK" && c.City == "London")
 .OrderBy(c => c.CustomerID)
 .Select(c => c);

// explicitly load the orders for each customer
foreach (Customer cust in custs) {
 if (cust.CompanyName != "North/South") {
 cust.Orders.Load();
 }
}

foreach (Customer cust in custs) {
 Console.WriteLine("{0} - {1}", cust.CompanyName, cust.ContactName);
 // check to see that the order data is loaded for this customer

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

696

 if (cust.Orders.IsLoaded) {
 Order firstOrder = cust.Orders.First();
 Console.WriteLine(" {0}", firstOrder.OrderID);
 } else {
 Console.WriteLine(" No order data loaded");
 }
}

To use explicit loading, you must disable lazy loading. Otherwise, the Entity Framework will load
related objects automatically for you anyway. In the example, we perform a LINQ query for all London,
UK customers and then explicitly load the related Orders for all of them except the one called
North/South. We then enumerate the results again and print out the data we require, using the
IsLoaded method to determine whether the related objects have been loaded. Using explicit loading can
be error-prone unless you carefully check that objects have been loaded before accessing them. But if
you need full control over which data is loaded, then this is an ideal solution.

Querying Views
When you generate an entity data model for your database, you can elect to include support for any
views that might exist. If you followed our instructions in the previous chapter, you selected all the views
in the Northwind database when generating the entity data model for the examples.

Querying a view is just like querying a table. Listing 20-14 demonstrates the use of the Customers
and Suppliers by City view from the Northwind database.

Listing 20-14. Using LINQ to Query a Database View

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IQueryable<Customer_and_Suppliers_by_City> res
 = context.Customer_and_Suppliers_by_Cities
 .Where(c => c.City == "LONDON")
 .Select(c => c);

foreach (Customer_and_Suppliers_by_City r in res) {
 Console.WriteLine("{0}, {1}", r.CompanyName, r.ContactName);
}

The entity data model defines an entity type called Customer_and_Suppliers_by_City, which is

collected in the ObjectContext property Customer_and_Suppliers_by_Cities. The view name has
been pluralized by the Entity Data Model Wizard, and this can be disabled when the model is generated.
Aside from the unwieldy type names, querying a view is just like querying a table—the results of
compiling and running the code in Listing 20-14 are shown here:

Around the Horn, Thomas Hardy
B's Beverages, Victoria Ashworth
Consolidated Holdings, Elizabeth Brown
Eastern Connection, Ann Devon
Exotic Liquids, Charlotte Cooper

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 697

North/South, Simon Crowther
Seven Seas Imports, Hari Kumar

Querying Stored Procedures
Using stored procedures is not as simple as using views. You have to explicitly import a stored procedure
into your entity data model. But don’t worry—Visual Studio does most of the hard work for you. The first
step to importing a stored procedure is to open the Model Browser window in Visual Studio 2010. Select
View Other Windows Entity Data Model Browser. Figure 20-2 shows you the browser for the
Northwind entity data model.

Figure 20-2. The Visual Studio Model Browser

We are going to import and use the Customers_By_City stored procedure, which is highlighted in
Figure 20-2. To start the import, simply double-click the stored procedure name to open the Add
Function Import dialog box, which is shown in Figure 20-3.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

698

Figure 20-3. The Add Function Import dialog box

You can set the name of the ObjectContext property that will be used to call the stored procedure
by changing the Function Import Name value. We are happy with the default name for this example.
The most important thing is to set the result type for the stored procedure. If the procedure returns the
fields required to populate a preexisting entity type, then you can select that type from the drop-down
box. Equally, if there is no return type or the procedure returns a collection of scalar types, you can
specify that behavior in this dialog box.

The stored procedure we want to use doesn’t map conveniently to an existing entity type—so we
will have a new type created as part of the procedure import. To do this, click the Get Column
Information button, and then click the Create New Complex Type button. The dialog box should look
something like the one shown in Figure 20-4.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 699

Figure 20-4. Generating a new complex type to support a stored procedure

You can change the name of the new type, but we are happy with the default. All that remains now is
to click the OK button. You should now see two new entries in the Model Browser—one for the
imported procedure and one for the new result type. You can see this in Figure 20-5.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

700

Figure 20-5. An imported stored procedure and a new complex result type

Now that we have imported the stored procedure, we can call it through the new method
Customers_By_City in the derived ObjectContext class. In our case, our stored procedure takes a
single parameter (the name of the city to query for) and returns a sequence of the new complex type that
was created for us—an IEnumerable<Customers_By_City_Result> in this case. Listing 20-15
demonstrates how to use the stored procedure to get the details of the customers based in London.

Listing 20-15. Querying an Imported Stored Procedure

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

IEnumerable<Customers_By_City_Result> custs = context.Customers_By_City("London");

foreach (Customers_By_City_Result cust in custs) {
 Console.WriteLine("{0}, {1}", cust.CompanyName, cust.ContactName);
}

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 701

Joins
The way that the Entity Framework handles associations and related objects can be incredibly intuitive
and useful, but it works only where there are foreign-key relationships in the database. When you need
to query between types that are not associated, then you will need to explicitly join tables.

Inner Joins
Performing joins with LINQ to Entities is just like you saw with LINQ to SQL in Chapter 14; you use the
join operator. As is typical with an inner join, any records in the outer results set will be omitted if a
matching record does not exist in the inner results set. Listing 20-16 contains an example.

Listing 20-16. A LINQ to Entities Inner Join

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

var entities = from s in context.Suppliers
 join c in context.Customers on s.City equals c.City
 select new {
 SupplierName = s.CompanyName,
 CustomerName = c.CompanyName,
 City = c.City
 };

foreach (var e in entities) {
 Console.WriteLine("{0}: {1} - {2}", e.City, e.SupplierName, e.CustomerName);
}

In Listing 20-16, we performed an inner join on the suppliers and the customers. If a customer

record doesn’t exist with the same city as a supplier, the supplier record will be omitted from the results
set. Here are the results of Listing 20-16:

London: Exotic Liquids - Around the Horn
London: Exotic Liquids - B's Beverages
London: Exotic Liquids - Consolidated Holdings
London: Exotic Liquids - Eastern Connection
London: Exotic Liquids - North/South
London: Exotic Liquids - Seven Seas Imports
Sao Paulo: Refrescos Americanas LTDA - Comércio Mineiro
Sao Paulo: Refrescos Americanas LTDA - Familia Arquibaldo
Sao Paulo: Refrescos Americanas LTDA - Queen Cozinha
Sao Paulo: Refrescos Americanas LTDA - Tradição Hipermercados
Berlin: Heli Süßwaren GmbH & Co. KG - Alfreds Futterkiste
Paris: Aux joyeux ecclésiastiques - Paris spécialités
Paris: Aux joyeux ecclésiastiques - Spécialités du monde
Montréal: Ma Maison - Mère Paillarde

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

702

As you can see, despite that some suppliers are in the output with multiple matching customers,
some suppliers are not in the list at all. This is because there were no customers in the same city as the
missing suppliers. If we need to still see the supplier regardless of whether there is a matching customer,
we need to perform an outer join.

Outer Joins
As with LINQ to SQL, the DefaultIfEmpty standard query operator can be used in LINQ to Entities to
perform outer joins. In Listing 20-17, we will use the into clause to direct the matching join results into
a temporary sequence that we will subsequently call the DefaultIfEmpty operator on. This way, if the
record is missing from the joined results, a default value will be provided.

Listing 20-17. A LINQ to Entities Outer Join

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

var entities =
 from s in context.Suppliers
 join c in context.Customers on s.City equals c.City into temp
 from t in temp.DefaultIfEmpty()
 select new {
 SupplierName = s.CompanyName,
 CustomerName = t.CompanyName,
 City = s.City
 };

foreach (var e in entities) {
 Console.WriteLine("{0}: {1} - {2}", e.City, e.SupplierName, e.CustomerName);
}

Notice that in the join statement in Listing 20-17, we direct the join results into the temporary

sequence named temp. That temporary sequence name can be whatever you want, as long as it doesn’t
conflict with any other name or keyword. Then we perform a subsequent query on the results of the
temp sequence passed to the DefaultIfEmpty operator. If we trace the SQL statement sent to the
database, we see the following:

SELECT
1 AS [C1],
[Extent1].[CompanyName] AS [CompanyName],
[Extent2].[CompanyName] AS [CompanyName1],
[Extent1].[City] AS [City]
FROM [dbo].[Suppliers] AS [Extent1]
LEFT OUTER JOIN [dbo].[Customers] AS [Extent2] ON ([Extent1].[City] =
[Extent2].[City]) OR (([Extent1].[City] IS NULL) AND ([Extent2].[City] IS NULL))

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 703

If you compare this to the SQL statement generated by LINQ to SQL in Chapter 14 for the same
outer query, you will notice that LINQ to Entities translates the query differently. Running the code in
Listing 20-17 gives us the following results:

London: Exotic Liquids - Around the Horn
London: Exotic Liquids - B's Beverages
London: Exotic Liquids - Consolidated Holdings
London: Exotic Liquids - Eastern Connection
London: Exotic Liquids - North/South
London: Exotic Liquids - Seven Seas Imports
New Orleans: New Orleans Cajun Delights -
Ann Arbor: Grandma Kelly's Homestead -
Tokyo: Tokyo Traders -
Oviedo: Cooperativa de Quesos 'Las Cabras' -
Osaka: Mayumi's -
Melbourne: Pavlova, Ltd. -
Manchester: Specialty Biscuits, Ltd. -
Göteborg: PB Knäckebröd AB -
Sao Paulo: Refrescos Americanas LTDA - Comércio Mineiro
Sao Paulo: Refrescos Americanas LTDA - Familia Arquibaldo
Sao Paulo: Refrescos Americanas LTDA - Queen Cozinha
Sao Paulo: Refrescos Americanas LTDA - Tradição Hipermercados
Berlin: Heli Süßwaren GmbH & Co. KG - Alfreds Futterkiste
Frankfurt: Plutzer Lebensmittelgroßmärkte AG -
Cuxhaven: Nord-Ost-Fisch Handelsgesellschaft mbH -
Ravenna: Formaggi Fortini s.r.l. -
Sandvika: Norske Meierier -
Bend: Bigfoot Breweries -
Stockholm: Svensk Sjöföda AB -
Paris: Aux joyeux ecclésiastiques - Paris spécialités
Paris: Aux joyeux ecclésiastiques - Spécialités du monde
Boston: New England Seafood Cannery -
Singapore: Leka Trading -
Lyngby: Lyngbysild -
Zaandam: Zaanse Snoepfabriek -
Lappeenranta: Karkki Oy -
Sydney: G'day, Mate -
Montréal: Ma Maison - Mère Paillarde
Salerno: Pasta Buttini s.r.l. -
Montceau: Escargots Nouveaux -
Annecy: Gai pâturage -
Ste-Hyacinthe: Forêts d'érables -
: Sharp As You Like -

As you can see in the output of Listing 20-17, we got at least one record for every supplier, and you
can see that some suppliers do not have a matching customer, thereby proving the outer join was

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

704

performed. But, if there is any doubt, you can see the actual generated SQL statement, and that clearly is
performing an outer join.

Updates
Updating entity types is as simple as changing the properties of an entity object, calling the
SaveChanges method of the ObjectContext and, if needed, resolving any concurrency conflicts. We
explain how the Entity Framework handles concurrency issues later in this chapter. Listing 20-18 shows
a simple example of an update.

Listing 20-18. A Simple Entity Object Update

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// Retrieve customer LAZYK.
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).Single<Customer>();

// Update the contact name.
cust.ContactName = "Ned Plimpton";

// save the changes
context.SaveChanges();

// restore the database
cust.ContactName = "John Steel";
context.SaveChanges();

In Listing 20-18, we query to find the Customer with the CustomerID of LAZYK and change the

ContactName value to Ned Plimpton. We then call the SaveChanges method to persist this change to
the database. We want to restore the database, so we change the ContactName back to John Steel and
call the SaveChanges method again, leaving the database as we found it.

Updating Associated Objects
The Entity Framework takes care of managing the relationships between associated data types. You
simply have to make the changes you require and call the SaveChanges method. Listing 20-19 contains
an example.

Listing 20-19. Updating an Associated Type Relationship

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Order order = (from o in context.Orders
 where o.EmployeeID == 5

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 705

 orderby o.OrderDate descending
 select o).First<Order>();

// Save off the current employee so we can reset it at the end.
Employee origEmployee = order.Employee;

Console.WriteLine("Before changing the employee.");
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order.OrderID, order.OrderDate, order.Employee.EmployeeID);

Employee emp = (from e in context.Employees
 where e.EmployeeID == 9
 select e).Single<Employee>();

// Now we will assign the new employee to the order.
order.Employee = emp;

context.SaveChanges();

Order order2 = (from o in emp.Orders
 where o.OrderID == order.OrderID
 select o).First<Order>();

Console.WriteLine("{0}After changing the employee.", System.Environment.NewLine);
Console.WriteLine("OrderID = {0} : OrderDate = {1} : EmployeeID = {2}",
 order2.OrderID, order2.OrderDate, order2.Employee.EmployeeID);

// Now we need to reverse the changes so the example can be run multiple times.
order.Employee = origEmployee;
context.SaveChanges();

Listing 20-19 is the same example that we used to demonstrate updating associated classes for LINQ

to SQL, but it updates the code to use the LINQ to Entities. We query to find an Order and update the
relationship with the Employee type before restoring the database to its original state. As with LINQ to
SQL, LINQ to Entities takes care of managing the changes in the relational data based on the
associations in your entity objects.

Deletes
To delete a record from the database, you simply pass the entity object that represent that record as an
argument to the ObjectContext.DeleteObject method. Listing 20-20 shows an example of using this
method.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

706

■ CCaution The examples in this section do not restore the database to its original state. You should detach your
Northwind database from SQL Server 2008 and attach the original version you downloaded so that you can run the

other examples without getting unexpected results.

Listing 20-20. Deleting a Record by Deleting an Entity Object

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// get the order details for order 10248
IQueryable<Order_Detail> ods = from o in context.Order_Details
 where o.OrderID == 10248
 select o;

// print out the query results
Console.WriteLine("Before deletion");
foreach (Order_Detail od in ods) {
 Console.WriteLine("Order detail {0}, {1}, {2}",
 od.ProductID, od.UnitPrice, od.Quantity);
}

// delete the first order detail
context.DeleteObject(ods.First());

// save the changes
context.SaveChanges();

// print out the query results
Console.WriteLine("After deletion");
foreach (Order_Detail od in ods) {
 Console.WriteLine("Order detail {0}, {1}, {2}",
 od.ProductID, od.UnitPrice, od.Quantity);
}

In Listing 20-20, we query for all the Order_Detail entity objects with an OrderID value of 10248.

We select the first of these with the First method and then pass it as an argument to the
ObjectContext.DeleteObject method. To make the change persistent, we call the
ObjectContext.SaveChanges method, which issues the delete command to the database.

The EntitySet class also has a DeleteObject method, which means you can get the same effect as
in Listing 20-20 by using the entity object that represents the table you want to delete a record from.
Listing 20-21 contains an example of this.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 707

Listing 20-21. Deleting a Record Using the EntitySet Class

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// get the order details for order 10248
IQueryable<Order_Detail> ods = from o in context.Order_Details
 where o.OrderID == 10248
 select o;

// print out the query results
Console.WriteLine("Before deletion");
foreach (Order_Detail od in ods) {
 Console.WriteLine("Order detail {0}, {1}, {2}",
 od.ProductID, od.UnitPrice, od.Quantity);
}

// delete the first order detail
context.Order_Details.DeleteObject(ods.First());

// save the changes
context.SaveChanges();

// print out the query results
Console.WriteLine("After deletion");
foreach (Order_Detail od in ods) {
 Console.WriteLine("Order detail {0}, {1}, {2}",
 od.ProductID, od.UnitPrice, od.Quantity);
}

In Listing 20-21 we perform the same query as in Listing 20-20 but use the

EntitySet.DeleteObject method. Since we want to delete an instance of the Order_Detail entity
type, we call the DeleteObject method on the Order_Details property of the ObjectContext, which is
the EntitySet that represents the Order_Details table in the database. Compiling and running the
code in Listings 20-20 and 20-21 gives us the same results, as shown here:

Before deletion
Order detail 11, 14.0000, 12
Order detail 42, 9.8000, 10
Order detail 72, 34.8000, 5
After deletion
Order detail 42, 9.8000, 10
Order detail 72, 34.8000, 5

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

708

Deleting Related Objects
Deleting an entity object in the Entity Framework doesn’t automatically delete related objects. You must
be careful when deleting an entity object that has related objects—depending on the schema for your
database, you will either create orphaned data (data that has a foreign key reference to a primary key
that no longer exists) or receive an exception for violating a constrain in your schema.

Listing 20-22 demonstrates what happens when you delete an object without handling any related
objects. In this case, we have tried to delete an Order entity object.

Listing 20-22. Deleting an Entity Object Without Dealing with Related Objects

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// query for the first order for LAZYK
Order firstOrder = context.Orders
 .Where(o => o.CustomerID == "LAZYK")
 .Select(o => o)
 .First();

// delete the order
context.DeleteObject(firstOrder);

// save the changes
context.SaveChanges();

Compiling and running the code in Listing 20-22 gives us the following exception:

Unhandled Exception: System.Data.UpdateException: An error occurred while updating
the entries. See the inner exception
for details. ---> System.Data.SqlClient.SqlException: The DELETE statement
conflicted with the REFERENCE constraint "FK_
Order_Details_Orders". The conflict occurred in database "Northwind", table
"dbo.Order Details", column 'OrderID'.
The statement has been terminated.

What has happened? Well, we violated a schema constraint in the database. The exception tells us
that there is a constraint called FK_Order_Details_Orders in the Order Details table. Figure 20-6
shows us that if we look at the database using SQL Server Management Studio, we can see that the
Enforce Foreign Key Constraint option is set to Yes, meaning that we can’t delete an Order while there
are still related records in the Order Details table.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 709

Figure 20-6. A foreign key constraint

■ TTip SQL Server Management Studio isn’t installed with SQL Server Express when you use the Visual Studio

2010 installer. You can download SQL Server Management Studio free of charge from Microsoft.

There are two approaches to safely deleting related objects. You can do it manually, or you can use
cascade deletes in the database and your entity data model to handle it automatically. We prefer the
automatic approach, but since there are times when you can’t modify the database schema, we find that
we often have to use the manual approach anyway. We’ll show you both methods now.

Manually Deleting Related Objects
Perhaps the simplest way of deleting related objects is to simply pass each of them to the
ObjectContext.DeleteObject method. You need to be careful when doing this. First, you need to
make sure that the order you delete them in doesn’t violate a scheme constraint. For example, if we want
to delete an Order, we have to delete the related Order_Detail objects first and then delete the Order.
You’ll get an exception just like the one we saw earlier if you do it the other way around.

Second, you need to make sure you delete them all—you can’t leave any behind; otherwise, you’ll
get an exception or create some rows of orphaned data.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

710

Finally, you need to make sure that your related objects don’t have their own related objects.
Complex databases can have lots of foreign key relationships, and you need to unpick them all to be able
to delete a graph of objects correctly.

So, if we want to manually delete an Order, we have to delete all the related Order_Detail objects
first. Listing 20-23 shows you how this is done.

Listing 20-23. Manually Deleting a Graph of Related Objects

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// query for the first order for LAZYK
Order firstOrder = context.Orders
 .Where(o => o.OrderID == 10248)
 .Select(o => o)
 .First();

// delete the Order_Detail objects for the order
foreach (Order_Detail od in firstOrder.Order_Details.ToArray()) {
 Console.WriteLine("Deleting order detail {0}, {1}, {2}, {3}",
 od.OrderID, od.ProductID, od.UnitPrice, od.Quantity);
 context.DeleteObject(od);
}

// delete the order
context.DeleteObject(firstOrder);

// save the changes
context.SaveChanges();

In this example, we query for the Order object that has the OrderID of 10248. We have picked this

one because it has more than one related Order_Detail in the database. We enumerate the
Order_Detail objects and delete them one by one, before then deleting the Order.

You’ll notice that we call the ToArray method on the Order_Details EntityCollection and
enumerated the result. If we had not done this, we would have been deleting objects from the
enumeration we were processing and received an exception after deleting the first Order_Details
object.

Cascade Deleting Related Objects
The other way of handling related object deletion is to use cascade deletes. A cascade delete means that
when we delete a record from the database, such as for an Order, related rows that have a foreign key
relationship, such as Order Details, will also be deleted automatically. To demonstrate how this would
work for the deletion in Listing 20-23, we need to enable the cascade deletes feature on the database and
in the EDM. We’ll show you how to do this for our Northwind examples, but the fine detail is likely to be
slightly different for your own projects.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 711

■ NNote You must enable cascade deletes in the database and in your entity data model for each foreign key

relationship you want to change.

Enabling Cascade Deletes in the Northwind Database

Connect to your SQL Server using the SQL Server Management Studio, and navigate to
FK_Order_Details_Orders in the Database/NorthwindTables/dbo.Order Details/Keys folder, as
shown by Figure 20-7.

Figure 20-7. The FK_Order_Details_Orders key item

We know that this is the item we want because it was the one mentioned in the exception we got
from Listing 20-22. Right-click and select Modify. Expand the INSERT and UPDATE Specification part

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

712

of the tree, and change the setting for Delete Rule to be Cascade. Figure 20-8 shows you what this
looks like.

Figure 20-8. Modifying a key constraint with SQL Server Management Studio

Once you have made the change, click the Close button, and then select Save Order Details or Save
All from the File menu. We have now told the database that when we delete a row from the Orders table,
we want it to automatically delete rows from the Order Details table that use the same key/foreign key
value.

Enabling Cascade Deletes in the Entity Data Model

We have enabled the cascade deletes for the Order_Details table in the database, and now we have to do
the same for the Order_Detail entity type in the entity data model. It would be nice if the Entity Data
Model Wizard would detect cascade deletes for us when it generates or updates the model, but sadly, it
doesn’t, so we have to do it ourselves.

We need to modify the model to match the database so that the data cached by the Entity
Framework is handled properly. If you change the database but not the entity data model, then you end
up with cached entity objects that do not map to rows in the database—not good.

First, open the entity data model by double-clicking the EDMX file in the Solution Explorer. Open
the Model Browser window by selecting View Other Windows Entity Data Model Browser in Visual
Studio 2010. Open to tree view to NorthwindDataModel/NorthwindModel/Associations. You will see
the FK_Order_Details_Orders item in the list, as shown in Figure 20-9.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 713

Figure 20-9. Browsing the foreign key constraint

Select the FK_Order_Details_Orders item to open the details in the Properties window, and
change the value of End1 OnDelete to Cascade, as shown by Figure 20-10.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

714

Figure 20-10. Changing the OnDelete action

Once you have made the change, be sure to select Save NorthwindDataModel.edmx from the Visual
Studio 2010 File menu. Now that we have changed both the database and the data model, we can delete
Order entity objects, and the related Order_Details will be deleted for us automatically. Listing 20-24
demonstrates this.

Listing 20-24. Deleting with Cascades Enabled

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// query for the order
Order firstOrder = context.Orders
 .Where(o => o.OrderID == 10248)
 .Select(o => o)
 .First();

// delete the order
context.DeleteObject(firstOrder);

// save the changes
context.SaveChanges();

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 715

Managing Concurrency
By default, the Entity Framework uses an optimistic concurrency model. It’s optimistic in the sense that
it hopes that no one else will modify your data while you are using it and saves changes to the database
without checking to see whether anyone else has changed it. Listing 20-25 demonstrates this behavior.

Listing 20-25. An Example of a Concurrency Problem

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// get the database value outside of the Entity Framework
string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));

Console.WriteLine("Database value: {0}", dbValue);

// modify the customer
cust.ContactName = "John Doe";

// save the changes
context.SaveChanges();

We use LINQ to Entities to load an entity object for the Customer with the CustomerID of LAZYK.

Then, we update the record directly, outside the Entity Framework, so that the ContactName value is
Samuel Arthur Sanders, and then read the value back from the database, also outside the Entity
Framework, meaning that the Customer entity object is now out of synchronization with the database.

Using the Customer entity object, we change the ContactName value to John Doe and call
SaveChanges. The Entity Framework writes out the change we made to the database and—because
optimistic concurrency means that we hope no one else has changed the data—overwrites the change
we made outside the Entity Framework.

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

716

Enabling Concurrency Checks
You can have the Entity Framework check to see whether the database has been modified by another
party before it writes changes. This is still optimistic concurrency because nothing is locked in the
database while you are working with the entity objects, but it does help stop the kind of problem that we
saw in Listing 20-25 by alerting you to concurrency issues.

You have to enable concurrency checking on a per-field basis. If you want all the fields of an entity
object to be checked for concurrency conflicts...well, then you need to be sure that you have edited all of
the fields. There is no way of telling the Entity Framework that you want every change to an entity type
or even every change to the entire entity data model to be checked automatically.

To solve the problem we saw in Listing 20-25, we need to enable concurrency checking on the
ContactName field of the Customer entity type. The first step is to open the EDMX file by double-clicking
it in your Solution Explorer window and find the Customer entity in the designer view. Figure 20-11
shows you what this should look like.

Figure 20-11. The Customer entity type

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 717

Click the ContactName property to open the details in the Properties window, and change the
value for Concurrency Mode to Fixed, as shown by Figure 20-12.

Figure 20-12. Setting the concurrency mode for the ContactName property

Lastly, make sure you save the changes by selecting File Save NorthwindEntityModel.edmx in
Visual Studio.

Handling Concurrency Conflicts
Once you have enabled concurrency conflict checking for an entity object field, you will receive an
OptimisticConcurrencyException when you try to update data that has been modified since you
loaded your entity objects. Listing 20-26 demonstrates this.

Listing 20-26. Handling a Concurrency Conflict

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

718

 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - giving up");
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

We perform the same query sequence as in Listing 20-25. We obtain the Customer entity object for
the record with the CustomerID of LAZYK, change the ContactName field outside of the Entity
Framework, make the same change using the Entity Framework, and then call SaveChanges.

We wrap the SaveChanges call in a try...catch...finally block. Since we have enabled
concurrency checking on the ContactName field, we know that we will receive an
OptimisticConcurrencyException when we try to update the database. In the finally block, we print
the ContactName value in the database and the value from the entity object. Compiling and running the
code in Listing 20-26 gives us the following output:

Initial value John Doe
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - giving up
Database value: Samuel Arthur Sanders
Cached value: John Doe

We end up with a database that has one value and a cached entity object that has a conflicting value
for the same data. That’s a step forward—at least we didn’t write back an update to the database without
checking first. But now we need to resolve the differences in the data values so we are back in sync and

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 719

can (optionally) try to update again. We do this by using the ObjectContext.Refresh method. Listing
20-27 contains an example.

Listing 20-27. Using the Refresh Method

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.StoreWins, cust);
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

In this example, we call the Refresh method when we catch the
OptimisticConcurrencyException. The Refresh method takes two arguments. The first is a value
from the RefreshMode enumeration, and the second is the object that you want to refresh. The
RefreshMode enumeration has two values—StoreWins and ClientWins. The StoreWins value
refreshes the values for the object you specified using the data in the database. So, in our example, we
would expect both the value in the entity object and the value in the database to be Samuel Arthur
Adams. Compiling and running the code gives us the expected results:

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

720

Initial value John Steel
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - refreshing data
Database value: Samuel Arthur Sanders
Cached value: Samuel Arthur Sanders

Let’s just recap what happened there. We tried to write an update on a database row that had been
modified by someone else. The Entity Framework detected a concurrency conflict and threw an
OptimisticConcurrencyException to let us know that there was a problem. We refreshed the entity
object we modified using the data in the database, which put us back to a consistent state.

But what happened to our update? Well, nothing—we didn’t apply it. If you want to apply your
changes even when someone else has modified the same data you are using, then you need to use the
ClientWins value of the RefreshMode enumeration and call SaveChanges again. Listing 20-28 contains
an example.

Listing 20-28. Writing an Update Following a Concurrency Conflict

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

// save the changes
try {
 context.SaveChanges();
} catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.ClientWins, cust);
 context.SaveChanges();
} finally {
 string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

 721

 where CustomerID = 'LAZYK'"));
 Console.WriteLine("Database value: {0}", dbValue);
 Console.WriteLine("Cached value: {0}", cust.ContactName);
}

This time, we have specified the ClientWins value, which is like saying “I know there is a

concurrency conflict, but I want to keep my changes.” You need to call SaveChanges again. The call to
the Refresh method just clears the concurrency conflict for the Entity Framework and doesn’t write the
changes for you. If we compile and run the code in Listing 20-28, we get the following results:

Initial value John Steel
Executing SQL statement against database with ADO.NET ...
Database updated.
Detected concurrency conflict - refreshing data
Database value: John Doe
Cached value: John Doe

We can see that the change that we made using the Entity Framework has been written to the
database. There is one point we want to make about dealing with a concurrency conflict properly—
someone may have changed the data again while we were refreshing our entity objects. That means that
our second call to SaveChanges may result in another OptimisticConcurrencyException. To deal with
this, we can use a loop that tries to apply our update repeatedly. Listing 20-29 shows you this approach.

Listing 20-29. Repeating a Save Request

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

Customer cust = context.Customers
 .Where(c => c.CustomerID == "LAZYK")
 .Select(c => c)
 .First();

Console.WriteLine("Initial value {0}", cust.ContactName);

// change the record outside of the entity framework
ExecuteStatementInDb(String.Format(
 @"update Customers
 set ContactName = 'Samuel Arthur Sanders'
 where CustomerID = 'LAZYK'"));

// modify the customer
cust.ContactName = "John Doe";

CHAPTER 20 ■ LINQ TO ENTITIES OPERATIONS

722

int maxAttempts = 5;
bool recordsUpdated = false;

for (int i = 0; i < maxAttempts && !recordsUpdated; i++) {
 Console.WriteLine("Performing write attempt {0}", i);
 // save the changes
 try {
 context.SaveChanges();
 recordsUpdated = true;
 } catch (OptimisticConcurrencyException) {
 Console.WriteLine("Detected concurrency conflict - refreshing data");
 context.Refresh(RefreshMode.ClientWins, cust);
 }
}

string dbValue = GetStringFromDb(String.Format(
 @"select ContactName from Customers
 where CustomerID = 'LAZYK'"));
Console.WriteLine("Database value: {0}", dbValue);
Console.WriteLine("Cached value: {0}", cust.ContactName);

We use a loop to try applying our update to the database several times. The bool recordsUpdated

will be set to true only if the SaveChanges method doesn’t throw an exception. This can be a useful
technique, but it should be used carefully.

First, the more attempts we make to write our changes, the more updates from others we are
ignoring. We have to be very confident that our update is more important than all the others to keep
trying to save our changes.

Second, you will see that we used a loop counter to try writing our update five times and no more.
There are very few situations in which you should try to save your changes in an infinite loop. Not only
do you have to be super-confident that you have the best data, but there comes a point where you have
to question the design of your code or the value of the data you are generating. If the same rows are
being updated again and again, the chances are that most of the updates are being discarded as
processes keep forcing their changes into the database. So, as a word to the wise, we think you should be
very careful when automatically trying to save changes when you encounter a concurrency conflict.

Summary
In this chapter, we have introduced you to the core database operations you can perform with the Entity
Framework and LINQ to Entities. We showed you how to query for data using LINQ to Entities, as well as
inserting, modifying, and deleting using the Entity Framework. We also showed you how to handle
concurrency conflicts—something that you will find increasingly important as your database server
becomes busier and busier. In the next chapter, we’ll walk you through some of the key Entity
Framework classes and show you how to get more control over how your entity objects are created and
used.

C H A P T E R 21

■ ■ ■

723

LINQ to Entities Classes

In the previous chapters, we used a number of Entity Framework classes to demonstrate LINQ to Entities
features without fully defining them. In this chapter, we set that right by detailing the key members of
the most important Entity Framework classes.

As we have already explained, the Entity Framework is an expensive and complex toolset, so we
have had to skim the surface somewhat to be able to keep our focus on the LINQ to Entities side of
things. Our skimming continues in this chapter. We have been selective about the classes and members
we describe, choosing to focus on the ones that we have used in previous chapters and those that you
need to get started with the Entity Framework and LINQ to Entities in particular.

Prerequisites for Running the Examples
To run the examples in this chapter, you will need to have obtained the extended version of the
Northwind database and generated an entity data model for it. Please read the instructions in Chapter
19’s “Prerequisites for Running the Examples” section. Additionally, to run the examples in this chapter,
you will need some common methods that will be utilized by the examples. Please read the instructions
in Chapter 19’s “Some Common Methods” section.

■ WWarning Some of the example in this chapter modify (and even delete) the database. If you run these
examples, you should detach the Northwind database from SQL Server and attach the original version you

downloaded with the source code to the examples from Apress.com.

The ObjectContext Class
The ObjectContext class is at the heart of the Entity Framework and LINQ to Entities. When you create
an entity data model, a class derived from ObjectContext is created for you with properties that
represent the entity types and collections that are specific to your database. In the Northwind entity data
model we created in Chapter 19, the derived class was called NorthwindEntities. We have been using
this class throughout our LINQ to Entities examples to handle our connection to the database, load our

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

724

entity objects, and save changes to the database when we make modifications. And, since this is the
derived class, NorthwindEntities has public properties for the collections of entity objects used to
represent the contents of the Northwind database. You will find the ObjectContext class in the
System.Data.Objects namespace.

Constructor
You must create a new instance of the derived ObjectContext class before you can use any of the Entity
Framework or LINQ to Entity features that we described in the previous chapters. The instance you
create is responsible for managing the connection to the database and is used to load data from and save
changes to the database.

Prototypes
There are two derived ObjectContext constructor prototypes that we will cover.

The Fi rst Deriv ed ObjectCont ext Const ruct or

public NorthwindEntities();

This is the default constructor that creates a new instance of the derived ObjectContext class using

the database construction string that we added to the App.Config file when the entity data model was
created. This is the prototype that we have used in the examples throughout the LINQ to Entities
chapters.

The Second D eriv ed ObjectConText Const ru ctor

public NorthwindEntities(string connectionString);

This constructor prototype allows you to specify a string containing the details that will be used to

connect to the database or the name of the connection string in the App.Config file.

Examples
Listing 21-1 uses the default constructor prototype to create a new derived ObjectContext instance,
which is then used to query Customer data.

Listing 21-1. Using the Default Derived ObjectContext Constructor

NorthwindEntities context = new NorthwindEntities();

IQueryable<Customer> custs = context.Customers
 .Where(c => c.City == "London")
 .Select(c => c);

foreach (Customer cust in custs) {
 Console.WriteLine("Customer name: {0}", cust.CompanyName);
}

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

725

Listing 21-2 uses the second constructor prototype to specify the name of the connection string in

the App.Config file. The resulting derived ObjectContext instance is then used to query the database.

Listing 21-2. Specifying the Name of the Connection String Property

string connectionString = "name=NorthwindEntities";

NorthwindEntities context = new NorthwindEntities(connectionString);

IQueryable<Customer> custs = context.Customers
 .Where(c => c.City == "London")
 .Select(c => c);

foreach (Customer cust in custs) {
 Console.WriteLine("Customer name: {0}", cust.CompanyName);
}

You can also use the second constructor prototype to supply a completely custom connection

string. The easiest way to do this is with the EntityConnectionStringBuilder and
SqlConnectionStringBuilder classes, which you can find in the System.Data.EntityClient and
System.Data.SqlClient namespaces, respectively. Listing 21-3 shows you how to use these classes to
create the same connection string placed in the App.Config file when we created the Northwind entity
data model in Chapter 19.

Listing 21-3. Creating and Using a Custom Connection String

SqlConnectionStringBuilder scsb = new SqlConnectionStringBuilder();
scsb.DataSource = @".\sqlexpress";
scsb.InitialCatalog = "Northwind";
scsb.IntegratedSecurity = true;
scsb.MultipleActiveResultSets = true;

EntityConnectionStringBuilder ecsb = new EntityConnectionStringBuilder();
ecsb.Provider = "System.Data.SqlClient";
ecsb.ProviderConnectionString = scsb.ToString();
ecsb.Metadata = @"res://*/NorthwindEntityModel.csdl|
 res://*/NorthwindEntityModel.ssdl
 |res://*/NorthwindEntityModel.msl";

NorthwindEntities context = new NorthwindEntities(ecsb.ToString());

IQueryable<Customer> custs = context.Customers
 .Where(c => c.City == "London")
 .Select(c => c);

foreach (Customer cust in custs) {

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

726

 Console.WriteLine("Customer name: {0}", cust.CompanyName);
}

DatabaseExists()
The DatabaseExists method returns true if the database specified in the connection string used to
create the ObjectContext exists and false if it does not.

Prototypes
The DatabaseExists method has one prototype that we will cover.

The Sole D at abaseExist s Prot otyp e

public bool DatabaseExists();

The DatabaseExists method returns true if the database specified in the connection string used to
create the ObjectContext exists and false if it does not.

Examples
Listing 21-4 creates an instance of the derived ObjectContext class for the Northwind database and
uses the DatabaseExists method.

Listing 21-4. Using the DatabaseExists Method

NorthwindEntities context = new NorthwindEntities();

bool databaseExists = context.DatabaseExists();
Console.WriteLine("Database exists: {0}", databaseExists);

DeleteDatabase()
The DeleteDatabase method deletes the database specified in the connection string used to create the
derived ObjectContext instance. This method is typically used in conjunction with the
DatabaseExists method.

Prototypes
The DeleteDatabase method has one prototype.

public void DeleteDatabase();

Examples
Listing 21-5 uses the DeleteDatabase method to delete the Northwind database.

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

727

■ CCaution You will need to restore the original version of the Northwind database if you compile and run Listing

21-5.

Listing 21-5. Deleting a Database

NorthwindEntities context = new NorthwindEntities();

if (context.DatabaseExists()) {
 context.DeleteDatabase();
}

CreateDatabase()
The CreateDatabase method uses the entity data model to create a new database, although there will
be no data, of course. This method is usually used in conjunction with the DatabaseExists method.

Prototypes
The CreateDatabase method has one prototype.

public void CreateDatabase();

Examples
Listing 21-6 creates a new database using the Northwind entity data model.

Listing 21-6. Creating a New Database

NorthwindEntities context = new NorthwindEntities();

if (!context.DatabaseExists()) {
 context.CreateDatabase();
}

SaveChanges()
The SaveChanges method persists modifications made to entity objects to the database. This method
will throw an OptimisticConcurrencyException if concurrency checking is enabled and there is an
update conflict. See Chapter 20 for details of how to manage Entity Framework concurrency issues.

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

728

Prototypes
The SaveChanges method has one prototype we will cover.

The Sav eCh anges Prot otyp e

public int SaveChanges();

The return value indicates how many entity objects were added, updated, or deleted.

Examples
Listing 21-7 modifies the ContactName field of the Customer entity type and calls the SaveChanges
method to persist the modification to the database.

Listing 21-7. Using the SaveChanges Method

NorthwindEntities context = new NorthwindEntities();

Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

cust.ContactName = "John Doe";

int modificationCount = context.SaveChanges();

Console.WriteLine("Count: {0}", modificationCount);

Refresh()
The Entity Framework caches entity objects to improve performance. This means that the data you are
working with can become stale when other people and processes update the database. If you modify
stale data and try to write it to the database, you will cause a concurrency conflict.

The Refresh method has two purposes. It can be used to proactively refresh one or more entity
objects to the latest data in the database, and it can be used when resolving concurrency conflicts when
they arise.

Prototypes
The Refresh method has two prototypes. Both use the RefreshMode enumeration, which has two
values—StoreWins and ClientWins. When proactively refreshing data, the StoreWins value should be
used, because it specifies that changes made to entity objects should be discarded in favor of changes
made in the database. When resolving concurrency conflicts, either enumeration value can be used; see
Chapter 20 for details and examples.

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

729

The Fi rst Refresh Prototyp e

public void Refresh(RefreshMode refreshMode,
 Object entity);

This prototype refreshes a single entity object using the specified RefreshMode.

The Second Refresh Prototyp e

public void Refresh(RefreshMode refreshMode,
 IEnumerable collection);

This prototype refreshes a collection of entity objects using the specified RefreshMode. This
prototype can be used to update one of the collections of entity objects in the derived ObjectContext
class representing a table.

Examples
Listing 21-8 proactively refreshes a single Customer entity object and the collection of Customer entity
objects in the context.Customers property.

Listing 21-8. Using the Refresh Method

NorthwindEntities context = new NorthwindEntities();

Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// refresh a single entity object
context.Refresh(RefreshMode.StoreWins, cust);
// refresh an entire collection of objects
context.Refresh(RefreshMode.StoreWins, context.Customers);

AddObject()
The AddObject method adds a new entity object to one of the collections managed by the derived
ObjectContext class.

Prototypes
There is one prototype for the AddObject method.

public void AddObject(
 string entitySetName,
 Object entity);

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

730

The first argument is the name of the collection to which the object should be added. The second
argument is the entity object you want to add. Note that the database is not updated with the data
contained in the new entity object until the SaveChanges method is called.

Examples
Listing 21-9 creates a new instance of the Customer entity type and sets the field values. The AddObject
method is used to add the entity object to the Customers collection. Finally, the SaveChanges method is
used to write the new Customer record to the database.

Listing 21-9. Adding an Entity Object to the ObjectContext

NorthwindEntities context = new NorthwindEntities();

// create a new customer object
Customer cust = Customer.CreateCustomer("LAWN", "Lawn Wranglers");

// populate the nullable fields
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

context.AddObject("Customers", cust);

context.SaveChanges();

CreateObject()
The CreateObject method creates a new entity object. The new object contains no data and must be
added to one of the entity object collections in the ObjectContext before the SaveChanges method will
persist the object to the database. You must take care to populate the entity object before calling
SaveChanges if the database schema definition requires that some fields are not null.

Prototypes
The CreateObject method is strongly typed, meaning that there is one prototype for each entity type
supported by the derived ObjectContext class in the following form, where T is the entity type you want
to instantiate:

public T CreateObject<T>();

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

731

In the case of the Northwind database, that means that there is a prototype for the Customer entity
type as follows:

public Customer CreateObject<Customer>();

And for the Order entity type as follows:

public Order CreateObject<Order>();

And so on, for each of the entity types contained in the entity data model.

Examples
Listing 21-10 uses the CreateObject method to create a new Customer entity object. The fields are
populated (including the CustomerID and CompanyName fields, which are non-nullable), and the object
is added to the Customers collection using the AddObject method. The new Customer is persisted to the
database by calling the SaveChanges method.

Listing 21-10. Creating an Entity Type Instance Using the ObjectContext

NorthwindEntities context = new NorthwindEntities();

// create a new customer object
Customer cust = context.CreateObject<Customer>();

// populate all of the fields
cust.CustomerID = "LAWN";
cust.CompanyName = "Lawn Wranglers";
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

context.AddObject("Customers", cust);

context.SaveChanges();

DeleteObject()
The DeleteObject method deletes an object from the entity cache and deletes the corresponding data
in the database when the SaveChanges method is called. Care must be taken when deleting objects to
manage related objects; see Chapter 20 for full details.

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

732

Prototypes
The DeleteObject method has one prototype.

public void DeleteObject(Object entity);

The argument to this prototype is the entity object that you want to delete.

Examples
Listing 21-11 queries for the Order_Detail entity objects that have an OrderID value of 10248. The
results are enumerated using a foreach loop and deleted using the DeleteObject method. To persist
the deletions, the SaveChanges method is called.

Listing 21-11. Deleting Entity Objects

// create the ObjectContext
NorthwindEntities context = new NorthwindEntities();

// get the order details for order 10248
IQueryable<Order_Detail> ods = (from o in context.Order_Details
 where o.OrderID == 10248
 select o);

foreach (Order_Detail od in ods) {
 context.DeleteObject(od);
}

// save the changes
context.SaveChanges();

EntityObject
The entity types created in the entity data model to represent the schema of your database are derived
from the EntityObject class, which is part of the System.Data.Objects.DataClasses namespace.

Constructor
You can create new instances of entity types using the constructor, but you must take care to ensure that
fields that map to database columns that cannot be null have values. If you do not do this, you will get an
exception when you try to persist your new entity object to the database.

Prototypes
There is one constructor prototype, where T is the entity type.

public T();

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

733

Examples
Listing 21-12 demonstrates creating a new instance of the Customer entity type, populating the data
fields, and persisting it to the database using the SaveChanges method in the ObjectContext class.

Listing 21-12. Creating a New Entity Object Using the Default Constructor

NorthwindEntities context = new NorthwindEntities();

// create a new customer object
Customer cust = new Customer();

// populate all of the fields
cust.CustomerID = "LAWN";
cust.CompanyName = "Lawn Wranglers";
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

context.AddObject("Customers", cust);

context.SaveChanges();

Factory Method
A static factory method is added to entity types when they are created by the Entity Data Model Wizard.
(See Chapter 19 for details of how to use the Entity Data Model Wizard with the Northwind database.)
The factory method can be used to create new instances of an entity type and has the advantage over the
default constructor of requiring values for all the fields that require values in the database. This nicely
avoids the problem of creating a new instance that lacks one of these values and then getting an
exception when you try to store it in the database with the SaveChanges method. As with the default
constructor, entity objects that are created using the factory method will not be persisted until you add
them to one of the entity type collections maintained by the derived ObjectContext class (see the
ObjectContext AddObject method for an example).

Prototypes
The prototype for the factory method will vary based on the entity type, but it follows a general pattern.
If the entity type represents a row from a database table where all the values can be set to null, then
there will be no arguments for the factory method, and the prototype will be as follows:

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

734

The Def ault Entity Type Fact ory Meth od

public static T CreateT();

So, for example, if we have an entity type MyType that represents data from a table in which all the

columns will accept null values, the prototype for the factory method would be as follows:

public static MyType CreateMyType();

If the entity type represents rows from a table that has columns that cannot be null, then there will

be an argument for each required data value. For example, if we look at the Customers table in the
Northwind database using SQL Server Management Studio, as shown in Figure 21-1, we can see that the
CustomerID and CompanyName columns have not been checked for Allow Nulls.

Figure 21-1. The Customers table in the Northwind database

These are the data fields for the Customer entity type that will be required as arguments to the static
factory method, which has the following prototype:

The Prot otype f or the Northwind Cust omer Entity Type F actory Method

public static Customer CreateCustomer(String customerID, String companyName);

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

735

The simplest way to work out the prototype for the factory method is to use the IntelliSense feature
of Visual Studio or even to look at the source code for the entity type.

Examples
Listing 21-13 creates a new instance of the Customer entity type using the factory method, supplying
values for the mandatory data fields. The remaining data fields are then set (although these could have
been left with the default values). The new object is then added to the Customers entity collection
maintained by the derived ObjectContext class and persisted by calling SaveChanges.

Listing 21-13. Using the Factory Method to Create a New Entity Object

NorthwindEntities context = new NorthwindEntities();

// create a new customer object
Customer cust = Customer.CreateCustomer("LAWN", "Lawn Wranglers");

// populate the remaining fields
cust.ContactName = "Mr. Abe Henry";
cust.ContactTitle = "Owner";
cust.Address = "1017 Maple Leaf Way";
cust.City = "Ft. Worth";
cust.Region = "TX";
cust.PostalCode = "76104";
cust.Country = "USA";
cust.Phone = "(800) MOW-LAWN";
cust.Fax = "(800) MOW-LAWO";

context.AddObject("Customers", cust);

context.SaveChanges();

Primitive Properties
Each entity type has a set of public properties that correspond to the columns in the table with which it
is associated. These properties allow us to get and set the data value for the row in the table that a
specific instance of an entity type represents.

Prototypes
The set of properties that an entity type has depends on the design of the database table it is associated
with. The general prototype is as follows, where T is the data type o and ColumnName is the name of the
data field:

The General E ntity Type Pri mitive Property Prot oty pe

public T ColumnName {get; set};

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

736

The general prototype isn’t much use. It is much more helpful to look at an actual implementation.

Figure 21-1 shows the columns for the Customers table in the Northwind database, rows of which are
represented by the Customer entity type in the entity data model we created in Chapter 19. For each of
the columns shown in the figure, we will find a public property that allows us to get and set the
associated data value. For example, the City column will have a prototype as follows:

The Prot otype f or the Cust omer City Primitiv e Prop erty

public String City {get; set};

Examples
Most of the examples in the LINQ to Entities chapters use the primitive properties in some form. Listing
21-14 reads the value of the City property from a Customer entity object, modifies the value, and
persists the change to the database using the SaveChanges method. Changes to property values are not
written to the database until the SaveChanges method is called.

Listing 21-14. Reading and Changing a Primitive Property Value

NorthwindEntities context = new NorthwindEntities();

// query for a customer record
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// access the current data value
Console.WriteLine("Original City Value: {0}", cust.City);

// change the value
cust.City = "Seattle";

// write the new (but not persisted value)
Console.WriteLine("New City Value: {0}", cust.City);

// save the changes
context.SaveChanges();

Compiling and running the code in Listing 21-14 gives us the following results:

Original City Value: Walla Walla
New City Value: Seattle

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

737

Navigation Properties
Navigation properties allow you to work easily with related entity objects, especially when the objects
are related through a foreign key.

Imagine that you want to find the set of orders that a customer has placed in the Northwind
database and the only data you have to start with is the name of the company. Without navigation
properties, you would have to make two LINQ queries—one to find the Customer entity object and then
another to get all the Order entity objects that have a foreign key relationship with the Customer you
found. Listing 21-15 shows you how this would work.

Listing 21-15. Querying Without Navigation Properties

NorthwindEntities context = new NorthwindEntities();

// query for the customer record
Customer cust = (from c in context.Customers
 where c.CompanyName == "Lazy K Kountry Store"
 select c).First();

// query for the orders placed by that company
IQueryable<Order> orders = from o in context.Orders
 where o.CustomerID == cust.CustomerID
 select o;

// print out the orders
foreach (Order ord in orders) {
 Console.WriteLine("Order ID {0}, Date {1}", ord.OrderID, ord.OrderDate);
}

Compiling and running the code in Listing 21-15 gives us the following results:

Order ID 10482, Date 21/03/1997 00:00:00
Order ID 10545, Date 22/05/1997 00:00:00

We get the result we needed, but we can use the navigation properties to avoid having to make the
second query explicit.

Prototypes
For each foreign-key relationship in the database, there will be a pair of navigation properties in the
entity data model—one in each of the entity types affected. The prototype for the property depends on
the multiplicity of the relationship. If an entity type can be related to multiple instances of the other
entity type (such as a Northwind Customer can be related to many Orders), then the prototype will be as
follows, where T is the related entity type and TableNameOfT is the name of the database table that T
represents rows from:

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

738

The Multip le Relat ionship Nav igati on Property Prototype

public EntityCollection<T> TableNameOfT {get; set};

These sentences to describe prototypes can be very hard to parse, so an example may help. In the

Northwind database, the Customers and Orders tables share a foreign key relationship, such that
multiple Orders rows can have a foreign key from a single Customers row. Rows from the Customers
table are represented by the Customer entity type, and rows from the Orders table are represented by
the Order entity type. All of this means that there will be a navigation property in the Customer type with
the following prototype. We’ll cover the EntityCollection class later in this chapter.

The Cust omer. Orders Relati onship Navigati on Property Protot ype

public EntityCollection<Order> Orders {get; set};

If there can be at most one related entity object in the relationship, then the prototype is as follows,

where T is the entity type:

The Single R elati onship Navi gati on Property Protot ype

public EntityReference<T> TReference {get; set};

In the case of the Northwind Order entity type, there can be only one related Customer object, so

the prototype would be as follows:

The Order. Cust omer Relati onship Navi gation Prop erty Prot otype

public EntityReference<Customer> CustomerReference {get; set};

The Entity Data Model Wizard will also create a convenience property for this kind of relationship.

The prototype is as follows, where T is the related entity type:

The Single R elati onship Navi gati on Convenience Prop ert y Prot otype

public T T {get; set};

For the CustomerReference property in the Order entity type, the convenience prototype would be

as follows. This is a nice feature that stops you from having to deal with the EntityReference class,
which we describe later in the chapter.

The Order. Cust omer Navi gati on Conv enience Prop erty Prot otype

public Customer Customer {get; set};

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

739

Examples
Listing 21-16 shows how the Orders navigation property in the Northwind Customer entity type can be
used to get all the orders for a given customer. This is the same outcome as for Listing 21-15, but without
the need for an explicit second query. When we say explicit, we mean that the data will still be obtained
from the database, but the navigation property makes it easier for you to code—see Chapter 20 for
details of the different ways that you can influence how data is loaded from the database.

Listing 21-16. Using the One-to-Many Navigation Property

NorthwindEntities context = new NorthwindEntities();

// query for the customer record
Customer cust = (from c in context.Customers
 where c.CompanyName == "Lazy K Kountry Store"
 select c).First();

EntityCollection<Order> orders = cust.Orders;

foreach (Order ord in orders) {
 Console.WriteLine("Order ID: {0} Date: {1}", ord.OrderID, ord.OrderDate);
}

In the listing, we have made the use of the EntityCollection class clear, but if you look at some of

the other examples in the LINQ to Entities chapters, you will see that we have been using the navigation
properties liberally throughout but not declaring the class explicitly. Compiling and running the code in
Listing 21-16 gives the following results, which is exactly the same output we got from Listing 21-15.

Order ID: 10482 Date: 21/03/1997 00:00:00
Order ID: 10545 Date: 22/05/1997 00:00:00

Listing 21-17 shows the use of the single-instance navigation property between the Order type and
its corresponding Customer.

Listing 21-17. Using a Single-Instance Navigation Property

NorthwindEntities context = new NorthwindEntities();

// query for the order
Order ord = (from o in context.Orders
 where o.CustomerID == "LAZYK"
 select o).First();

// get the entity reference
EntityReference<Customer> customerRef = ord.CustomerReference;

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

740

Console.WriteLine("Customer name: {0}", customerRef.Value.CompanyName);

// get the customer via the convenience property
Customer cust = ord.Customer;

Console.WriteLine("Customer name: {0}", cust.CompanyName);

We obtain the EntityReference<Customer> through the CustomerReference property. To get the

Customer type from the EntityReference, we must call the Value property. We will cover the
EntityReference class later in this chapter.

More convenient is accessing the entity type directly through the Customer property. Listing 21-17
shows both approaches and prints out the CompanyName property each time, giving us the following
results:

Customer name: Lazy K Kountry Store
Customer name: Lazy K Kountry Store

EntityReference
The EntityReference class is used in maintaining single-instance navigation properties between entity
types; see the previous section for details of navigation properties. This is not a class that you will need to
work with very often. It is usually simple to use the convenience property that is created when the entity
type is generated by the Entity Data Model Wizard. We include the key members here for completeness.

Load()
The Load method is used with explicit data loading, which we described in Chapter 20; see that chapter
for details of explicit loading.

Examples
Listing 21-18 demonstrates how to explicitly load the entity object associated with an EntityReference.
Note that in order for this method to have an effect, lazy loading must be disabled; see Chapter 20 for
details and examples.

Listing 21-18. Using the EntityReference Load Method

NorthwindEntities context = new NorthwindEntities();

// disable lazy loading
context.ContextOptions.LazyLoadingEnabled = false;

// query for the order

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

741

Order ord = (from o in context.Orders
 where o.CustomerID == "LAZYK"
 select o).First();

// get the entity reference
EntityReference<Customer> customerRef = ord.CustomerReference;

// explicitly load the order
customerRef.Load();

Value
The Value property returns the underlying entity type that the EntityReference relates to. In Listing
21-17, we called the Value property to obtain the Customer entity object related to the Order entity
object we were working with.

EntityCollection
As its name suggests, the EntityCollection is used to hold a collection of entity objects, most often at
one end of a navigation property. For example, in the Northwind Customer entity type, the Orders
property is an EntityCollection<Order> and is used to contain the Orders related to a given
Customer.

The most common ways of using EntityCollection are to enumerate the elements in the
collection using a foreach loop or as the basis for a LINQ query. The EntityCollection class
implements interfaces that allow enumeration—IEnumerable<T> and IEnumerable, where T is the
entity type being collected. You can see examples of both approaches through the LINQ to Entities
chapters in this book. The EntityCollection class implements some other useful methods, which we
describe here.

Add()
Adding an entity type to an EntityCollection establishes the foreign-key relationship between them
and makes them related objects. The Entity Framework will helpfully set the foreign key fields for you. If
this is a new object, then a row will be created in the database for you when you call SaveChanges. If you
have added an existing entity object, then the foreign-key relationship will be updated when you call
SaveChanges.

Prototypes
The Add method has one prototype that we will cover.

The A dd Method Prot otyp e

public void Add(Object entity);

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

742

The effect of calling the Add method is reflected in the cached data maintained by the Entity
Framework immediately but will not be reflected in the database until you call the SaveChanges method
in the derived ObjectContext class. See Chapter 20 for details of how to persist changes and earlier in
this chapter for more information about the ObjectContext class.

Examples
Listing 21-19 creates a new Order entity type and calls the Add method on the Customer.Orders
EntityCollection to relate the Order with the Customer.

Listing 21-19. Using the Add Method to Relate Objects

NorthwindEntities context = new NorthwindEntities();

// query for the customer record
Customer cust = (from c in context.Customers
 where c.CompanyName == "Lazy K Kountry Store"
 select c).First();

Order ord = Order.CreateOrder(1234);

cust.Orders.Add(ord);

Console.WriteLine("Order CustomerID: {0}", ord.CustomerID);

Compiling and running the code in Listing 21-19 gives us the following results, which demonstrate

that the foreign key relationship has been established between the Customer and Order objects.

Order CustomerID: LAZYK

Notice that we didn’t call the SaveChanges method, meaning that we have modified the cached
data in the Entity Framework but no change has been made to the database. If we called Refresh to
update the cached data, our changes would be lost; see the ObjectContext section of this chapter for
more details of the Refresh method.

You can change the relationship between entity objects with the Add method. Listing 21-20 contains
an example.

Listing 21-20. Using the Add Method to Change Foreign-Key Relationships

NorthwindEntities context = new NorthwindEntities();

// get the LAZYK customer
Customer cust1 = (from c in context.Customers
 where c.CustomerID == "LAZYK"

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

743

 select c).First();

// get the AROUT customer
Customer cust2 = (from c in context.Customers
 where c.CustomerID == "AROUT"
 select c).First();

// get the first LAZY K order
Order firstOrder = cust1.Orders.First();

Console.WriteLine("First LAZYK Customer ID: {0}, Order ID: {1}",
firstOrder.CustomerID, firstOrder.OrderID);

// Add the LAZYK order to the AROUT orders set
cust2.Orders.Add(firstOrder);

Console.WriteLine("First LAZYK Customer ID: {0}, Order ID: {1}",
firstOrder.CustomerID, firstOrder.OrderID);

In this example, we query for two customers—those with the LAZYK and AROUT CustomerID values.

We then obtain the first Order from the LAZYK Customer and call Add to add it to the EntityCollection
of Orders in the AROUT Customer. We print out the Order CustomerID and OrderID fields before and
after we call the Add method. If we compile and run the code in Listing 21-20, we get the following
results:

First LAZYK Customer ID: LAZYK, Order ID: 10482
First LAZYK Customer ID: AROUT, Order ID: 10482

And you can see that the Entity Framework has cleverly updated the foreign-key relationship so that
the Order is now related to the AROUT Customer. Nice.

Remove()
The Remove method does what the name suggests—it removes an entity object from the collection and
sets the foreign key field to null. This means that the object won’t appear when you enumerate the
EntityCollection and when you call the SaveChanges method. The row in the database that
corresponds to the removed object will be updated to have a foreign key value of NULL.

Prototypes
The Remove method has one prototype that we will cover.

The R emov e Prot otype

public bool Remove(Object entity);

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

744

The entity argument is the entity object you want to remove from the collection. The Remove
method returns true if the entity object was removed successfully and false otherwise. Calling the
Remove method has an immediate effect on the entity objects cached by the Entity Framework but will
not affect the database until the SaveChanges method has been called.

You must be careful when using the Remove method if the database schema doesn’t allow NULL
values in the foreign-key column. You will get an exception when you call the SaveChanges method.

Examples
Listing 21-21 shows how to use the Remove method to remove an Order from the
EntityCollection<Order> of a Customer entity type from the Northwind entity data model.

Listing 21-21. Using the Remove Method to Break a Foreign-Key Relationship

NorthwindEntities context = new NorthwindEntities();

// get the LAZYK customer
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// get the first LAZY K order
Order order = cust.Orders.First();

Console.WriteLine("Order has CustomerID of {0}", order.CustomerID);

// remove the order from the collection
Console.WriteLine("Removing order with ID: {0}", order.OrderID);
cust.Orders.Remove(order);

Console.WriteLine("Order has CustomerID of {0}", (order.CustomerID == null?
 "NULL" : order.CustomerID));

// save changes
context.SaveChanges();

We perform a LINQ to Entities query to obtain a Customer entity object and take the first Order

from the collection, which we pass as an argument to the Remove method. We print out the CustomerID
of the Order before and after the Remove method is called so we can see the value of the foreign-key
field. Compiling and running the code gives us the following results:

Order has CustomerID of LAZYK
Removing order with ID: 10482
Order has CustomerID of NULL

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

745

We can see that the CustomerID of the Order has been set to null. In this example, we called the
SaveChanges method to persist the change, leading to the row representing that Order being updated
with a CustomerID value of NULL. No exception was thrown when we persisted the data because the
foreign key is not enforced by the database schema, but we did create an orphaned record, which is no
longer associated with a customer.

Clear()
The Clear method removes all the entity objects from the EntityCollection and sets their foreign-key
values to null. This is equivalent to removing each object in the collection individually using the Remove
method.

Prototypes
The Clear method has one prototype.

The Clear Method Prototyp e

public void Clear();

Examples
Listing 21-22 removes all the Orders in the EntityCollection<Order> for a given Northwind
Customer.

Listing 21-22. Using the Clear Method to Remove the Entity Objects in a Collection

NorthwindEntities context = new NorthwindEntities();

// get the LAZYK customer
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// clear the Orders collection
cust.Orders.Clear();

// save changes
context.SaveChanges();

As with the Add and Remove methods, the changes are not persisted to the database until the

SaveChanges method is called. In the example, calling the SaveChanges method will update all the rows
in the Orders table that have a CustomerID of LAZYK such that the CustomerID will be NULL.

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

746

Contains()
The Contains method allows you to determine whether an EntityCollection contains a given entity
object.

Prototypes
The Contains method has one prototype, where T is the entity type of the EntityCollection<T>. The
Contains method returns true if the entity object is contained within the collection and false
otherwise.

The Single Cont ains Prot otype

public bool Contains(T entity);

Examples
Listing 21-23 demonstrates the use of the Contains method. We query for a Northwind Customer
objects and get the first Order in the EntityCollection<Order>. We call the Contains method, remove
the Order from the Collection using the Remove method, and then call Contains again to contrast the
effect.

Listing 21-23. Using the Contains Method

// get the LAZYK customer
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// get the first order for the customer
Order ord = cust.Orders.First();

// use the Contains method
Console.WriteLine("Orders Contains Order {0}",
 cust.Orders.Contains(ord));

// remove the orde from the collection
Console.WriteLine("Removing order");
cust.Orders.Remove(ord);

// use the Contains method
Console.WriteLine("Orders Contains Order {0}",
 cust.Orders.Contains(ord));

Compiling and running the code in Listing 21-23 gives the following results:

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

747

Orders Contains Order True
Removing order
Orders Contains Order False

Load()
The Load method is used to explicitly load the entity objects in the collection from the database when
lazy loading is disabled. See Chapter 20 for details of how to load data and why you might want to do so.

Count
The Count property returns the number of entity objects in the collection.

Prototypes
There is one prototype for the Count property.

The Sole Count Property Prot otype

public int Count {get;};

Examples
Listing 21-24 uses the Count property to determine how many Orders are associated with a specific
Northwind Customer. We then remove an Order from the EntityCollection and call Count again.

Listing 21-24. Counting the Number of Entity Objects with the Count Property

NorthwindEntities context = new NorthwindEntities();

// get the LAZYK customer
Customer cust = (from c in context.Customers
 where c.CustomerID == "LAZYK"
 select c).First();

// Count the number of Orders
Console.WriteLine("Number of Orders: {0}",
 cust.Orders.Count);

// get the first order for the customer
Order ord = cust.Orders.First();

// remove the orde from the collection
Console.WriteLine("Removing order");

CHAPTER 21 ■ LINQ TO ENTITIES CLASSES

748

cust.Orders.Remove(ord);

// Count the number of Orders
Console.WriteLine("Number of Orders: {0}",
 cust.Orders.Count);

Compiling and running the code in Listing 21-24 gives us the following results. As you might have

expected, removing an item from the collection reduces the return value from the Count property.

Number of Orders: 2
Removing order
Number of Orders: 1

Summary
In this chapter, we have shown you the key members from the key classes that you will use with LINQ to
Entities. We have glossed over some of the complexities of the Entity Framework, but we have given you
enough information to get started and for you to see how much commonality there is between LINQ to
Entities and LINQ to SQL. This is the end of the LINQ to Entities part of the book. Our next chapter
introduces one of the newest LINQ features—Parallel LINQ. Onward!

P A R T 7

■ ■ ■

749

Parallel LINQ

750

C H A P T E R 22

■ ■ ■

751

Parallel LINQ Introduction

Listing 22-1. A Simple Parallel LINQ Example

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

string president = presidents.AsParallel()
 .Where(p => p.StartsWith("Lin")).First();

Console.WriteLine(president);

Back in Chapter 3, we opened with a simple LINQ to Objects example that found the first U.S.

president whose name begins with Lin. Go on, take a look—we’ll wait for you. Now take a look at Listing
21-1, which is the same query but performed using Parallel LINQ. We have made it easier to spot the
difference by highlighting the change—the new call to the AsParallel method. As you will learn, the
query in Listing 22-1 isn’t very well suited to Parallel LINQ, but it does work, and it shows an important
point, namely, that moving from a regular LINQ query to a Parallel LINQ query can be as easy as calling
the AsParallel method.

In this and the following chapters, we’ll show you how to use Parallel LINQ effectively and show you
the similarities and differences from the rest of the LINQ family.

Introducing Parallel LINQ
In a nutshell, Parallel LINQ, known as PLINQ, is a version of LINQ to Objects where the objects in the
source enumeration are processed concurrently. There is a lot packed into that sentence, so let’s break
things down and help make sense of them.

In .NET version 4, Microsoft has introduced a whole set of advanced features to simplify parallel
programming. These new features are extensive enough that they deserve their own book, and in fact
one of us (Adam) has written Pro .NET Parallel Programming in C#, which is also published by Apress.

CHAPTER 22 ■ PARALLEL LINQ INTRODUCTION

752

Parallel programming features have been around for a long time, but they have been difficult to use,
and many programmers have struggled to make effective use of them. The .NET version 4 features have
been designed to appeal to a wider audience and to take advantage of the widespread adoption of
multicore and multiprocessor machines.

If we consider the original query in Listing 3-1, we processed each president’s name in turn. Figure
22-1 illustrates how this works.

Figure 2 2- 1 . Sequential LINQ execution

LINQ started by checking to see whether Adams starts with Lin. It then moved to Arthur and
checked again—then Buchanan, Bush, Carter, and so on. LINQ moved through the names in the data
array in sequence. This, reasonably enough, is known as sequential execution. The problem with
sequential execution is that it uses only one core or CPU at a time (from now on we are only going to talk
about cores, but we mean either). On the four-core machines that we wrote this book on, three of the
cores do nothing while the LINQ query is being executed. Parallel LINQ changes the game by breaking
up the source data and processing it simultaneously in chunks, as shown by Figure 22-2.

Figure 2 2- 2 . Parallel LINQ execution

CHAPTER 22 ■ PARALLEL LINQ INTRODUCTION

753

The names Arthur, Coolidge, Grant, and Jackson are all processed at the same time, one by each
of the cores in our machine. As each core finishes processing a name, it moves on to the next,
independently of the other cores. Parallel LINQ takes care of breaking up the data for us, working out
how many items should be processed at the same time (although it usually decides that one per core is
about right) and coordinating the work that the cores do so that we get our results just as we would for
any other LINQ query. If we compile and run the code in Listing 21-1, we get the following results:

Lincoln

So, why do we care about Parallel LINQ? The answer is simple—performance. Take a look at Listing
22-2. We define two LINQ queries that do the same thing. One query is sequential; the other uses Parallel
LINQ. Both queries select the even integer values between 0 and Int32.MaxValue and count the
number of matches. We use Enumerable.Range and ParallelEnumerable.Range to generate the
sequence of integer values. We’ll discuss ranges further in Chapter 23, but for the moment please accept
that both of these methods create IEnumerable<int>s that contain all the integer values we require. We
know that this is not a particularly useful example, but it does help us make a key point.

Listing 22-2. Comparing the Performance of Sequential and Parallel Execution

// create the sequential number range
IEnumerable<int> numbers1 = Enumerable.Range(0, Int32.MaxValue);

// start the stop watch
Stopwatch sw = Stopwatch.StartNew();

// perform the LINQ query
int sum1 = (from n in numbers1
 where n % 2 == 0
 select n).Count();

// write out the seqential result
Console.WriteLine("Seqential result: {0}", sum1);
// write out how long the sequential execution took
Console.WriteLine("Sequential time: {0} ms", sw.ElapsedMilliseconds);

// create the parallel number range
IEnumerable<int> numbers2 = ParallelEnumerable.Range(0, Int32.MaxValue);
// Restart the stopwatch
sw.Restart();

// perform the Parallel LINQ query
int sum2 = (from n in numbers2.AsParallel()
 where n % 2 == 0
 select n).Count();

// write the parallel result

CHAPTER 22 ■ PARALLEL LINQ INTRODUCTION

754

Console.WriteLine("Parallel result: {0}", sum2);
// write out how long the parallel execution took
Console.WriteLine("Parallel time: {0} ms", sw.ElapsedMilliseconds);

We use the Stopwatch class from the System.Diagnostics namespace to measure the time that

each query takes. We compiled and ran the code in Listing 22-2 and took screenshots of the Windows
Task Manager while each of the queries was running. During the sequential execution, we took Figure
22-3.

Figure 2 2- 3 . CPU utilization during sequential query execution

You can see that CPU usage is at 25 percent. This is a four-core machine, so we’d expect CPU usage
to be 25 percent when only one core is busy, which is how sequential queries are performed. During the
Parallel LINQ query, we took Figure 22-4.

CHAPTER 22 ■ PARALLEL LINQ INTRODUCTION

755

Figure 2 2- 4 . CPU utilization during parallel query execution

We got the following output when we ran the code. It took roughly 38 seconds for the sequential
LINQ query to process all the integer values and produce the result. But the Parallel LINQ query did the
same thing in just over 9 seconds. That’s pretty amazing given that the queries look pretty much the
same in the code and, as you can see from the output, produce the same results. With Parallel LINQ, a
little effort can result in a big performance gain.

Seqential result: 1073741824
Sequential time: 38521 ms
Parallel result: 1073741824
Parallel time: 9498 ms

CHAPTER 22 ■ PARALLEL LINQ INTRODUCTION

756

Parallel LINQ Is for Objects
We said that Parallel LINQ is a parallel implementation of LINQ to Objects. That’s what it does—execute
LINQ to Objects queries in parallel. It doesn’t implement parallel features for the other kinds of LINQ we
have covered in this book.

That doesn’t mean you can’t process the results of another kind of LINQ query using Parallel LINQ
(for example, selecting all the Northwind Orders in the database using LINQ to Entities or LINQ to SQL
and then using Parallel LINQ to process them further), but Parallel LINQ doesn’t work on anything but
objects.

And even then, not all LINQ to Objects queries are good candidates to be Parallel LINQ queries.
There is an overhead associated with breaking up the data into chunks and setting up and managing the
classes that perform the parallel tasks—if the query doesn’t take very long to perform sequentially, then
it probably help to parallelize it—you’ll incur all the overhead and get none of the performance benefit.

Using the LINQ to Entities API
You don’t have to take any special steps to use Parallel LINQ. The key classes are contained in the
System.Linq namespace, which is where the regular LINQ to Objects classes reside as well. We describe
the most important methods of the key operators in Chapter 24.

Summary
In this chapter, we introduced you to Parallel LINQ, which processes multiple data items in a LINQ to
Objects query simultaneously. Used judiciously, Parallel LINQ can provide a significant increase in
performance for your LINQ to Objects queries. We showed you a couple of simple queries and
contrasted the performance between a simple sequential and parallel query. In the next chapter, we’ll
show you how to use the full range of Parallel LINQ featuresa LINQ to DataSet query.

C H A P T E R 23

■ ■ ■

757

Using Parallel LINQ

In this chapter, we’ll show you how to use Parallel LINQ, starting with the basics and working up to the
advanced options for controlling parallel execution. Parallel LINQ is easy to get started with and gives
good results from the start, but if you want to get the absolute best results, a little planning and effort are
required.

Creating a Parallel LINQ Query
To a large extent, using Parallel LINQ, usually known as PLINQ (pronounced “pea-link”), is incredibly
similar to using LINQ to Objects. In fact, that is one of the major attractions of PLINQ. In a regular LINQ
to Objects query, the data source is an IEnumerable<T>, where T is the data type we will be processing.
The LINQ engine automatically switches to using PLINQ when the data source is an instance of the
ParallelQuery<T> type. And here is the clever bit—we can convert any IEnumerable<T> into a
ParallelQuery<T> just by using the AsParallel method. Let’s just look at that in code. Listing 23-1
shows a LINQ to Objects query and a PLINQ query, both of which do the same thing.

Listing 23-1. Comparable LINQ and Parallel LINQ Queries

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// sequential LINQ query
IEnumerable<string> results = from p in presidents
 where p.Contains('o')
 select p;

foreach (string president in results) {
 Console.WriteLine("Sequential result: {0}", president);
}

CHAPTER 23 ■ USING PARALLEL LINQ

758

// Parallel LINQ query
results = from p in presidents.AsParallel()
 where p.Contains('o')
 select p;

foreach (string president in results) {
 Console.WriteLine("Parallel result: {0}", president);
}

The first query uses regular LINQ to Objects to process each of the presidents to find those names

that contain the letter o. We get the IEnumerable<string> as the result of the query and print out each
matching name.

The second query does exactly the same thing, but we have used the AsParallel method. This is
the “open sesame” of PLINQ—by using AsParallel, we convert our data source into a ParallelQuery,
which automatically engages Parallel LINQ. Otherwise, as the code clearly shows, there is no other
change required. We just call AsParallel, and we get PLINQ. It is like a special geeky magic. If we
compile and run the code in Listing 23-1, we get the following results:

Sequential result: Clinton
Sequential result: Coolidge
Sequential result: Eisenhower
Sequential result: Fillmore
Sequential result: Ford
Sequential result: Harrison
Sequential result: Hoover
Sequential result: Jackson
Sequential result: Jefferson
Sequential result: Johnson
Sequential result: Lincoln
Sequential result: Madison
Sequential result: Monroe
Sequential result: Nixon
Sequential result: Polk
Sequential result: Roosevelt
Sequential result: Taylor
Sequential result: Washington
Sequential result: Wilson
Parallel result: Lincoln
Parallel result: Roosevelt
Parallel result: Clinton
Parallel result: Ford
Parallel result: Madison
Parallel result: Taylor
Parallel result: Coolidge
Parallel result: Harrison

CHAPTER 23 ■ USING PARALLEL LINQ

759

Parallel result: Monroe
Parallel result: Washington
Parallel result: Eisenhower
Parallel result: Hoover
Parallel result: Nixon
Parallel result: Wilson
Parallel result: Fillmore
Parallel result: Jackson
Parallel result: Polk
Parallel result: Jefferson
Parallel result: Johnson

There are two things to note about these results. First, it is surprising just how many presidents’
names contain the letter o—more than we expected. Second, the sequential results are in alphabetical
order, but the parallel results are not. What gives? We’ll explain the ordering issue (and tell you how to
control it) in just a moment.

The key point is just how easy it is to create a PLINQ query. Just call the AsParallel method on
your query source. And, of course, you can use the AsParallel method with query expressions (as we
did in Listing 23-1) or when using extension methods to structure your query. Listing 23-2 shows two
PLINQ queries that demonstrate this.

Listing 23-2. Parallel Queries Written Using Query Expressions and Extension Methods

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = from p in presidents.AsParallel()
 where p.StartsWith("M")
 select p;

foreach (string president in results) {
 Console.WriteLine("Query expression result: {0}", president);
}

results = presidents.AsParallel()
 .Where(p => p.StartsWith("M"))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Extension method result: {0}", president);
}

Boykma
Text Box
Download from Library of Wow! eBook www.wowebook.com

CHAPTER 23 ■ USING PARALLEL LINQ

760

The first query is written using query expressions, and the second is written using extension

methods. Both queries call the AsParallel method, of course. Without this, we would have a sequential
LINQ query. Compiling and running the code in Listing 23-2 gives us the following results,
demonstrating that there is no difference in the way the queries are executed:

Query expression result: Madison
Query expression result: McKinley
Query expression result: Monroe
Extension method result: Madison
Extension method result: McKinley
Extension method result: Monroe

As an aside, we know that this is not an ideal query to use with PLINQ. In the previous chapter, we
explained that the overhead in parallelizing a small, simple query can result in worse performance than
sequential execution. But we need to demonstrate the features, and the less time we spend on artificially
complex examples, the simpler it is to understand the points we are trying to make. We’ll keep using
simple queries in these chapters. This is one of those things where you should do as we say, not as we do.

Preserving Result Ordering
The results we got from Listing 23-1 were out of alphabetical order. But the results we got from Listing
23-2 were in alphabetical order. You might be asking, what’s up with that?

The answer lies in the way that PLINQ processes data. The data that you provide as the source for a
PLINQ query is broken up and shared out to be processed in parallel (breaking up the data is calling
partitioning). Multiple partitions can be processed at one. For example, if you have a four-core machine,
four partitions might be processed simultaneously. However, each of those partitions is processed
sequentially. Take a moment to think about that—parallel execution comes from sequentially
processing multiple data partitions at the same time. Figure 23-1 demonstrates this.

Figure 23-1. Parallel execution is the concurrent sequential processing of data partitions.

CHAPTER 23 ■ USING PARALLEL LINQ

761

When PLINQ partitions our data, we might get something like Figure 23-1, but we can’t be sure
because the PLINQ engine analyzes our query and our data and does the partitioning behind the scenes.
But let’s imagine that we have what Figure 23-1 shows—a number of partitions, each of which contains
the names of five presidents. PLINQ assigns one partition to each of the cores in our machine, and each
core then processes its assigned partition sequentially.

So, to continue the example, the first core checks to see whether Adams contains the letter o. Then it
checks Arthur, Buchanan, Bush, and Carter. While this is happening, the second core checks
Cleveland, Coolidge, Eisenhower, and so on. The third and fourth cores work through their partitions
at the same time.

Whenever a match is found, it is added to the result set. We have marked the presidents’ names that
contain the letter o in Figure 23-1, and you can see that if the items are processed at roughly the same
rate by each core, then Hoover will be the first result that is found, followed by Coolidge or Jackson,
Eisenhower or Jefferson, and so on.

Our results start to look like this:

Hoover, Coolidge, Jackson, Eisenhower, Jefferson...

So, you can see how PLINQ ends up generating results that are not ordered in the same way as the

source data. Worse, because we don’t know in advance how PLINQ will partition the data, we can’t tell
what the ordering might be. Even worse, the partitions are not processed in lockstep. Other processes on
the machine might preempt execution of our .NET application on one or more cores, which means that
we can actually get results that are ordered differently when we run the same query against the same
data multiple times.

Now, some of the time, we just won’t care about the order of the results. For example, if we only
want to know how many presidents’ names contain the letter o, we don’t care how the query results are
ordered because we are going to count them. Listing 23-3 demonstrates this kind of query.

Listing 23-3. A PLINQ Query Where the Results Ordering Is Not Important

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

int count = presidents.AsParallel()
 .Where(p => p.Contains("o"))
 .Select(p => p)
 .Count();

Console.WriteLine("Result count: {0}", count);

It doesn’t matter how PLINQ divides up and allocates the data, we will still get the same result—

there are 19 matches, which we can see if we compile and run the code in Listing 23-3:

Result count: 19

CHAPTER 23 ■ USING PARALLEL LINQ

762

There are times, however, when we do care about the order of the results. This is especially true if
you are converting existing LINQ queries to PLINQ. There may be assumptions made elsewhere about
the order of the results, for example. You can preserve ordering by using the AsOrdered extension
method on the ParallelQuery you created using the AsParallel method. So, to preserve ordering on
our presidents’ names, we could call the following:

presidents.AsParallel().AsOrdered()

Calling the AsOrdered method tells PLINQ to preserve the order of the results. Listing 23-4

demonstrates how to use this method.

Listing 23-4. Preserving the Order of PLINQ Query Results Using the AsOrdered Method

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Parallel LINQ query
IEnumerable<string> results = from p in presidents.AsParallel().AsOrdered()
 where p.Contains('o')
 select p;

foreach (string president in results) {
 Console.WriteLine("Parallel result: {0}", president);
}

There are no query expression keywords for the AsParallel or AsOrdered extension methods. You

must call the methods directly. Listing 23-4 mixes query keywords with the extension methods. If we
compile and run the code in Listing 23-4, we get the following results:

Parallel result: Clinton
Parallel result: Coolidge
Parallel result: Eisenhower
Parallel result: Fillmore
Parallel result: Ford
Parallel result: Harrison
Parallel result: Hoover
Parallel result: Jackson
Parallel result: Jefferson
Parallel result: Johnson
Parallel result: Lincoln
Parallel result: Madison
Parallel result: Monroe

CHAPTER 23 ■ USING PARALLEL LINQ

763

Parallel result: Nixon
Parallel result: Polk
Parallel result: Roosevelt
Parallel result: Taylor
Parallel result: Washington
Parallel result: Wilson

If you look back at the results from Listing 23-1, you’ll see that everything matches up. The
AsOrdered method is very useful, but you shouldn’t get into the habit of using it automatically because
it required PLINQ to do extra work to re-order the results. Given that the whole purpose of PLINQ is to
improve performance, we want to avoid unnecessary work whenever possible.

Controlling Parallelism
PLINQ analyzes your query and decides how many partitions will be processed at once. Microsoft has
stated that it will evolve the way that this is determined, so you should not make assumptions based on
the behavior you observe in the current release.

Forcing Parallel Execution
In some cases, PLINQ may decide that your query is better dealt with sequentially. You can control this
by using the WithExecutionMode extension method, which is applied to the ParallelQuery type. The
WithExecutionMode method takes a value from the ParallelExecutionMode enumeration. There are
two such values: the default (let PLINQ decide what to do) and ForceParallelism (use PLINQ even if
the overhead of parallel execution is likely to outweigh the benefits). Listing 23-5 shows how to force
parallel execution.

Listing 23-5. Forcing Parallel Execution Using the WithExecutionMode Method

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Parallel LINQ query
IEnumerable<string> results = presidents
 .AsParallel()
 .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Parallel result: {0}", president);
}

CHAPTER 23 ■ USING PARALLEL LINQ

764

Limiting the Degree of Parallelism
You can request that PLINQ limit the number of partitions that are processed simultaneously using the
WithDegreeofParallelism extension method, which operates on the ParallelQuery type. This
method takes an int argument that states the maximum number of partitions that should be processed
at once; this is known as the degree of parallelism. Setting the degree of parallelism doesn’t force PLINQ
to use that many. It just sets an upper limit. PLINQ may decide to use fewer than you have specified or, if
you have not used the WithExecutionMode method, may decide to execute the query sequentially.
Listing 23-6 demonstrates the use of this method.

Listing 23-6. Setting the Degree of Parallelism in a PLINQ Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Parallel LINQ query
IEnumerable<string> results = presidents
 .AsParallel()
 .WithDegreeOfParallelism(2)
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Parallel result: {0}", president);
}

In Listing 23-6, we have specified a maximum degree of 2, meaning that we want at most two data

partitions to be processed simultaneously. This can be useful if we want to limit the impact of a query on
a machine that needs to perform other tasks as well.

Dealing with Exceptions
If something goes wrong in a sequential LINQ query, the exception that is thrown stops any further
processing. For example, if we are processing the presidents’ names and Arthur causes an exception to
be thrown, none of the presidents’ names that follow Arthur will be processed, as illustrated by Figure
23-2.

CHAPTER 23 ■ USING PARALLEL LINQ

765

Figure 23-2. An exception in a sequential query

So, we should get the results in the sequence prior to Arthur, but not afterward. Let’s put it to the
test. Listing 23-7 contains a sequential query that selects all the presidents’ names and prints them out.
But we have added a wrinkle. When the query gets to Arthur, we throw an exception.

Listing 23-7. Forcing an Exception in a Sequential Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Parallel LINQ query
IEnumerable<string> results = presidents
 .Select(p => {
 if (p == "Arthur")
 throw new Exception(String.Format("Problem with President {0}", p));
 return p;
 });

try {
 foreach (string president in results) {
 Console.WriteLine("Result: {0}", president);
 }
} catch (Exception ex) {
 Console.WriteLine(ex.Message);
}

When we compile and run the code in Listing 23-7, we get the following results, which are what we

expected. We process Adams correctly and then encounter a problem (of our making, admittedly) with
Arthur. The exception that we threw stops the rest of the query from executing.

CHAPTER 23 ■ USING PARALLEL LINQ

766

Result: Adams
Problem with President Arthur

But things are different with a PLINQ query. Remember that the data is broken down into partitions,
which are then processed independently and concurrently. It is possible that we encounter more than
one exception—and because we are processing several partitions at once, the first exception doesn’t
stop the other partitions from being processed. Figure 23-3 shows how this can happen.

Figure 23-3. Exceptions in a parallel query

In Figure 23-3, there are four partitions being processed in parallel. There is a problem with Arthur
in the first partition, which causes an exception to be thrown. But this doesn’t stop the other partitions
being processed, and a problem with Harding causes a second exception to be thrown. What do we do?

Fortunately, there is a nice solution. PLINQ gathers up all the exceptions that it finds and wraps
them in a System.AggregateException, which is then thrown to your code. Listing 23-8 contains a
PLINQ query that will throw exceptions for the Arthur and Harding values.

Listing 23-8. Forcing an Exception in a PLINQ Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

CHAPTER 23 ■ USING PARALLEL LINQ

767

// Parallel LINQ query
IEnumerable<string> results = presidents
 .AsParallel()
 .Select(p => {
 if (p == "Arthur" || p == "Harding")
 throw new Exception(String.Format("Problem with President {0}", p));
 return p;
 });

try {
 foreach (string president in results) {
 Console.WriteLine("Result: {0}", president);
 }
} catch (AggregateException agex) {
 agex.Handle(ex => {
 Console.WriteLine(ex.Message);
 return true;
 });
}

You can see that when we come to enumerate the results, we wrap the foreach loop in a try/catch

block that looks for AggregateExceptions. The AggregateException class has a Handle method that
lets you process each exception in turn. You are passed the exception and must return true if you have
handled the exception or false if you cannot handle the exception.

If you do not handle an exception, it will be propagated and ultimately stop the execution of your
program. On the other hand, you should not handle exceptions that you were not expecting and don’t
know what to do with. That’s the path to weird behavior and difficult-to-find bugs.

The results you get from a PLINQ query that has encountered exceptions are unpredictable. It
depends on how PLINQ has partitioned your data and how many partitions were being processed
concurrently. As an example, when we compiled and ran the code in Listing 23-8, we got the following
results:

Result: Reagan
Result: Roosevelt
Result: Taft
Result: Taylor
Result: Truman
Result: Tyler
Result: Van Buren
Result: Washington
Result: Wilson
Problem with President Arthur

Problem with President Harding

CHAPTER 23 ■ USING PARALLEL LINQ

768

We ran the same code a second time and got completely different results, as shown next. If you
compile and run Listing 23-8, you’ll almost certainly see similar variations.

Problem with President Arthur
Problem with President Harding

Queries Without Results
PLINQ has a useful feature in the ForAll extension method. Used on a ParallelQuery (which you
recall is what the AsParallel method returns), ForAll performs a System.Action on each item in the
sequence. One of our recurring examples in this chapter has been to find all the presidents’ names that
contain the letter o. We have used a where clause to filter only the matching names and selected them
so that they are added to our IEnumerable<string> result. We then use a foreach loop to enumerate
the results and print them out using Console.WriteLine.

We can do the same thing, but much more elegantly, using the ForAll method. Take a look at Listing
23-9.

Listing 23-9. Using the ForAll Method

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

// Parallel LINQ query
presidents.AsParallel()
 .Where(p => p.Contains('o'))
 .ForAll(p => Console.WriteLine("Name: {0}", p));

We still use the Where method to filter the sequence, but rather than gather the results, we print out

the names directly using a lambda expression passed to the ForAll method. Now, it might take a
moment to get your head around this feature. After all, every other example in this book has worked
differently. But the ForAll method is worth getting to know. If we compile and run the code in Listing
23-9, we get the following results:

Name: Ford
Name: Clinton

Name: Lincoln

Name: Harrison
Name: Roosevelt
Name: Taylor

CHAPTER 23 ■ USING PARALLEL LINQ

769

Name: Coolidge
Name: Madison
Name: Hoover
Name: Jackson
Name: Jefferson
Name: Johnson
Name: Eisenhower
Name: Fillmore
Name: Monroe
Name: Nixon
Name: Polk
Name: Washington
Name: Wilson

You can do pretty much anything in the Action passed to the ForAll method except return a result.
You can even filter data without using a where clause. Listing 23-10 demonstrates this.

Listing 23-10. Filtering Data Without a Where Clause

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

int count = 0;

presidents.AsParallel()
 .ForAll(p => {
 if (p.Contains('o')) {
 System.Threading.Interlocked.Increment(ref count);
 }
 });

Console.WriteLine("Matches: {0}", count);

In Listing 23-10, we used the ForAll method to perform an action on every item in the data

sequence. We check to see whether the name contains the letter o and increment the counter if it does.
When we compile and run the code in Listing 23-10, we get the following results:

Matches: 19

CHAPTER 23 ■ USING PARALLEL LINQ

770

And don’t forget that the ForAll method is part of PLINQ, which means that the Action you specify
will be performed on partitions of your data sequence in parallel. This gives you all the performance
benefits of parallel execution but can cause problems for shared data, such as the int we used to count
the matches. We use the Interlocked class from the System.Threading namespace to make sure that
our count is accurate. This is called synchronization and is an advanced parallel programming
technique. We suggest taking a look at Adam’s detailed book on .NET parallel programming if you want
to understand this fully.

Creating Ranges and Repetitions
It is sometimes the case that you need to process a sequence of numeric values or a sequence that
contains the same value. You can create these sequences manually, of course, doing something like this:

int[] sequence = new int[50000];
for (int i = 0; i < sequence.Length; i++) {
 sequence[i] = i;
}

As an alternative, you can generate this kind of sequence using the static Range method from the

System.Linq.ParallelEnumerable class. Listing 23-11 demonstrates how to create the same sequence
as the earlier one and execute a query using it.

Listing 23-11. Generating and Using a Parallel Sequence

IEnumerable<int> evens
 = ((ParallelQuery<int>) ParallelEnumerable.Range(0, 50000))
 .Where(i => i % 2 == 0)
 .Select(i => i);

Listing 23-11 uses the Range method to create a sequence of 50,000 integers starting with the zero.

The first argument to the method is the start index; the second is the number of values you require.
Notice that we have cast the result from the Range method to a ParallelQuery<int>. If we don’t do
this, LINQ doesn’t recognize the sequence as supporting parallel execution and will execute the query
sequentially.

ParallelEnumerable contains a related method, although it is one that we find we don’t use as
often as Range. The static Repeat method takes an object and a count and creates a sequence where the
object is repeated the specified number of times. For an example of this, Listing 23-12 creates a sequence
that repeats the same integer value.

Listing 23-12. Generating and Using a Repeating Sequence

int sum = ParallelEnumerable.Repeat(1, 50000)
 .Select(i => i)
 .Sum();

Console.WriteLine("Sum: {0}", sum);

CHAPTER 23 ■ USING PARALLEL LINQ

771

In Listing 23-12, we select all the elements in the sequence and call the Sum extension method to
aggregate the values. If we compile and run the code in Listing 23-12, we get the following results, which
are exactly what you would expect if you summed 1 50,000 times:

Sum: 50000

Summary
In this chapter, we have shown the most useful feature of Parallel LINQ. With the smallest of changes,
you can process your data using all the cores in your machine. We love PLINQ—it is simple to use and
can deliver significant benefit. Best of all, it can easily be applied to existing LINQ queries, so you can get
a performance boost for free.
And even though it might not seem like a natural fit with the rest of LINQ, don’t forget the ForAll
method. We have found it surprisingly useful over the last few months and have ended up using it often.
In the next chapter, we’ll give you a breakdown of the key members of the most important PLINQ
classes.

C H A P T E R 24

■ ■ ■

773

Parallel LINQ Operators

In this, the final chapter of this section and of the book, we’ll walk though the key operators that support
Parallel LINQ (PLINQ). As you may have noticed, PLINQ operators are expressed as a set of extension
methods in the ParallelEnumerable class that are applied to the ParallelQuery type. We’ll show you
the parallel operators and take a look at how they fit together.

We have only included the operators that allow you to create ParallelQuery instances or control
the execution of the parallel query. Most of the PLINQ operators are identical to their LINQ to Objects
counterparts, other than they are applied to ParallelQuery queries. You can see how to use these
operators by looking at their LINQ to Objects equivalents in Chapters 3 and 4.

ParallelQuery Creation Operators
The following are the ParallelQuery creation operators.

AsParallel
The AsParallel method is the doorway to PLINQ. It converts data sequence into a ParallelQuery. The
LINQ engine detects the use of a ParallelQuery as the source in a query and switches to PLINQ
execution automatically. You are likely to use the AsParallel method every time you use PLINQ.

Prototypes
The AsParallel method has two prototypes that we will cover.

The Fi rst AsParalle l Prototyp e

public static ParallelQuery<T> AsParallel<T>(
 this IEnumerable<T> source
)

This prototype operates on an IEnumerable<T> and returns a ParallelQuery<T>, which can be
used as the basis for a PLINQ query. You’ll see that we used this method in all the PLINQ examples in
the previous chapter—and in almost all the examples in this chapter, too.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

774

The Second AsParalle l Protot ype

public static ParallelQuery AsParallel(
 this IEnumerable source
)

The second prototype creates a ParallelQuery from an IEnumerable and exists to support legacy

collections, such as System.Collections.ArrayList. The ParallelQuery is not strongly typed and
cannot be used as the basis for a PLINQ query without being converted to a ParallelQuery<T>. You
can cast a ParallelQuery to a ParallelQuery<T> by using the Cast<T> operator or filter the sequence
to get the items that are instances of T by using the OfType<T> operator.

Examples
Listing 24-1 uses the first AsParallel prototype to create a ParallelQuery, which is then used as the
source for a PLINQ query. You will recognize this as the example we used often in the previous
chapter—finding the presidents’ names that contain the letter o.

Listing 24-1. Creating a ParallelQuery with the First AsParallel Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

ParallelQuery<string> pq = presidents.AsParallel();

IEnumerable<string> results = from p in pq
 where p.Contains('o')
 select p;

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

When we compile and run Listing 24-1, we get the following results:

Match: Roosevelt
Match: Clinton
Match: Ford
Match: Lincoln
Match: Taylor
Match: Coolidge

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

775

Match: Harrison
Match: Madison
Match: Washington
Match: Eisenhower
Match: Hoover
Match: Monroe
Match: Wilson
Match: Fillmore
Match: Jackson
Match: Nixon
Match: Jefferson
Match: Polk
Match: Johnson

The results are not in the same order as the source sequence items. For more information about
the ordering of PLINQ results, see the previous chapter. To preserve result ordering in a PLINQ query,
see the AsOrdered operator.

Listing 24-2 shows the use of the second prototype. We have defined an ArrayList (which is a
legacy collection and not strongly typed) that contains some of the president’s names. We call the
AsParallel method to create an instance of ParallelQuery and then call Cast<string> to create a
ParallelQuery<string>, which we can then use as the basis for our PLINQ query.

Listing 24-2. Using the Second AsParallel Operator Prototype

ArrayList list = new ArrayList() {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson"};

IEnumerable<string> results = list
 .AsParallel()
 .Cast<string>()
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

In this listing, we are effectively simulating what you need to do if you want to use PLINQ with a

legacy data collection. It is not enough to just call AsParallel; you also have to call the Cast<T>
operator as well in order to get something that PLINQ can work with. If we compile and run the code in
Listing 24-2, we get the following results:

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

776

Match: Fillmore
Match: Coolidge
Match: Clinton
Match: Eisenhower
Match: Ford
Match: Harrison
Match: Hoover
Match: Jackson

Listing 24-2 works just fine if all the objects in your legacy collection are of the same type. You can
combine the second AsParallel prototype with the OfType<T> operator in order to filter for just the
objects that are of a given type. Listing 24-3 gives an example.

Listing 24-3. Creating a ParallelQuery<T> by Filtering a ParallelQuery

ArrayList list = new ArrayList();

list.Add("Adams");
list.Add(23);
list.Add("Arthur");
list.Add(DateTime.Now);
list.Add("Buchanan");
list.Add(new string[] { "apple", "orange" });

IEnumerable<string> results = list
 .AsParallel()
 .OfType<string>()
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

In Listing 24-3, we create an ArrayList that contains the first three presidents’ names and three

other objects. We use the second AsParallel prototype on the ArrayList and then filter for the
strings in the sequence by calling OfType<string>. Only the strings in the sequence are used in the
query. If we compile and run the code in Listing 24-3, we get the following results:

Match: Adams
Match: Arthur
Match: Buchanan

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

777

Range
The Range method creates ParallelQuery<int> containing a sequence of incrementing integers.
This is a static method of the ParallelEnumerable class, rather than an extension method.

Prototypes
The Range method has one prototype.

The R ange Operat or Prot otyp e

public static ParallelQuery<int> Range(
 int start,
 int count
)

You supply two arguments to the Range method. The first is the integer value that the sequence

should begin with; the second is the number of integer that should be in the sequence. The Range
method returns a ParallelQuery<int> that has incrementing values.

Examples
Listing 24-4 shows the use of a parallel range. We call the static Range method to create a
ParallelQuery<int> that contains 10 integers, starting with the value 0. We then enumerate all the
items in the sequence using a foreach loop and print them out. We use the same range sequence as the
basis for a PLINQ query where we select the even integer values and print them out.

Listing 24-4. Using a Range Sequence

ParallelQuery<int> pq = ParallelEnumerable.Range(0, 10);

foreach (int i in pq) {
 Console.WriteLine("Value {0}", i);
}

IEnumerable<int> results = from i in pq
 where i % 2 == 0
 select i;

foreach (int i in results) {
 Console.WriteLine("Match: {0}", i);
}

If we compile and run the code in Listing 24-4, we get the following results:

Value 0
Value 1

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

778

Value 2
Value 3
Value 4
Value 5
Value 6
Value 7
Value 8
Value 9
Match: 0
Match: 4
Match: 6
Match: 8
Match: 2

Repeat
Repeat, like Range, is a static method in the ParallelEnumerable class, rather than an extension
method operator. The Repeat method creates a ParallelQuery<T> that contains a single value of type T
repeated a specified number of times.

Prototypes
The Repeat method has one prototype.

The R epeat Meth od Prot otype

public static ParallelQuery<T> Repeat<T>(
 T element,
 int count
)

The Repeat method takes two arguments. The first is the element that you want to repeat. The

second is the number of times that the element should be repeated in the sequence. The Repeat method
returns a ParallelQuery<T> where T is the type of the element you supplied as the first argument.

Examples
Listing 24-5 demonstrates creating a repeating sequence using the Repeat method.

Listing 24-5. Using the Repeat Method

ParallelQuery<int> pq = ParallelEnumerable.Repeat(2, 10);

foreach (int i in pq) {
 Console.WriteLine("Value {0}", i);
}

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

779

We create a sequence where the integer value 2 is repeated 10 times. Using a foreach loop, we

enumerate the sequence and print out each element in the sequence. If we compile and run the code in
Listing 24-5, we get the following results:

Value 2
Value 2
Value 2
Value 2
Value 2
Value 2
Value 2
Value 2
Value 2
Value 2

Empty
The static ParallelEnumerable.Empty method creates a ParallelQuery<T> that contains no items.
You specify the type T of the ParallelQuery <T> by calling Empty<T>(). To create a
ParallelQuery<string>, you would call Empty<string>().

Prototypes
The Empty method has one prototype.

The E mpty Prot otype

public static ParallelQuery<T> Empty<TResult>();

Execution Control Operators
You can use PLINQ simply by calling AsParallel or one of the other creation operators detailed
above—but if you want more control over how your PLINQ query is performed, then you need to use
one or more of the operators described in this section.

AsOrdered
The AsOrdered operator preserves the order of the results to match the order of the source sequence.
See Chapter 24 for an explanation of why parallel processing doesn’t preserve result ordering by default.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

780

Prototypes
The AsOrdered operator has two prototypes.

The Fi rst AsOrdered Protot ype

public static ParallelQuery<T> AsOrdered<T>(
 this ParallelQuery<T> source
)

The first AsOrdered prototype enforces result ordering on a ParallelQuery<T>. This is the

prototype that you will use most often. The result of the operator is also a ParallelQuery<T>, which
you can then use as the input sequence for your PLINQ query. The second AsOrdered prototype
operated on the weakly typed ParallelQuery.

The Second AsOrdered Protot ype

public static ParallelQuery AsOrdered(
 this ParallelQuery source
)

The second prototype operates on a weakly typed ParallelQuery. This is the kind of

ParallelQuery you get when calling AsParallel on a legacy collection. You still need to use the
OfType or Cast operators before you can use the data sequence in a PLINQ query.

Examples
Listing 24-6 shows the use of the first AsOrdered prototype. We apply the AsOrdered operator to the
result of the AsParallel operator, which we had applied to the sequence of presidents’ names.

Listing 24-6. Using the First AsOrdered Prototype

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .AsOrdered()
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

781

 Console.WriteLine("Match: {0}", president);
}

If we compile and run the code in Listing 24-6, we get the following results. You can see that the

order of the source sequence has been preserved in the results.

Match: Clinton
Match: Coolidge
Match: Eisenhower
Match: Fillmore
Match: Ford
Match: Harrison
Match: Hoover
Match: Jackson
Match: Jefferson
Match: Johnson
Match: Lincoln
Match: Madison
Match: Monroe
Match: Nixon
Match: Polk
Match: Roosevelt
Match: Taylor
Match: Washington
Match: Wilson

Listing 24-7 shows how to use the second prototype. We have included this for completeness, but
you wouldn’t usually apply this operator to a weakly typed ParallelQuery.

Listing 24-7. Using the Second AsOrdered Prototype

ArrayList list = new ArrayList() {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson"};

IEnumerable<string> results = list
 .AsParallel()
 .AsOrdered()
 .Cast<string>()
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

782

In the listing, we have created a legacy collection that contains some of the presidents’ names. We

then call AsParallel, which returns an instance of ParallelQuery. We then apply the AsOrdered
operator and then so that we have something that we can use with PLINQ, and we call the Cast
operator so that we transform our ParallelQuery into a ParallelQuery<string>. If we compile and
run the code in Listing 24-7, we get the following results:

Match: Clinton
Match: Coolidge
Match: Eisenhower
Match: Fillmore
Match: Ford
Match: Harrison
Match: Hoover
Match: Jackson

AsUnordered
The AsUnordered operator undoes the effect of applying the AsOrdered operator. This can be useful in
multipart queries where you need ordering in one part but want to avoid the overhead of arranging
the results to restore order in another part. See the previous chapter for more information about result
ordering.

Prototypes
The AsUnordered operator has one prototype. The operator is applied to the ParallelQuery<T> on
which you want to remove result ordering. The result is a modified ParallelQuery<T> that you can use
as the basis for a PLINQ query.

The A sUnordered Prot otype

public static ParallelQuery<T AsUnordered<T>(
 this ParallelQuery<T> source
)

Examples
Listing 24-8 demonstrates the use of the AsUnordered operator in a two-stage PLINQ query.

Listing 24-8. Mixing Result Ordering in a PLINQ Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

783

 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .AsOrdered()
 .Where(p => p.Contains('o'))
 .Take(5)
 .AsUnordered()
 .Where(p => p.Contains('e'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

In this listing, we first find all the presidents’ names that contain the letter o preserving the order

of the results using the AsOrdered operator. This means that we will get the matching names in
alphabetical order, since that is the order of the source data sequence. We ordered the results because
we wanted the first five matches, which we then use as the input to find all the names that contain the
letter e. We don’t care about the ordering for this part, so we call AsUnordered to avoid PLINQ
incurring the overhead of sorting the results. If we compile and run the code in Listing 24-8, we get the
following results:

Match: Fillmore
Match: Coolidge
Match: Eisenhower

AsSequential
The AsSequential operator is the opposite of the AsParallel operator. It forces sequential execution
by converting a ParallelQuery<T> to an IEnumerable<T>.

Prototypes
The AsSequential operator has one prototype, which operates on a ParallelQuery<T> and returns an
IEnumerable<T>. Queries performed on the result of this operator will be sequential.

The A sSequenti al Operat or Prot otyp e

public static IEnumerable<T> AsSequential<T>(
 this ParallelQuery<T> source
)

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

784

Examples
The AsSequential operator is of most use when you want to enable and disable parallel execution in
different parts of a multipart query. Listing 24-9 contains an example.

Listing 24-9. Moving from Parallel to Sequential Execution in a Multipart Query

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .AsOrdered()
 .Where(p => p.Contains('o'))
 .Take(5)
 .AsSequential()
 .Where(p => p.Contains('e'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

This example is a variation on Listing 24-9. For the second part of the query, we have decided that

the overhead of parallel execution is not warranted, since we know that there are only five items to
process. To that end, we use the AsSequential operator to switch from PLINQ to LINQ when we select
names that contain the letter e. You can switch from parallel to sequential execution as many times as
you need to by using the AsParallel and AsSequential operators. If we compile and run the code in
Listing 24-9, we get the following results. Because the last part of the query has been executed
sequentially, we receive the results in the same order in which they existed in the source sequence.

Match: Coolidge
Match: Eisenhower
Match: Fillmore

AsEnumerable
The AsEnumerable operator has the same effect as the AsSequential operator. It converts a
ParallelQuery<T> into an IEnumerable<T> and so forces sequential query execution.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

785

Prototypes
The AsEnumerable operator has one prototype.

The Sole AsEnu merable Prot otype

public static IEnumerable<T> AsSequential<T>(
 this ParallelQuery<T> source
)

Examples
Listing 24-10 is identical to Listing 24-9, with the exception that we have replaced the AsSequential
operator with AsEnumerable.

Listing 24-10. Using the AsEnumerable Operator

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .AsOrdered()
 .Where(p => p.Contains('o'))
 .Take(5)
 .AsEnumerable()
 .Where(p => p.Contains('e'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

WithDegreeOfParallelism
The WithDegreeOfParallelism operator sets an upper limit of the number of partitions that will be
processed at once by PLINQ. PLINQ breaks up your source sequence into sections (known as partitions),
which are then processed simultaneously. See the previous chapter for more information.

The PLINQ engine analyzes your machine, query, and source data and decides how many
partitions should be processed at once. You can’t specify how many PLINQ will use, but you can specify
an upper limit.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

786

Prototypes
The WithDegreeOfParallelism operator has one prototype.

The WithDegreeOf Paralle lism Op erat or Prot otype

public static ParallelQuery<T> WithDegreeOfParallelism<T>(
 this ParallelQuery<T> source,
 int degreeOfParallelism
)

This operator is applied to a ParallelQuery<T> and takes a single integer argument that is the

upper limit you require. Note that PLINQ may use a lower degree of parallelism or even execute your
query sequentially if analysis suggests that there is no performance gain likely from parallel
execution. Specifying a limit of 1 with this operator forces sequential query execution.

Examples
Listing 24-11 demonstrates the use of this operator in our standard query to find the presidents’
names that contain the letter o. We have provided an argument of 2 to the WithDegreeOfParallelism
operator, which means that at most two chunks of data from our source sequence will be processed at
once.

Listing 24-11. Setting a Limit on the Degree of Parallelism

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .WithDegreeOfParallelism(2)
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

WithExecutionMode
The WithExecutionMode operator allows you to override the analysis that PLINQ performs and force
parallel execution, even when the performance of parallel execution is likely to be worse than
sequential execution.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

787

Prototypes
The WithExecutionMode operator has one prototype.

The WithExecutionMode Operat or Prot otype

public static ParallelQuery<T> WithExecutionMode<T>(
 this ParallelQuery<T> source,
 ParallelExecutionMode executionMode
)

The single argument to the operator is a value from the ParallelExecutionMode enumeration.

There are two values—Default (meaning let PLINQ decide) and ForceParallelism (meaning
perform parallel execution irrespective of the results of the query analysis).

Examples
Listing 24-12 shows the use of the WithExecutionMode operator to force parallel execution.

Listing 24-12. Forcing Parallel Execution

string[] presidents = {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson",
 "Jefferson", "Johnson", "Kennedy", "Lincoln", "Madison", "McKinley",
 "Monroe", "Nixon", "Obama", "Pierce", "Polk", "Reagan", "Roosevelt",
 "Taft", "Taylor", "Truman", "Tyler", "Van Buren", "Washington", "Wilson"};

IEnumerable<string> results = presidents
 .AsParallel()
 .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
 .Where(p => p.Contains('o'))
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

WithMergeOptions
The WithMergeOptions operator allows you to control how results are buffered as they are produced
by the query. By default, PLINQ creates a buffer that holds several result items and yields them to the
result consumer only when the buffer is full. You can change this behavior so that all the results are
produced before they are yielded or each result is yielded as it is produced.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

788

Prototypes
The WithMergeOptions operator has one prototype. The operator is applied to instances of
ParallelQuery<T> and takes a single argument, which is a value from the ParallelMergeOptions
enumeration.

The WithMergeOptions Op erat or Prot otype

public static ParallelQuery<T> WithMergeOptions<T>(
 this ParallelQuery<T> source,
 ParallelMergeOptions mergeOptions
)

The ParallelMergeOptions enumeration has four values. NotBuffered causes each result

element to be yielded as it is produced. FullyBuffered waits for all the results to be produced before
they are yielded. AutoBuffered lets the system select a buffer size and yield result elements when the
buffer is full. The last enumeration value is Default, which is the same as AutoBuffered.

Examples
Listing 24-13 contains an example of using the WithMergeOptions operator with the FullyBuffered
value from the ParallelMergeOptions enumeration.

Listing 24-13. Fully Buffering PLINQ Results

IEnumerable<int> results = ParallelEnumerable.Range(0, 10)
 .WithMergeOptions(ParallelMergeOptions.FullyBuffered)
 .Select(i => {
 System.Threading.Thread.Sleep(1000);
 return i;
 });

Stopwatch sw = Stopwatch.StartNew();

foreach (int i in results) {
 Console.WriteLine("Value: {0}, Time: {1}", i, sw.ElapsedMilliseconds);
}

In this example, we have added a delay to the select clause of our query so that it takes a second

for each item in the range sequence we created to be processed. We then enumerate the query results
(which trigger the deferred execution) and print out each item. We use the Stopwatch class to
timestamp each Console.WriteLine statement so we can see roughly how long it is between each
result element being yielded.

If we compile and run the code in Listing 24-13, we get the following results:

Value: 0, Time: 3013
Value: 1, Time: 3014

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

789

Value: 2, Time: 3014
Value: 3, Time: 3014
Value: 4, Time: 3014
Value: 5, Time: 3014
Value: 6, Time: 3014
Value: 7, Time: 3014
Value: 8, Time: 3014
Value: 9, Time: 3014

If we look at the time value printed out with each result value, we can see that it took roughly three
seconds for any elements to be yielded, but then they all came in a block. Since we used the
FullyBuffered option, this is what we expect. The results will be yielded only when all of them have
been produced.

Listing 24-14 demonstrates the NotBuffered option. This is the same query as in 24-13, with just
the merge option changed.

Listing 24-14. A PLINQ Query Without Results Buffering

IEnumerable<int> results = ParallelEnumerable.Range(0, 10)
 .WithMergeOptions(ParallelMergeOptions.NotBuffered)
 .Select(i => {
 System.Threading.Thread.Sleep(1000);
 return i;
 });

Stopwatch sw = Stopwatch.StartNew();

foreach (int i in results) {
 Console.WriteLine("Value: {0}, Time: {1}", i, sw.ElapsedMilliseconds);
}

When we compile and run the code in Listing 24-14, we get the following results:

Value: 6, Time: 1012
Value: 8, Time: 1012
Value: 0, Time: 1013
Value: 3, Time: 1013
Value: 1, Time: 2012
Value: 4, Time: 2012
Value: 7, Time: 2012
Value: 9, Time: 2012
Value: 2, Time: 3012
Value: 5, Time: 3012

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

790

These are the results we expect but that might not be obvious at first. It helps to know that we ran
this example on our four-core development machines, meaning that PLINQ was able to process four
partitions at once and, therefore, produce four results simultaneously So, what we see is four results
being yielded after roughly a second (remember that we have introduced a delay of a second in the
select clause), then four more a second later and then, after another second, the remaining two items.
This is exactly what we would expect for no buffering on a query performed on a four-core machine.

Conversion Operators
We have already mentioned that you can get a ParallelQuery from a legacy collection by using the
AsParallel method, but you need to take further action to get a ParallelQuery<T> that you can use
with PLINQ. In this section, we describe the operators that allow you to perform that conversion.

Cast
The Cast operator converts a ParallelQuery to a ParallelQuery<T>. You have to specify the type, and
if there are any elements in the input sequence that are not of type T, then an exception will be
thrown.

Prototypes
The Cast operator has one prototype. If you want to create a ParallelQuery<string>, then you call
Cast<string>(). If you want a ParallelQuery<MyObject>, then you call Cast<MyObject>().

The Cast Op erat or Prot otype

public static ParallelQuery<T> Cast<T>(
 this ParallelQuery source
)

Examples
Listing 24-15 demonstrates the use of the Cast operator to use a legacy collection as the source for a
PLINQ query. We apply the AsParallel operator to an ArrayList and then call Cast<string>() to
create a ParallelQuery<string> for use in the PLINQ query.

Listing 24-15. Casting from a Legacy Data Sequence

ArrayList list = new ArrayList() {
 "Adams", "Arthur", "Buchanan", "Bush", "Carter", "Cleveland",
 "Clinton", "Coolidge", "Eisenhower", "Fillmore", "Ford", "Garfield",
 "Grant", "Harding", "Harrison", "Hayes", "Hoover", "Jackson"};

IEnumerable<string> results = list
 .AsParallel()
 .Cast<string>()
 .Where(p => p.Contains('o'))

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

791

 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

When we compile and run the code in Listing 24-15, we get the following results:

Match: Clinton
Match: Eisenhower
Match: Coolidge
Match: Fillmore
Match: Ford
Match: Harrison
Match: Hoover
Match: Jackson

OfType
The OfType operator creates a ParallelQuery<T> from a ParallelQuery by selecting only those
sequence elements that are of type T. This allows you to selectively consume items from a legacy
collection containing mixed types without worrying about the exceptions that can arise using the Cast
operator.

Prototypes
The OfType operator has one prototype.

The OfTyp e Operator Protot ype

public static ParallelQuery<T> OfType<T>(
 this ParallelQuery source
)

Examples
Listing 24-16 contains an example of using this operator. You specify the type you want to select by
specifying it in the angle brackets. If you want a ParallelQuery<string>, then you call
OfType<string>(), for example. In the listing, we create a legacy collection that contains a mix of
types and then use the OfType operator to create a ParallelQuery<string> that contains the string
types from the collection. This ParallelQuery<string> is then used in a PLINQ query.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

792

Listing 24-16. Using the OfType Operator

ArrayList list = new ArrayList();

list.Add("Adams");
list.Add(23);
list.Add("Arthur");
list.Add(DateTime.Now);
list.Add("Buchanan");
list.Add(new string[] { "apple", "orange" });

IEnumerable<string> results = list
 .AsParallel()
 .OfType<string>()
 .Select(p => p);

foreach (string president in results) {
 Console.WriteLine("Match: {0}", president);
}

The ForAll Operator
The ForAll operator is unique to PLINQ and has no equivalent in LINQ to Objects, so we have put it in
a section on its own. This operator allows you to specify an action that will be performed on each
element in the source data sequence when the query is executed.

Prototypes
There is one prototype for the ForAll operator. The argument is an instance of System.Action, which
will be performed for each item in the source sequence. You cannot return a result value from the
Action.

The F orA ll Operator Prototyp e

public static void ForAll<T>(
 this ParallelQuery<T> source,
 Action<T> action
)

Examples
See Chapter 23 for more information and examples for using the ForAll operator.

CHAPTER 24 ■ PARALLEL LINQ OPERATORS

793

Summary
In this chapter, we listed the key operators for creating instances of ParallelQuery and controlling
the execution PLINQ. One of the benefits of PLINQ is that it is a largely drop-in replacement for LINQ
to Objects. If you want parallel execution, you can just call the AsParallel operator, and off you go.

We like PLINQ, and as should be clear by now, we just love LINQ overall. We think that the
flexibility, utility, and integration into the .NET Framework make for a compelling language feature.
We have lost count of the times that we have used LINQ in all of its forms to quickly and simply solve
problems that would have been tedious and error-prone in the days before LINQ existed.
We hope that you come to feel the same way and that this book has helped you on the path to
understanding, enjoying and, yes, even loving LINQ.

795

Index
■ ■ ■

■ Special Characters
= operator, 481, 518
== operator, 481, 518
=> operator, 24

■ A
AcceptChanges method, 414, 421
Action class, 792
Action delegate, 527
Action<T> delegate, 528–529
Actor class, 154, 166, 168, 202, 205
Actor2 class, 91, 166, 168–169
Add Connection dialog box, 460–461
Add Connection menu item, 460
Add Function Import dialog box, 697–698
Add() method, EntityCollection class,

741–743
AddAfterSelf method, 279
AddObject() method, 681, 685, 729–731
Address class, 33
address variable, 33
ADO.NET, retrieving strings, 445
aggregate operators

Aggregate, 207–210
Average, 205–207
Count, 194–196
LongCount, 196–197
Max, 202–205
Min, 199–202
overview, 194
Sum, 198–199

All operator, 64, 190–191
[ALL] option, 502–503
Always value, 541
Ancestors method, 267
Ancestors operator, 314–319
AncestorsAndSelf operator, 319–322
annotations

accessing with XObject.Annotation() or
XObject.Annotations(), 301

adding with XObject.AddAnnotation()
method, 301

example of, 302–305
removing with

XObject.RemoveAnnotations()
method, 301

anonymous types, 32–33
Any operator, 64, 187–190
Any Standard Query Operator, 363
API (Application Programming Interface)

design enhancements
document centricity eliminated in favor of

element centricity, 222–224
names, namespaces, and prefixes, 224–227
node value extraction, 227–230
XML tree construction simplified with

functional construction, 220–222
LINQ to SQL, 438, 444
LINQ to XML, 311

app.config file, 464, 724–725
ArgumentException, 161
ArgumentNullException, 75, 92, 98, 115, 122,

132, 157, 175, 185, 198
ArgumentOutOfRangeException, 147–148,

185–186
ArrayList class, 11, 47, 70, 135, 137, 151,

775–776, 790
AsEnumerable method, 139, 141, 394, 398
AsEnumerable operators, 64, 138–141, 390,

419–420, 482, 785
AsOrdered operator, 779–782
AsParallel method, 773–776
assemblies, 69
assembly references, 390
AsSequential operator, 783–784
Assign method, 537
AssociateWith method, 494
Association attribute

DeleteOnNull property, 544
DeleteRule property, 544–545
IsForeignKey property, 545

■ INDEX

796

IsUnique property, 545
Name property, 545
OtherKey property, 545
overview, 543
Storage property, 546
ThisKey property, 546

Association Editor dialog box, 466
associations

LINQ to Entities, 670
in LINQ to SQL

coincidental joins, 495–496
deferred loading, 485–488
filtering and ordering, 494–495
immediate loading with

DataLoadOptions class, 488–489
overview, 441–442
when immediate loading is not so

immediate, 489–494
AsUnordered operator, 782–783
ataContext.ChangeConflicts collection, 640
Attach method, 650–652
attach_Orders method, 527–529, 532
attributes

adding, 295–296
creating with XAttribute, 237–238
deleting

IEnumerable<T>.Remove(), 297–298
XAttribute.Remove(), 296–297

LINQ to XML API object model, 230
updating, 298–299

Attributes operator, 322–324
AutoSync property, Column attribute, 541
Average operator, 64, 205–207

■ B
bin\Debug directory, 591
birthYear member, 154
BookParticipants node, 224
boxing, 405
Bush element, 60

■ C
c variable, 44
C# language additions

anonymous types, 32–33
collection initialization, 32
expression trees, 27–28
extension methods

declarations and invocations, 37–38
instance (object) vs. static (class)

methods, 34–35

overview, 33
precedence, 39
problem solved by, 35–36
solution, 36–37

lambda expressions
anonymous methods, 23
named methods, 22–23

object initialization, 31–32
overview, 21
partial methods, 39–41
query expressions

grammar, 43
overview, 42
translation, 44–54

var keyword, 29–30
cach elements, preventing Halloween

problem, 232
CanBeNull property, Column attribute, 542
cascade deleting of related objects, 710–714
CASCADE value, 545
Cast operators

examples of, 135–136
exceptions of, 135
overview, 134
for Parallel LINQ, 790–791
prefering OfType to, 15
prototypes of, 134
using for legacy collections, 14–15

Cast<MyObject>() method, 790
Cast<string>() method, 775, 790
Cast<T> operator, 774–775
casting, making test for equality correct, 408
CategorySalesFor1997 class, 653–654
CData, creating with XCData, 248–249
centricity, 222–224
ChangeConflictException exception, 441, 517,

594–595, 599, 637, 640–642
ChangeConflicts collection, 594, 599, 626, 641,

643–644
char sequence, 82
chars array, 82
child XElement objects, 289–291
Church, Alonzo, 22
classes

DataContext, 439–440
entity, 440
Northwind entity, generating, 442–443
shared by nondeferred operators, 151–154

Clear() method, EntityCollection class, 745
ClientWins value, 719–721, 728
CLR (Common Language Runtime), 552
/code option, 455, 457–458

■ INDEX

797

Code property, InheritanceMapping
attribute, 551

Code values, 550
collection initialization, 32
Column attribute, 541–543
ColumnName field, 735
<columnname> column, 608
CommandText object, 621
CommandTimeout object, 621–622
comments, creating with XComment, 238
common classes, 70
Common Language Runtime (CLR), 552
CompanyName property, 560, 740
Compare method, 100–101
comparer classes, System.Xml.Linq

namespace, 230
comparer objects, 397, 400, 402, 404
Compile method, 689
compiled queries, LINQ to Entities, 688–689
CompiledQuery.Compile method, 688–689
Complete method, 649, 663
complex queries, 348–354
Concat operator, 64, 85, 93–96, 171, 197
concat sequence, 130
concatenation operators, 93–96
concurrency

conflicts
alternative approach for middle tiers and

servers, 650
detection, 441
optimistic concurrency, 636–647
pessimistic concurrency, 647–650
prerequisites for running examples, 635
resolution, 441–442

LINQ to Entities
enabling concurrency checks, 716–717
handling concurrency conflicts, 717–722
overview, 715

Configure Behavior dialog box, 469
ConflictMode argument, 639
ConflictMode.ContinueOnConflict, 595,

597, 639
ConflictMode.FailOnFirstConflict, 595, 597,

639
connectionString setting, 464
Console.WriteLine method, 33, 79, 255, 258,

260, 275, 500, 788
construction, functional, 357–359
constructors

for EntityObject class, 732–733
for ObjectContext class, 724–725

Contact array, 10–11

Contact class, 10, 559
Contact element, 11
Contact method, 10
Contact objects, 11
ContactName field, 555–557, 645, 716, 728
ContactName property, 525, 645, 667, 716
ContactName value, 704, 715, 718
containers, creating with XContainer, 239
Contains() method, EntityCollection class,

192, 746
Contains operator, 64, 191–194, 505–506
contains variable, 192–193
/context option, 456
context.Customers property, 729
ContinueOnConflict, 579, 597, 600, 640
conversion operators

AsEnumerable, 138–141
Cast, 134–136
OfType, 136–138
for Parallel LINQ, 790–791
ToArray, 155–157
ToDictionary, 159–164
ToList, 157–159
ToLookup, 164–169

CopyToDataTable<DataRow> operator,
420–426, 756

Count operator, 64, 128, 194–197
Count property, EntityCollection class,

747–748
count variable, 40–41
Create New Complex Type button, 698
Create[T] method, 681–682
CreateCustomer method, 681, 683
CreateDatabase() method

DataContext class, 603–604
ObjectContext class, 727

CreateElement method, 222
CreateMethodCallQuery() method, 547,

605–607, 613
CreateObject() method, ObjectContext class,

730–731
CreateOrder method, 681
creation operators, for Parallel LINQ

AsParallel method, 773–776
Empty method, 779
Range method, 777
Repeat method, 778–779

CultureInfo object, 35
cust variable, 480–481
Customer class, 461, 467, 471, 483, 528, 545,

557, 586, 668
Customer entity type, 728, 730–731, 733–739

■ INDEX

798

Customer method, 695
Customer objects, 58, 477, 499–500, 505,

632, 668–669
Customer property, 495, 529, 531–532, 562,

740
-Customer variable, 530
CustomerContact class, 556–557
CustomerContact.Name member, 557
Customer.CreateCustomer method, 682
CustomerID property, 562, 599, 744–745
-CustomerID variable, 541
Customer.Orders field, 692
Customer.Orders property, 670
CustomerReference property, 738, 740
Customers collection, 730–731
Customers property, 571, 579, 681, 687
Customers row, 738
Customers table, 6, 477, 555, 584, 681, 734
Customers Table<Customer> property, 592,

652
Customers Table<T> property, 471
Customers_By_City method, 617, 697, 700
CustomersByCityResult class, 617
CustomersCountByRegion method,

614–615
Customize radio button, 469
CustOrderTotal method, 615–616
custs variable, 501

■ D
Data Connections node, 461
data iteration engine, 8–12
Data property, 287
data queries, 7–8
Database attribute, 539–540
/database option, 454, 457
database views, LINQ to SQL, 653–655
[Database]Entities class, 669
DatabaseExists() method

DataContext class, 602–603
ObjectContext class, 726

DataContext class, LINQ to SQL
[Your]DataContext() method, 580–594
CreateDatabase() method, 603–604
CreateMethodCallQuery() method,

605–607
DatabaseExists() method, 602–603
DataContext() method, 580–594
DeleteDatabase() method, 604–605
ExecuteCommand() method, 612–613
ExecuteMethodCall() method, 613–621

ExecuteQuery() method, 607–610
GetChangeSet() method, 623–625
GetCommand() method, 621–623
GetTable() method, 625–626
overview, 440–441
prerequisites for running examples,

569–570
primary purposes

change processing, 579–580
change tracking, 578–579
examples, 594
identity tracking, 573–578

Refresh() method, 626–634
SubmitChanges() method, 594–602
Translate() method, 610–611

DataContext constructor, 522
DataContext derived class, 442
DataContext Log object, 17
DataContext() method, 6, 580–594
DataContext object, 478, 499, 521–522
DataContext.ChangeConflicts collection, 641,

643, 645
DataContext.ChangeConflicts.ResolveAll()

method, 641–644
DataContext.ExecuteDynamicDelete method,

516
DataContext.ExecuteDynamicInsert method,

516
DataContext.ExecuteDynamicUpdate method,

516
DataContext.Log object, 485
DataContext.Log property, 450–451
DataLoadOptions class, 488–490, 494
DataSets, additional capabilities of, 427–433
dateAwarded member, 125
DBML intermediate files, 457–458
/dbml option, 455, 457
DbType attribute, 541–542, 548, 552
DbType property, 542, 549
declarations, creating with XDeclaration,

239–240
default() method, 174, 179, 183, 186
Default Methods category, 469
DefaultIfEmpty operator, 64, 141–146, 497–498,

702
deferred loading, 485
deferred operators

assemblies, 69
common classes, 70
concatenation, Concat, 93–96
conversion

AsEnumerable, 138–141

■ INDEX

799

Cast, 134–136
OfType, 136–138

element, DefaultIfEmpty, 141–146
generation

Empty, 148–149
Range, 146–147
Repeat, 147–148

grouping, GroupBy, 120–126
join, 116–126

GroupJoin, 118–120
Join, 116–118

namespaces, 69
ordering

OrderBy, 97–103
OrderByDescending, 103–111
reverse, 115–116
ThenByDescending, 111–115

partitioning
Skip, 91
SkipWhile, 91–93
Take, 85–88
TakeWhile, 88–90

projection
overview, 74
Select, 75–80
SelectMany, 81–85

set
Distinct, 127–128
Except, 132–134
Intersect, 130–131
Union, 128–130

deferred queries, 16–17, 59–62, 501–504
delete method, overriding, 514
DeleteAllOnSubmit operator, 511
DeleteDatabase() method

DataContext class, 604–605
ObjectContext class, 726

DeleteObject() method, 706–707, 731–732
DeleteOnNull property, Association

attribute, 544
DeleteOnSubmit method, 471, 480, 510, 655
DeleteRule property, Association attribute,

544–545
deletes, in LINQ to SQL, 510–513
Deletes property, 623
deleting related objects

cascade deleting, 710–714
manually, 709–710
overview, 708

DescendantNodes operator, 324–326
DescendantNodesAndSelf operator,

326–328

Descendants method, 283, 353
Descendants operator, 329–331, 334
DescendantsAndSelf operator, 331–334
detach_Orders method, 527, 529, 531–532
detection, concurrency conflict, 441
Dictionary class, 159–161, 163–164, 166
Distinct operators, 64, 127–128, 392–396, 432
DLL (dynamic link library), 22
document centricity, 222–224
document types, creating with

XDocumentType, 240–242
DocumentChangedHandler method, 307
double quotes, 518
dropdownListCityValue variable, 503
dynamic link library (DLL), 22

■ E
e variable, 44
eager loading, LINQ to Entities, 693–695
EDM (entity data model), 668
EdmGen command-line tool, 670
EDMX file, 712
element centricity, 222–224
element operators

DefaultIfEmpty, 141–146
ElementAt, 185–186
ElementAtOrDefault, 186–187
First, 172–174
FirstOrDefault, 174–176
Last, 177–178
LastOrDefault, 178–181
Single, 181–182
SingleOrDefault, 183–185

ElementAt operator, 64, 185–186
ElementAtOrDefault operator, 64, 186–187
elements, creating with XElement, 234–237
Elements operator,, 334–336
embedded query, functional construction

transformations, 358
emp variable, 509
Employee array, 83
Employee class, 10–11, 70, 83, 119, 135, 144,

151, 161, 182
Employee elements, 11, 83
Employee objects, 11, 83, 161, 199
Employee property, 507
Employee type, 705
Employee2 class, 161, 163
Employee.id field, 161
EmployeeOptionEntry array, 83, 145
EmployeeOptionEntry class, 70, 83, 117, 119,

122, 137, 144, 152, 199, 206

■ INDEX

800

EmployeeOptionEntry element, 83, 122
EmployeeOptionEntry objects, 125,

144–146, 207
employees array, 118
employees variable, 135
Empty method, for Parallel LINQ, 779
Empty operators, 65, 148–149, 188
Empty<string>() method, 779
Empty<T>() method, 779
emptyChangingEventArgs object, 524
EndsWith method, 4
Enforce Foreign Key Constraint option, 708
entity classes, LINQ to SQL, 441, 669

Association attribute
by generating, 522
writing by hand, 522–537

attributes
Association, 543–546
Column, 541–543
Database, 539–540
DbType, 552
Function, 546–548
InheritanceMapping, 549–552
overview, 537–538
Parameter, 549
ResultType, 548–549
return, 548
Table, 540–541

extending entity classes with partial
methods, 558–560

Northwind, generating, 442–443
prerequisites for running examples, 521
projecting into entity classes vs.

nonentity classes, 552–558
System.Data.Linq API classes

EntityRef<T>, 561–563
EntitySet<T>, 561
IExecuteResult, 564–565
IMultipleResults, 566
ISingleResult<T>, 565–566
overview, 560
Table<T>, 563–564

XML external mapping file schema, 552
entity class-to-table mapping, 440
entity data model (EDM), 668
Entity Data Model Wizard, 670–672, 674,

696, 712, 733, 738, 740
Entity Framework classes

EntityCollection
Add() method, 741–743
Clear() method, 745
Contains() method, 746

Count property, 747–748
Load() method, 747
Remove() method, 743–745

EntityObject
constructor, 732–733
factory method, 733–735
navigation properties, 737–740
primitive properties, 735–736

EntityReference
Load() method, 740
Value property, 741

ObjectContext
AddObject() method, 729–730
constructor, 724–725
CreateDatabase() method, 727
CreateObject() method, 730–731
DatabaseExists() method, 726
DeleteDatabase() method, 726
DeleteObject() method, 731–732
overview, 723
Refresh() method, 728–729
SaveChanges() method, 727–728

prerequisites for, 723
entity objects, LINQ to SQL, 439
Entity property, 530–532, 561
/entitybase option, 456
EntityCollection class

Add() method, 741–743
Clear() method, 745
Contains() method, 746
Count property, 747–748
Load() method, 747
Remove() method, 743–745

EntityCollection<Order>, 670, 741, 744–746
EntityCollection<T>, 670, 746
EntityCollection.Load method, 695
EntityConnectionStringBuilder class, 725
entity.Customer property, 529
EntityObject class

constructor, 732–733
factory method, 733–735
navigation properties, 737–740
primitive properties, 735–736

EntityRef<Customer> type, 483, 533, 536, 561
EntityRef<Order>, 533
EntityRef<T> class, 535–536, 561–563
EntityReference class, 738, 740–741
EntitySet class, 706
EntitySet<Order> type, 479, 483, 537, 561
EntitySet<T> class, 536–537, 561
EntitySet.DeleteObject method, 707
Enumerable.Range, 753

■ INDEX

801

Equality Comparer, Distinct operator with,
393

equality operators, 169–172
EqualityComparer<K>.Default object, 159,

165
EqualityComparerDefault comparer, 121,

165
Equals method, 396, 399, 401, 404
events, 305–311
Except operators, 65, 132–134, 397–399
exceptions

of Aggregate operator, 208
of All operator, 190
of Any operator, 188
of AsEnumerable operators, 139
of Average operator, 206
of Cast operators, 135
of Concat operator, 94
of Contains operator, 192
of Count operator, 195
of DefaultIfEmpty operator, 142
of Distinct operators, 127
of ElementAt operator, 185–186
of ElementAtOrDefault operator, 186
of Empty operators, 149
of Except operators, 132
of First operator, 173
of FirstOrDefault operator, 175
of GroupBy operator, 122
of GroupJoin operator, 119
handling with Parallel LINQ, 764–768
of Intersect operators, 130
of Join operator, 117
of Last operator, 177
of LastOrDefault operator, 179
of LongCount operator, 196
of Max operator, 203
of Min operator, 201
of OfType operators, 137
of OrderBy operator, 98
of OrderByDescending operator, 104
of Range operators, 147
of Repeat operators, 148
of reverse operator, 115
of Select operator, 75
of SelectMany operator, 81
of SequenceEqual operator, 169
of Single operator, 181–182
of SingleOrDefault operator, 183
of Skip operator, 90
of SkipWhile operator, 92
of Sum operator, 198

of Take operator, 86
of TakeWhile operator, 88–90
of ThenBy operator, 108
of ThenByDescending operator, 112
of ToArray operator, 155
of ToDictionary operator, 161
of ToList operator, 157
of ToLookup operator, 166
of Union operators, 129
of Where operators, 73

ExecuteCommand() method, DataContext
class, 570, 612–613

ExecuteDynamicDelete method, 517
ExecuteDynamicInsert method, 517
ExecuteDynamicUpdate method, 517
ExecuteMethodCall() method, 547, 564–567,

605, 613–621
ExecuteNonQuery method, 677
ExecuteQuery() method, 570, 607–610, 612
ExecuteReader method, 676
ExecuteStatementInDb() method, 446–447,

598, 676
execution control operators, for Parallel LINQ

AsEnumerable, 784–785
AsOrdered, 779–782
AsSequential, 783–784
AsUnordered, 782–783
WithDegreeOfParallelism, 785–786
WithExecutionMode, 786–787
WithMergeOptions, 787–790

explicit loading, LINQ to Entities, 695–696
Expression property, Column attribute, 542
expression trees, 27–28
Extensible Markup Language. See XML
Extensible Stylesheet Language

Transformations (XSLT), 355–356
extension methods

declarations and invocations, 37–38
instance (object) vs. static (class) methods,

34–35
overview, 33
precedence, 39
problem solved by, 35–36
solution, 36–37
validating XML, 367

■ F
f variable, 44
factory method, of EntityObject class, 733–735
FailOnFirstConflict, 579, 595, 600, 640
Field operators, 409
Field<T> operator, 410–415

■ INDEX

802

Fifth Field prototype, 411
Fill method, 430
FilterArrayOfInts method, 22–23
First Descendants prototype, 328
First DescendantsAndSelf prototype, 331
First Elements prototype, 334
First Field prototype, 410
First method, 706
First operator, 65, 143, 172–174, 202, 507,

554
First Remove prototype, 340–341
first sequence, 129
First SetField prototype, 416
FirstAttribute property, 295
FirstName element, 253, 268
FirstOrDefault operator, 65, 174–176
firstParticipant variable, 255
FK_Order_Details_Orders, 708, 711–713
ForAll operator, Parallel LINQ, 792–793
ForAll Operator prototype, 792
foreach loop, 102, 125, 137, 149, 488, 555,

732, 741, 777, 779
foreach method, 17
foreach statement, 15, 42, 45, 61
Format method, 35
forums, LINQ, 18–19
Fourth Field prototype, 411
from clauses, 43–44, 46–51
from statement, 43
Func delegates, 28, 63–64
func method, 207–208
Func<T, bool> argument, 63
Function attribute, 546–548, 606, 614
Function Import Name value, 698
functional construction

creating attibutes, 237
creating comments, 238
creating declarations, 239
creating document type, 241
transformations using, 357–359
XML tree construction simplified with,

220–222
/functions option, 455, 614

■ G
g variable, 45
Generate from database option, 671
generation operators

Empty, 148–149
overview, 146
Range, 146–147
Repeat, 147–148

Get Column Information button, 698
Get Customer And Orders procedure, 619
get method, 529
GetChangeSet() method, 451, 623–625
GetCommand() method, DataContext class,

621–623
GetCustomerAndOrders method, 547, 549
GetCustomerAndOrdersResult1 method, 549,

620
GetCustomerAndOrdersResult2 method, 549,

620
GetEmployees method, 11
GetEmployeesArrayList method, 135
GetEnumerator method, 42
GetHashCode method, 123, 127, 129, 392, 396,

399, 401, 404
GetParameterValue method, 564, 616
GetResult<T> method, 566–567, 618
GetSchemaInfo method, 368
GetString method, 676
GetStringFromDb() method, 445–446,

596–597, 675–676
GetTable() method, DataContext class,

625–626
GetTable<T> method, 572, 582–583
GetVowelConsonantCount method, 101
graph consistency, 527–534
group clause, 44
GroupBy method, 121
GroupBy operator, 65, 120–126
GroupJoin operator, 65, 118–120, 142, 144

■ H
Halloween problem, 231–234
HasLoadedOrAssignedValue property, 562–563
HasVersion method, 421
helper methods, simplifying complex tasks

with, 360

■ I
i variable, 45
ICollection<T> interface, 192, 194, 537, 561
IComparable interface, 98, 104, 108, 112, 200,

392, 404
IComparable<T> interface, 200, 203
IComparer interface, 100–101
IEnumerable interfaces, 134, 260, 483, 741, 774
IEnumerable<int> variable, 7, 62, 77
IEnumerable<T> class, 58–62
IEnumerable<T> interface, 7, 14, 37, 58, 134,

136, 157, 675, 741, 783

■ INDEX

803

IEnumerable<T>.Remove() method,
283–284, 297–298

IEqualityComparer interface, 123, 154
IEqualityComparer<K> interface, 160, 165
IEqualityComparer<K> object, 159–160, 165
IEqualityComparer<T> object, 153, 169, 192
ieStrings sequence, 16
IExecuteResult class, 564–565
IExecuteResult interface, 565–566, 614
IExecuteResults ReturnValue property,

564–566
IGrouping objects, 121
IGrouping sequence, 121
IGrouping<K, T> interface, 120
IList interface, 185–186
ILookup interface, 164
immediate loading, 488
IMultipleResults interface, 565–566
IN statement, 505–506
Include method, 693–695
InDocumentOrder operator, 275, 336–338
inheritance mapping, entity class, 440
Inheritance object, 466
InheritanceMapping attributes, 466, 542,

549–552, 656–657
inner joins

LINQ to Entities, 701–702
in LINQ to SQL, 496–497

inner sequence, 117, 119
innerKeySelector method, 117, 119
INotifyPropertyChanged interface, 523
INotifyPropertyChanging interface, 523
Insert method, 469, 513–514
InsertCustomer procedure, 466–470, 472
InsertOnSubmit method, 579, 655
inserts

LINQ to Entities
creating partially populated entity types,

681–683
inserting attached entity objects, 683–687
overview, 680

LINQ to SQL, 476–480
Inserts property, 623
int type, 25
interfaces, IQueryable<T>, 444
Intersect operators, 65, 130–131, 399–401
Intersect prototype, 399
Intersect sequence, 131
int.MaxValue, 147
into clause, 44, 47, 49, 497, 702
ints variable, 61
InvalidCastException, 135–136

InvalidOperationException, 173–174, 177–178,
181–183, 201, 203, 208

IOrderedEnumerable<T> sequence, 97,
107–108

IQueryable<Customer> argument, 687,
 689–690

IQueryable<T> interface, 140, 444, 482,
674–675

IsComposable property, 548
IsDbGenerated property, 542
IsDefault attribute, 550–551, 658
IsDefault property, 550, 552
IsDiscriminator property, 542, 550
IsForeignKey attribute, 546
IsForeignKey property, 545
isFounder method, 124–125
ISingleResult<CustomersByCityResult>,

616–617
ISingleResult<T> interface, 565–566
IsLoaded method, 696
IsOdd method, 24
IsPrimaryKey attribute, 541
IsPrimaryKey property, 542
IsUnique property, 545
IsVersion attribute, 651
IsVersion property, 542–543
ITable interface, 625

■ J
J string, 73
Join argument, 117
join clauses, 44, 46–47, 49
join operators

examples of, 117–118
exceptions of, 117
GroupJoin, 118–120
prototypes of, 116–117

join statement, 498, 702
joins

LINQ to Entities
inner joins, 701–702
outer joins, 702–704

LINQ to SQL
inner joins, 496–497
outer joins, 497–499
whether to flatten, 499–501

just-in-time loading, 691

■ K
K type, 98, 104, 108
k variable, 45

■ INDEX

804

KeepChanges option, 640
KeepCurrentValues option, 640
keySelector method, 97–98, 107–108, 121,

159, 164
keywords, var, 12–14

■ L
l variable, 45
Label objects, 15
lambda expressions, 11, 22–27, 374, 376
language attribute, 374
Language Integrated Query. See LINQ
/language option, 455, 458
Last operator, 65, 177–178
LastOrDefault operator, 65, 178–181
lazy loading, LINQ to Entities, 691–692
legacy collections, using Cast or OfType

operators for, 14–15
Length property, 657
let clause, 43, 49
LINQ (Language Integrated Query)

bugs, 15–16
as data iteration engine, 8–12
data queries, 7–8
DataContext Log object, 17
deferred queries, 16–17
forum, 18–19
how to obtain, 8
overview, 3
prefering OfType operators to Cast

operators, 15
query SQL server database, 5–6
query XML, 4–5
using Cast or OfType operators for

legacy collections, 14–15
LINQ to DataSet operators

assembly references, 390
common code for examples of, 390–392
DataRow Field operators

Field<T>, 410–415
overview, 405–409
SetField<T>, 416–419

DataRow set operators
Distinct, 392–396
Except, 397–399
Intersect, 399–401
SequenceEqual, 404–405
Union, 401–404

DataTable operators
AsEnumerable, 419–420
CopyToDataTable<DataRow>, 420–426,

756

overview, 389
referenced namespaces, 390

LINQ to Entities. See also operations, LINQ to
Entities

associations, 670
common methods, 675–677
entity classes, 669
IQueryable<T> interface, 674–675
ObjectContext class, 669
overview, 668–670
prerequisites for running examples,

670–674
using API, 674, 756

LINQ to Objects
Func delegates, 63–64
IEnumerable<T>, sequences, and Standard

Query Operators, 58–59
overview, 57–58
returning IEnumerable<T>, yielding, and

deferred queries, 59–62
Standard Query Operators alphabetical

cross-references, 64
LINQ to SQL. See also entity classes, LINQ to

SQL
associations, 440–441
concurrency conflict detection, 441
concurrency conflict resolution, 441–442
database operations. See also queries,

LINQ to SQL
deletes, 510–513
inserts, 476–480
overriding database modification

statements, 513–517
overview, 475
prerequisites for running examples, 475–476
SQL translation, 518
updates, 506–510

database views, 653–655
DataContext class, 439–440
DataContext.Log property, 450–451
entity class inheritance, 655–661
entity classes, 440
GetChangeSet() method, 451
IQueryable<T> interface, 444
methods

ExecuteStatementInDb(), 446–447
GetStringFromDb(), 445–446
overview, 444

Object Relational Designer
adding entity class, 461–464
adding objects to entity class model,

465–466

■ INDEX

805

connecting DataContext to database,
460–461

creating LINQ to SQL classes file, 459
editing entity class model, 464–465
overriding insert, update, and delete

methods, 466–472
overview, 458
using with SQLMetal, 472–473

overview, 449
partial classes or mapping files, 451
partial methods, 451
prerequisites for examples

generating Northwind entity classes,
442–443

generating Northwind XML mapping file,
444

obtaining appropriate version of
Northwind database, 442

SQLMetal
overview, 452–456
using with Object Relational Designer,

472–473
working with DBML intermediate files,

457–458
XML mapping file vs. DBML intermediate

file, 457
transactions, 661–664
using LINQ to SQL API, 444

LINQ to XML API
API Design enhancements

document centricity eliminated in favor
of element centricity, 222–224

names, namespaces, and prefixes,
224–227

node value extraction, 227–230
overview, 219
XML tree construction simplified with

functional construction, 220–222
deferred query execution, node removal,

and Halloween problem, 231–234
object models, 230–231
referenced namespaces, 219
XML annotations, 301–305
XML attribute creation, 291
XML attribute modification

adding attributes, 295–296
deleting attributes, 296–298
updating attributes, 298–299
XElement.SetAttributeValue(), 299–300

XML attribute traversal
backward with

XAttribute.PreviousAttribute, 293

backward with XElement.LastAttribute,
293–294

forward with XAttribute.NextAttribute,
292–293

forward with XElement.FirstAttribute, 292
overview, 291
XElement.Attribute(), 294–295
XElement.Attributes(), 295

XML creation
creating attributes with XAttribute, 237–238
creating CData with XCData, 248–249
creating comments with XComment, 238
creating containers with XContainer, 239
creating declarations with XDeclaration,

239–240
creating document types with

XDocumentType, 240, 242
creating documents with XDocument, 242
creating elements with XElement, 234–237
creating names with XName, 243
creating namespaces with XNamespace, 244
creating nodes with XNode, 244
creating processing instructions with

XProcessingInstruction, 244–246
creating streaming elements with

XStreamingElement, 246–248
creating text with XText, 248

XML events, 305–311
XML input

loading with XDocument.Load(), 251–253
loading with XElement.Load(), 253–254
parsing with XDocument.Parse() or

XElement.Parse(), 254–255
XML modification

adding nodes, 276–281
deleting nodes, 282–285
updating nodes, 285–289
XElement.SetElementValue() on Child

XElement objects, 289–291
XML output

saving with XDocument.Save(), 249–250
saving with XElement.Save(), 250–251

XML traversal methods
backward with XNode.ElementsBeforeSelf(

), 275–276
backward with XNode.NodesBeforeSelf(),

274–275
down recursively with

XContainer.Descendants(), 270
down recursively with

XElement.DescendantsAndSelf(), 271
down with XContainer.Element(), 266–267

■ INDEX

806

down with XContainer.Elements(),
265–266

down with XContainer.Nodes(), 260–265
forward with XNode.ElementsAfterSelf(),

273–274
forward with XNode.NodesAfterSelf(),

272–273
up recursively with

XElement.AncestorsAndSelf(), 269
up recursively with XNode.Ancestors(),

267–268
XML traversal properties

backward with XNode.PreviousNode,
257–258

forward with XNode.NextNode, 256–257
up to document with XObject.Document,

258–259
up with XObject.Parent, 259–260

LINQ to XML operators
Ancestors, 314–319
AncestorsAndSelf, 319–322
Attributes, 322–324
DescendantNodes, 324–326
DescendantNodesAndSelf, 326–328
Descendants, 328–331
DescendantsAndSelf, 331–334
Elements, 334–336
InDocumentOrder, 336–338
Nodes, 338–340
overview, 313–314
Remove, 340–343

Linqdev namespace, 590–592
LINQDev.Common namespace, 11
Linqdev.Customer class, 593
LINQDev.HR namespace, 11
List collection, 11
List<int>, 62
Load() method

EntityCollection class, 747
EntityReference class, 740

loading
with XDocument.Load(), 251–253
with XElement.Load(), 253–254

LoadOptions parameter, 254
LoadOptions.None option, 252
LoadOptions.PreserveWhitespace option,

252
LoadOptions.SetBaseUri option, 252
LoadOptions.SetLineInfo option, 252
LoadOption.Upsert copy type, 423
LoadWith<T>, 488–490, 492
Locals window, 13

Log object, DataContext, 17
logging class, 216
LongCount operator, 196–197
Lookup class, 164–166

■ M
/map option, 455, 457, 552
mapping files, 444, 451
mapping method arguments, 470
Max operator, 65, 202–205
maxOccurs attribute, 378
.mdf file, 581–582
MemberChangeConflict objects, 599, 641, 645
MemberChangeConflict.Resolve() method,

644–647
MemberConflicts collection, 641, 645–646
method arguments, 470
MethodInfo object, 606, 614
methods

ExecuteStatementInDb() method, 446–447
extension, 367
GetStringFromDb() method, 445–446
helper, simplifying complex tasks with, 360
IEnumerable<T>.Remove() method,

297–298
overview, 444
traversal

backward with XNode.ElementsBeforeSelf(
), 275–276

backward with XNode.NodesBeforeSelf(),
274–275

down recursively with
XContainer.Descendants(), 270

down recursively with
XElement.DescendantsAndSelf(), 271

down with XContainer.Element(), 266–267
down with XContainer.Elements(), 265–266
down with XContainer.Nodes(), 260–265
forward with XNode.ElementsAfterSelf(),

273–274
forward with XNode.NodesAfterSelf(),

272–273
up recursively with

XElement.AncestorsAndSelf(), 269
up recursively with XNode.Ancestors(),

267–268
XAttribute.Remove() method, 296–297
XElement.SetAttributeValue() method,

299–300
XObject.AddAnnotation() method, 301
XObject.Annotation() method, 301

■ INDEX

807

XObject.Annotations() method, 301
with XObject.RemoveAnnotations()

method, 301
Methods pane, 466, 468–469
Min operator, 65, 199–202
MinUnitPriceByCategory method, 547,

620–621
Model Browser window, 697, 712
MoveNext method, 42
MyChangedEventHandler method, 307
mySpouse variable, 28
MyStringifiedNumberComparer class, 153,

162–163, 168, 172, 193
MyType entity type, 734
MyVowelToConsonantRatioComparer

object, 105, 110
MyWidget class, 40
MyWidget.cs file, 39
MyWidgetEnd method, 40
MyWidgetStart method, 40

■ N
Name attribute, 540–541, 544, 656
Name class, 555, 557
name parameter, 556
Name property

Association attribute, 545
Column attribute, 543
Database attribute, 540
Function attribute, 548
Parameter attribute, 549
Table attribute, 541

name variable, 30
named child elements, accessing using

elements method, 266
names, 243
/namespace option, 456
namespaces, 69, 224–227

creating with XNamespace, 244
referenced, 219, 345, 390
referenced in nondeferred operators,

151
required in DataSets, 427

navigation properties, of EntityObject class,
737–740

Netsplore.Utilities namespace, 38
Never value, 541
new operator, 28
NextNode property, 257, 274
NickName element, 268
NO ACTION value, 545
node value types, 228

nodes
adding

overview, 276
XContainer.Add() (AddLast), 277–278
XContainer.AddFirst(), 278–279
XNode.AddAfterSelf(), 281
XNode.AddBeforeSelf(), 279–280

creating with XNode, 244
deleting

IEnumerable<T>.Remove(), 283–284
XElement.RemoveAll(), 284–285
XNode.Remove(), 282–283

multiple peer, 364–366
removal of, 231–234
suppressing construction with null,

361–363
updating, 285–289
value extraction of, 227–230

Nodes operator, 338–340
NodesAfterSelf method, 273, 275
nondeferred operators

aggregate
Aggregate, 207–210
Average, 205–207
Count, 194–196
LongCount, 196–197
Max, 202–205
Min, 199–202
Sum, 198–199

common classes, 151–154
conversion

ToArray, 155–157
ToDictionary, 159–164
ToList, 157–159
ToLookup, 164–169

element
ElementAt, 185–186
ElementAtOrDefault, 186–187
First, 172–174
FirstOrDefault, 174–176
Last, 177–178
LastOrDefault, 178–181
Single, 181–182
SingleOrDefault, 183–185

equality, SequenceEqual, 169–172
quantifiers

All, 190–191
Any, 187–190
Contains, 191–194

referenced namespaces, 151
Northwind class, 539–540, 570–571, 579, 582,

586

■ INDEX

808

Northwind DataContext, 477, 479, 488–489,
611, 641

Northwind entity classes, generating,
442–443

Northwind entity data model, 723, 725, 727
Northwind XML mapping file, generating,

444
NorthwindDataContext class, 463–464
NorthwindDataModel.edmx, 670
Northwind.dbml file, 459, 461
Northwind.designer.cs file, 459, 462
NorthwindEntities class, 668–669, 681, 723
NorthwindExtended.cs file, 514
NorthwindTest database, 539
NotBuffered option, 789
null, suppressing node construction with,

361–363
null.Length method, 16
Numeric types, 198, 203, 205
nwind namespace, 6, 140, 559–560, 590
nwind.Order sequence, 13

■ O
o variable, 45
ObectChangeConflict objects, 645
object initialization features, 31–32, 78
object models, 230–231
Object property, 599
Object Relational Designer

adding entity class, 461–464
adding objects to entity class model,

465–466
connecting DataContext to database,

460–461
creating LINQ to SQL classes file, 459
editing entity class model, 464–465
overriding database modification

statements in, 517
overriding insert, update, and delete

methods, 466–472
overview, 458
using with SQLMetal, 472–473

ObjectChangeConflict object, 599, 641,
644–646

ObjectChangeConflict.Resolve() method,
643–644

ObjectContext AddObject method, 733
ObjectContext class

AddObject() method, 729–730
constructor, 724–725
CreateDatabase() method, 727
CreateObject() method, 730–731

DatabaseExists() method, 726
DeleteDatabase() method, 726
DeleteObject() method, 731–732
overview, 669
Refresh() method, 728–729
SaveChanges() method, 727–728

ObjectContext property, 696, 698
ObjectContext.DeleteObject method, 705–706,

709
ObjectContext.Refresh method, 718
ObjectContext.SaveChanges method, 706
object.method() method, 6
ObjectQuery class, 690
object-relational impedance mismatch, 438,

573
object-relational mapping (ORM), 438
objects, DataContext Log, 17
ObjectSet<Customer>, 681
ObjectSet<T>, 669, 680
OfType operators

examples of, 137–138
exceptions of, 137
for Parallel LINQ, 791
prefering to Cast, 15
prototypes of, 136
using for legacy collections, 14–15

OfType<string>() method, 791
OfType<T> operator, 774, 776
OfTypeXElement method, 265
On[Property]Changed method, 534–535
On[Property]Changing method, 534–535
OnCompanyNameChanged method, 560
OnCompanyNameChanging method, 560
OnCreated method, 534, 560, 571
OnDelete action, 714
one-to-many relationship, 440
OnInsert value, 541
OnLoaded method, 534, 560
Only DescendantNodes prototype, 325
Only DescendantNodesAndSelf prototype, 326
Only InDocumentOrder prototype, 337
Only Nodes prototype, 338–339
ontactName property, 647
OnUpdate value, 541
OnValidate method, 534
operations, LINQ to Entities

concurrency
enabling concurrency checks, 716–717
handling concurrency conflicts, 717–722
overview, 715

deleting related objects
cascade deleting, 710–714

■ INDEX

809

manually, 709–710
overview, 708

inserts
creating partially populated entity types,

681–683
inserting attached entity objects, 683–687
overview, 680

prerequisites for running examples, 679
queries

basic queries, 687
compiled queries, 688–689
joins, 701–704
loading related objects, 691–696
querying stored procedures, 697–700
querying views, 696
seeing SQL statement, 690–691

updates, 704–705
operators. See also deferred operators

Ancestors, 314–319
AncestorsAndSelf, 319–322
Attributes, 322–324
DataRow Field

Field<T>, 410–415
overview, 405–409
SetField<T>, 416–419

DataRow set
Distinct, 392–396
Except, 397–399
Intersect, 399–401
SequenceEqual, 404–405
Union, 401–404

DataTable
AsEnumerable, 419–420
CopyToDataTable<DataRow>, 420–426,

756
DescendantNodes, 324–326
DescendantNodesAndSelf, 326–328
Descendants, 328–331
DescendantsAndSelf, 331–334
Elements, 334–336
InDocumentOrder, 336–338
Nodes, 338–340
nondeferred. See nondeferred operators
for Parallel LINQ

conversion, 790–791
creation, 773–777
execution control, 779–790

prefering OfType to Cast, 15
Remove, 340–343
using Cast or OfType for legacy

collections, 14–15

optimistic concurrency
conflict detection

ChangeConflictException, 640
SubmitChanges() method, 639
UpdateCheck attribute property, 636–639

conflict resolution
DataContext.ChangeConflicts.ResolveAll()

method, 641–642
MemberChangeConflict.Resolve() method,

644–647
ObjectChangeConflict.Resolve() method,

643–644
RefreshMode, 640

OptimisticConcurrencyException, 717–721,
727

optionsCount members, 83, 120, 199
Order class, 462, 483, 495, 527–528, 545,

561–562
Order CustomerID field, 743
Order Details table, 708
Order entity type, 731, 737–738, 742
Order member, 554
Order type, 739
order variable, 508
Order_Detail object, 706, 709–710
Order_Details EntityCollection, 710
Order_Details property, 707
Order_Details table, 707, 712
orderby clause, 44
OrderBy operator, 27, 65, 97–103, 105, 107, 558
OrderBy prototype, 103
orderby statement, 555–556
OrderByDescending operator, 52, 65, 97,

103–107
Order.Customer property, 685
OrderID field, 743
ordering operators

OrderBy, 97–103
OrderByDescending, 103–107
reverse, 115–116
ThenBy, 107–108
ThenByDescending, 111–115

Orders EntityRef<T> variable, 487
Orders navigation property, 739
Orders property, 464, 485, 495, 531–532, 684,

741
Orders row, 738
Orders table, 462, 619, 738, 745
orders variable, 13, 485
Orders.Add method, 685
Orders.Remove method, 532
origEmployee variable, 507

■ INDEX

810

ORM (object-relational mapping), 438
OtherKey attribute, 545–546
OtherKey property, 545
outer element, 117, 119
outer joins

LINQ to Entities, 702–704
in LINQ to SQL, 497–499

outer sequence, 117, 119
outerKeySelector method, 117, 119
outerSequence, 122
OutputDataTableHeader Method, 391
OverflowException, 195, 198, 206
overriding database modification

statements, in LINQ to SQL
delete method, 514
example, 514–517
insert method, 513–514
in Object Relational Designer, 517
update method, 514

OverwriteChanges value, LoadOption
argument, 421

OverwriteCurrentValues option, 640
OverwriteCurrentValues value, 627–628

■ P
p string, 77
parallel execution, forcing, 763
Parallel LINQ. See PLINQ
ParallelEnumerable class, 773, 777–778
ParallelEnumerable.Empty method, 779
ParallelEnumerable.Range, 753
ParallelExecutionMode enumeration, 787
ParallelMergeOptions enumeration, 788
ParallelQuery class, 775–776, 780–782,

790–791
ParallelQuery queries, 773
ParallelQuery<int> class, 777
ParallelQuery<MyObject> class, 790
ParallelQuery<string> class, 775, 779, 782,

790–791
ParallelQuery<T> class, 773–774, 776,

778–779, 783–784, 786, 788, 790
Parameter attribute, 548–549
Parameters object, 621
params array, 606, 614
params keyword, ReplaceAll method, 288
Parse static method, 254
parsing with XDocument.Parse() or

XElement.Parse(), 254–255
partial classes or mapping files, 451
partial Contact class, 560

partial methods
calling appropriate, 534–535
examples, 39–41
extending entity classes with, 558–560
using, 451

partitioning operators
Skip, 90–91
SkipWhile, 91–93
Take, 85–88
TakeWhile, 88–90

/password option, 454, 458
peer nodes, multiple, 364–366
pessimistic concurrency, 647–650
phone parameter, 556
PLINQ (Parallel LINQ)

controlling parallelism, 763–764
conversion operators, 790–791
creating query, 757–760
creation operators

AsParallel method, 773–776
Empty method, 779
Range method, 777
Repeat method, 778–779

exceptions, 764–768
execution control operators

AsEnumerable, 784–785
AsOrdered, 779–782
AsSequential, 783–784
AsUnordered, 782–783
WithDegreeOfParallelism, 785–786
WithExecutionMode, 786–787
WithMergeOptions, 787–790

ForAll operator, 792–793
is for objects, 756
overview, 751–756
queries without results, 768–770
ranges, 770
repetitions, 770–771
result ordering, 760–763
using LINQ to Entities API, 756

/pluralize option, 456, 669
predicate method, 188, 194, 196
prefixes, 224–227
prerequisites, for Entity Framework classes,

723
PreserveChanges value, LoadOption argument,

421
presidents array, 86, 128, 130, 132, 156, 158,

170, 181, 202
presidents sequence, 94, 128, 170, 195
presidents.Count() method, 170
presidentsDistinct sequence, 128

■ INDEX

811

PreviousNode property, 257
previousValue variable, 530
primitive properties, of EntityObject class,

735–736
private modifier, 41
processing instructions, creating with

XProcessingInstruction, 244–246
ProductsUnderThisUnitPrice method,

606–607
ProductsUnderThisUnitPriceResult class,

607
projection operators

overview, 74
Select, 75–80
SelectMany, 81–85

Properties window, 465, 469, 713, 716
properties, XML traversal

backward with XNode.PreviousNode,
257–258

forward with XNode.NextNode, 256–257
up to document with

XObject.Document, 258–259
up with XObject.Parent, 259–260

[Property] property, 559
PropertyChanged event, 524–525
PropertyChangedEventArgs object, 525
PropertyChanging event, 524–525
PropertyChangingEventArgs, 523
property-to-column mapping, 440
protected method, 605
/provider option, 456
public event members, 524
PublishContacts method, 11

■ Q
quantifier operators

All, 190–191
Any, 187–190
Contains, 191–194

queries, 346–354
complex, 348–354
data, 7–8
deferred, 16–17, 59–62
LINQ to Entities

basic queries, 687
compiled queries, 688–689
joins, 701–704
loading related objects, 691–696
querying stored procedures, 697–700
querying views, 696
seeing SQL statement, 690–691

LINQ to SQL
associations, 483–496
deferred query execution, 501–504
exceptions to norm, 482–483
joins, 496–501
overview, 480–481
SQL IN statement with Contains operator,

505–506
no reaching, 346–348
without results, handling with Parallel

LINQ, 768–770
Query Analyzer, 17
query expressions

grammar, 43
overview, 42
translation, 44–54

query SQL server database, 5–6

■ R
Range method, 777–778
Range operators, 65, 146–147, 197–198, 206,

208, 777
ranges, with Parallel LINQ, 770
reaching queries, 346–348
Read method, 676
ReadCommitted, 579
Rectangle class, 551, 655, 658
ref keyword, 616
referenced namespaces, 219, 345, 390
references, assembly, 390
Refresh() method

DataContext class, 626–634
ObjectContext class, 728–729

RefreshMode enumeration, 640, 719–720,
728–729

RefreshMode values, 644
RefreshMode.KeepChanges option, 640, 645,

647
RefreshMode.KeepCurrentValues option, 640
RefreshMode.OverwriteCurrentValues option,

640, 645–646
Remove() method, 282, 531, 533, 743–746
Remove operator, 340–343
RemoveAll method, 282
Repeat method, for Parallel LINQ, 778–779
Repeat operators, 65, 147–148
repetitions, with Parallel LINQ, 770–771
resolution, concurrency conflict, 441–442
Resolve method, 640, 645
ResolveAll method, 441, 594, 626, 640–642
restricted elements, obtaining without

reaching, 347

■ INDEX

812

restriction operators, 72–74
result ordering, and Parallel LINQ, 760–763
resultSelector method, 117–120
ResultType attributes, 547–549, 567, 618
return attribute, 548
ReturnValue property, 564–566, 615–616,

618, 620
ReturnValue variable, 565
Reverse method, 140
Reverse operator, 65, 116, 140–141, 275
Reverse Standard Query Operator, 338
RootElement node, 360

■ S
S element, 75, 81
s variable, 45
Save methods, XDocument, 249
Save NorthwindDataModel.edmx option,

714
Save NorthwindEntityModel.edmx option,

717
SaveChanges() method, 668, 680, 685, 718,

727–728, 730, 732, 741, 743
saving with XDocument.Save() method,

249–251
scalar-valued functions, 605
schema, XML, 368–370
SchemaAttribute property, 377
SchemaElement property, 377
scope.Complete method, 662–663
Second Ancestors prototype, 314
Second AncestorsAndSelf prototype, 319
Second Attributes prototype, 322–323
Second CopyToDataTable prototype, 420
Second Descendants prototype, 328, 330
Second DescendantsAndSelf prototype, 331,

333
Second Elements prototype, 334–335
Second Field prototype, 410
Second Remove prototype, 340, 342
Second SetField prototype, 416
Select method, 11
Select operator, 11, 15, 31–32, 61–62, 65,

75–81
select statement, 43, 555–558
SelectMany operators, 32, 65, 81–85, 88,

95–96, 511
selector method, 198, 200, 203
SendPropertyChanging method, 524–525,

529–530, 533, 535
seq variable, 135

SequenceEqual operator, 65, 169–172, 404–405
SequenceEqual prototype, 404
sequences, 58–59
/serialization option, 456
Server Enterprise Manager, 17
Server Explorer window, 460–461, 467
/server option, 454, 457
SET DEFAULT value, 545
set methods, 526, 529–533, 541, 562
SET NULL value, 545
set operators

Distinct, 127–128
Except, 132–134
Intersect, 130–131
Union, 128–130

SetField<T> operator, 413, 416–419
Shape class, 550–551, 656, 658
Shape table, 656, 659
ShapeCode column, 657–658
ShapeCode property, 551
ShapeCode value, 551
Shapes table, 660
Shipper class, 514
Shipper method, 695
Simple class, 390, 406
Single operator, 66, 181–182, 246, 481, 620, 638
single quotes, 518
SingleOrDefault operator, 66, 182–185, 481,

620, 638, 649–650
Sixth Field prototype, 411
Skip operators, 66, 90–91, 94, 96, 131, 171
SkipWhile operator, 66, 91–93
Solution Explorer window, 716
/sprocs option, 455, 614
SQL (Structured Query Language), 4–6
SQL IN statement, with Contains operator,

505–506
SqlCommand, 676–677
SqlConnection, 447, 676–677
SqlConnectionStringBuilder class, 725
SqlDataAdapter object, 430
SqlDataReader, 446, 610, 676
SQLMetal, 6, 441

overview, 452–457
using with Object Relational Designer,

472–473
working with DBML intermediate files,

457–458
XML mapping file vs. DBML intermediate

file, 457
Square class, 551, 655
standard query operators, 7, 14, 58–59, 64, 246

■ INDEX

813

static class, System.Xml.Linq namespace,
230

static keyword, 35
static methods, 36–38
static Where method, 36
Stopwatch class, 754, 788
Storage attribute, 541
Storage property

Association attribute, 546
Column attribute, 543

Stored Procedures node, 467
stored procedures, querying (LINQ to

Entities), 697–700
StoreWins value, 719, 728
streaming elements, creating with

XStreamingElement, 246–248
StringComparer class, 160, 165
StringConversions class, 34
String.Format method, 217, 607–608
String.Format XML API, 217
Structured Query Language (SQL), 4–6
Student class, 390
students array, converting to datatable, 391
SubmitChanges() method, 594–602, 639
SubmitChanges prototype, 595, 597
Sum operator, 66, 120, 198–199, 209–210
Supplier object, 499
System namespace, 527
System.Action class, 792
System.Collections namespace, 14
System.Collections.ArrayList collection, 774
System.Collections.Generic namespace, 13,

69, 151
System.Collections.Generic.ICollection<T>

interface, 32
System.ComponentModel interface, 523
System.ComponentModel.INotifyPropertyC

hanged interface, 523
System.ComponentModel.PropertyChange

dEventHandler, 524
System.ComponentModel.PropertyChangin

gEventHandler, 524
System.Core.dll assembly, 59
System.Data.Common.DbCommand,

621–622
System.Data.Common.DbConnection, 581
System.Data.Common.DbDataReader, 610
System.Data.DataRowComparer.Default

comparer object, 397
System.Data.DataTableExtensions static

class, 419
System.Data.EntityClient namespace, 725

System.Data.IDbConnection, 581
System.Data.Linq API classes

EntityRef<T>
Entity property, 561
HasLoadedOrAssignedValue property,

562–563
overview, 561

EntitySet<T>, 561
IExecuteResult, 564–565
IMultipleResults, 566–567
ISingleResult<T>, 565–566
overview, 560
Table<T>, 563–564

System.Data.Linq namespace, 6, 69, 560
System.Data.Linq.DataContext class, 17, 569
System.Data.Linq.dll assembly, 6, 8, 69, 140
System.Data.Linq.Mapping namespace, 569
System.Data.Linq.Table<T>, 570
System.Data.Objects namespace, 724
System.Data.Objects.DataClasses namespace,

732
System.Data.Objects.ObjectContext class, 668
System.Data.SqlClient namespace, 725
System.Data.SqlClient.SqlConnection, 581
System.Diagnostics namespace, 69, 151, 754
System.IO.TextWriter object, 450
System.Linq namespace, 3, 13, 756
System.Linq, System.Collections namespace,

69, 151
System.Linq.Enumerable class, 7, 27, 58,

147–149, 392
System.Linq.Queryable class, 28
System.Object class, 11
System.Object.Equals method, 169
System.Transactions.dll assembly, 647, 662
System.Xml.Linq namespace, 5, 230, 653
System.Xml.Linq.dll assembly, 5, 8
System.Xml.Linq.Extensions class, 313, 367
System.Xml.XmlConvert class, conversion

methods, 229
System.Xml.XPath.Extensions class, 383

■ T
T element, 75, 81, 94, 117
T parameter, 63
T type, 100, 108, 119
t variable, 48, 50
Table attribute, 523, 537, 540–541, 656
Table sequence, 625
Table<Customer> property, 479, 564
Table<T> class, 454, 483, 563–564, 578, 653
TableNameOfT table, 737

■ INDEX

814

Tables node, 461
table-valued functions, 605
Take() method, 175, 179–180
Take operator, 66, 85–88, 94, 96, 131–132,

170–171, 173
TakeWhile operator, 66, 88–90
target class, 544
Target property, 287
tasks, simplifying with helper methods, 360
temp collection, 498
temp sequence, 498, 702
TestDB database, 659–660
text, creating with XText, 248
Textbox object, 15
ThenBy operator, 66, 97, 107–108, 110–113
ThenByDescending operator, 52, 66, 97,

107, 111–115
Third Field prototype, 410
Third SetField prototype, 416
this keyword, 37–38, 72, 528
this._Orders variable, 537
ThisKey attribute, 545
ThisKey property, Association attribute, 546
Three-Document Join, 348
/timeout option, 454
ToArray method, 82, 710
ToArray operator, 11, 62, 66, 155–157, 233,

631
ToArray<T> operator, 501
ToDictionary operator, 62, 66, 159–164
ToDictionary<T, K> operator, 501
ToDouble method, 33, 38
ToList method, 62
ToList operator, 62, 66, 157–159
ToList<T> operator, 501
ToLookup operator, 62, 66, 164–169
ToLookup<T, K> operator, 501
ToLower method, 520
ToString method, 227, 240, 275
totalSales parameter, 616
ToTraceString method, 690
ToUpper method, 34–35, 520
TR argument, 63
tracking

change, 578–579
identity, 573–578

Transaction object, 621
transactions, LINQ to SQL, 661–664
TransactionScope object, 647, 649–650, 663
TransactionScopeOption, 647

transformations
handling multiple peer nodes, 364–366
simplifying complex tasks with helper

methods, 360
suppressing node construction with null,

361–363
using functional construction, 357–359
using XSLT, 355–356

Translate() method, DataContext class,
610–611

tree construction, XML, 220, 222
TrimEnd method, 519–520
try/catch block, 137, 372, 641–642, 668
type attribute, 294, 303, 551
Type property, InheritanceMapping attribute,

552
[Type] property, 559
typed DataSets, 427–429

■ U
U type, 119
unboxing, 405
Union operators, 66, 128–130, 401–404
Union prototype, 402
union sequence, 130
unnamedTypeVar, 29
update method, overriding, 514
update statement, 637, 639
UpdateCheck attribute, 543
UpdateCheck property, 465, 543, 636–639
UpdateCheck.Always value, 543, 636–637, 639
UpdateCheck.Never value, 543, 636–637
UpdateCheck.WhenChanged value, 543,

636–637
updates

LINQ to Entities, 704–705
LINQ to SQL, 506–510

Updates property, 623
Upsert value, LoadOption argument, 421
URI, XML namespaces, 224
/user option, 454, 458
using directives

namespaces, 219
referenced namespaces, 345
required namespaces, 427
System.Linq and System.Data.Linq

namespaces, 444

■ V
V type, 117, 119
v variable, 45

■ INDEX

815

Validate method
prototypes, 378
try/catch block, 372

validation
examples of, 370–383
extension methods, 367
obtaining XML schema, 368–370
prototypes, 367–368

ValidationEventHandler method, 371
value parameter, 532
Value property, 285, 294, 740–741
var keyword, 7, 12–14, 28–30, 32–33, 77, 118
var variable, 4
/views option, 454, 653
views, querying (LINQ to Entities), 696
Visual Studio Command Prompt, 442

■ W
w variable, 45
W3C DOM XML API, 216–218
where clauses, 6, 35, 50, 487, 502, 517, 608,

621, 637
Where method, 35–36, 73, 139
Where operator, 16, 28, 59, 66, 72–74, 143,

183, 246, 505
Where query, 59
Where Standard Query Operator, 284
Where statement, 27
WholeOrPartialCustomersSet method,

617–619
WholeOrPartialCustomersSetResult1,

618–619
WholeOrPartialCustomersSetResult2,

618–619
Width property, 657
WithDegreeOfParallelism operator, for

Parallel LINQ, 785–786
WithDegreeOfParallelism Operator

prototype, 786
WithExecutionMode operator, for Parallel

LINQ, 786–787
WithExecutionMode Operator prototype,

787
WithMergeOptions operator, for Parallel

LINQ, 787–790
WriteLine method, 259

■ X
x parameter, 25
x variable, 25

XAttribute class
creating attributes with, 237–238
implementing attributes, 291

XAttribute object
creating namespace prefix, 226
defined, 235

XAttribute.NextAttribute, 292–293
XAttribute.PreviousAttribute, 293
XAttribute.Remove() method, 296–297
XCData object

creating CData with, 248–249
defined, 235

XComment objects
creating comments with, 238
defined, 235
overview, 286–287

XComment.Value, 285–286
XContainer, creating containers with, 239
XContainer.Add() (AddLast) method, 277–278
XContainer.AddFirst() method, 278–279
XContainer.Descendants() method, 270
XContainer.Element() method, 266–267
XContainer.Elements() method, 265–266
XContainer.Nodes() method, 260–265
XDeclaration, creating declarations with,

239–240
XDocument class

child nodes, 230
creating documents with, 242

XDocument.Load() method, loading with,
251–253

XDocument.Parse() method, parsing with,
254–255

XDocument.Save() method, saving with,
249–251

XDocumentType, creating document types
with, 240–242

XDocumentType.InternalSubset, 287
XDocumentType.Name, 287
XElement class

child nodes, 230
creating elements with, 234–237

XElement objects, 5, 235, 289–291
XElement.Add method, 238, 245
XElement.AddFirst method, 245
XElement.AncestorsAndSelf() method, 269
XElement.Attribute() method, 294–295
XElement.Attributes() method, 295
XElement.DescendantsAndSelf() method, 271
XElement.FirstAttribute, 292
XElement.LastAttribute, 293–294

■ INDEX

816

XElement.Load() method, loading with,
253–254

XElement.Parse() method, parsing with,
254–255

XElement.RemoveAll() method, 284–285
XElement.ReplaceAll() method, 288–289
XElement.SetAttributeValue() method,

299–300
XElement.SetElementValue() method,

289–291
XElement.Value on XElement Objects,

285–286
XML (Extensible Markup Language)

annotations
accessing with XObject.Annotation() or

XObject.Annotations(), 301
adding with XObject.AddAnnotation(),

301
example of, 302–305
removing with

XObject.RemoveAnnotations(), 301
attribute creation, 291
attribute modification

adding attributes, 295–296
deleting attributes, 296–298
updating attributes, 298–299
XElement.SetAttributeValue(), 299–300

attribute traversal
backward with

XAttribute.PreviousAttribute, 293
backward with XElement.LastAttribute,

293–294
forward with XAttribute.NextAttribute,

292–293
forward with XElement.FirstAttribute,

292
overview, 291
XElement.Attribute(), 294–295
XElement.Attributes(), 295

creation
creating attributes with XAttribute,

237–238
creating CData with XCData, 248–249
creating comments with XComment, 238
creating containers with XContainer, 239
creating declarations with XDeclaration,

239–240
creating document types with

XDocumentType, 240–242
creating documents with XDocument,

242

creating elements with XElement, 234–237
creating names with XName, 243
creating namespaces with XNamespace, 244
creating nodes with XNode, 244
creating processing instructions with

XProcessingInstruction, 244–246
creating streaming elements with

XStreamingElement, 246–248
creating text with XText, 248

events, 305–311
external mapping file schema, 552
input

loading with XDocument.Load(), 251–253
loading with XElement.Load(), 253–254
parsing with XDocument.Parse() or

XElement.Parse(), 254–255
from LINQ

overview, 215–216
W3C DOM XML API, 216–218

mapping file, vs. DBML intermediate file,
457

modification
adding nodes, 276–281
deleting nodes, 282–285
updating nodes, 285–289
XElement.SetElementValue() on Child

XElement objects, 289–291
Northwind, generating mapping file, 444
obtaining schema, 368–370
output

saving with XDocument.Save(), 249–250
saving with XElement.Save(), 250–251

queries
complex, 348–354
no reaching, 346–348
overview, 4–5

referenced namespaces, 345
transformations

handling multiple peer nodes, 364–366
simplifying complex tasks with helper

methods, 360
suppressing node construction with null,

361–363
using functional construction, 357–359
using XSLT, 355–356

traversal methods
backward with XNode.ElementsBeforeSelf(

), 275–276
backward with XNode.NodesBeforeSelf(),

274–275
down recursively with

XContainer.Descendants(), 270

■ INDEX

817

down recursively with
XElement.DescendantsAndSelf(), 271

down with XContainer.Element(),
266–267

down with XContainer.Elements(),
265–266

down with XContainer.Nodes(), 260–265
forward with XNode.ElementsAfterSelf(),

273–274
forward with XNode.NodesAfterSelf(),

272–273
up recursively with

XElement.AncestorsAndSelf(), 269
up recursively with XNode.Ancestors(),

267–268
traversal properties

backward with XNode.PreviousNode,
257–258

forward with XNode.NextNode, 256–257
up to document with XObject.Document,

258–259
up with XObject.Parent, 259–260

validation
examples of, 370–383
extension methods, 367
obtaining XML schema, 368–370
prototypes, 367–368

XPath, 383–385
XmlDocument, 7–8
XmlElement, creating with W3C DOM API,

222
XMLHelper method, 217
XmlMappingSource object, 592
XmlReader bridge class, 355–356
XmlWriter bridge class, 355–356
XName, 224, 234, 243
XNamespace, 244
XNode class, 244, 276–277
XNode.AddAfterSelf() method, 281
XNode.AddBeforeSelf() method, 279–280
XNode.Ancestors() method, 267–268

XNodeDocumentOrderComparer class, 230
XNode.ElementsAfterSelf() method, 273–274
XNode.ElementsBeforeSelf() method, 275–276
XNodeEqualityComparer class, 230
XNode.NextNode() method, 256–257
XNode.NodesAfterSelf() method, 272–273
XNode.NodesBeforeSelf() method, 274–275
XNode.PreviousNode() method, 257–258
XNode.Remove() method, 282–283
XObject class, 301
XObject.AddAnnotation() method, 301
XObject.Annotation() method, 301
XObject.Annotations() method, 301
XObject.Changed, 306
XObject.Changing, 306
XObject.Document, 258–259
XObject.Parent, 259–260
XObject.RemoveAnnotations() method, 301
XPath, 383–385
XProcessingInstruction objects

creating processing instructions with,
244–246

defined, 235
overview, 287–288

XProcessingInstruction.Data, 287–288
XSD Schema, unsuccessfully validating XML

document, 374, 376
XSLT (Extensible Stylesheet Language

Transformations), 355–356
XStreamingElement, creating streaming

elements with, 246–248
XText object

creating text with, 248
defined, 235

XText.Value, 285–286

■ Y
yielding, 59–62
[Your]DataContext class, 570–573, 625, 653
[Your]DataContext() method, 6, 580–594

	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Pro LINQ: Language Integrated Query in C# 2010
	Hello LINQ
	A Paradigm Shift
	Query XML
	Query a SQL Server Database

	Introduction
	LINQ Is About Data Queries
	LINQ to Objects
	LINQ to XML
	LINQ to DataSet
	LINQ to SQL
	LINQ to Entities
	How to Obtain LINQ

	LINQ Is Not Just for Queries
	Tips to Get You Started
	Use the var Keyword When Confused
	Use the Cast or OfType Operators for Legacy Collections
	The OfType Operator versus the Cast Operator
	Don’t Assume a Query Is Bug-Free
	Take Advantage of Deferred Queries
	Use the DataContext Log
	Use the LINQ Forum

	Summary

	C# Language Enhancements for LINQ
	C# Language Additions
	Lambda Expressions
	Using Named Methods
	Using Anonymous Methods
	Using Lambda Expressions
	Expression Trees
	Keyword var, Object Initialization, and Anonymous Types
	The Implicitly Typed Local Variable Keyword var
	Object and Collection Initialization Expressions
	Anonymous Types
	Extension Methods
	Instance (Object) vs. Static (Class) Methods Recap
	The Problem Solved by Extension Methods
	The Solution
	Extension Method Declarations and Invocations
	Extension Method Precedence
	Partial Methods
	A Partial Method Example
	What Is the Point of Partial Methods?
	The Rules
	Query Expressions
	Query Expression Grammar
	Query Expression Translation

	Summary

	LINQ to Objects
	LINQ to Objects Introduction
	LINQ to Objects Overview
	IEnumerable<T>, Sequences, and the Standard Query Operators
	Returning IEnumerable<T>, Yielding, and Deferred Queries
	Func Delegates
	The Standard Query Operators Alphabetical Cross-Reference
	A Tale of Two Syntaxes
	Summary

	Deferred Operators
	Referenced Namespaces
	Referenced Assemblies
	Common Classes
	The Deferred Operators by Purpose
	Restriction
	Where
	Projection
	Select
	SelectMany
	Partitioning
	Take
	TakeWhile
	Skip
	SkipWhile
	Concatenation
	Concat
	Ordering
	OrderBy
	OrderByDescending
	ThenBy
	ThenByDescending
	Reverse
	Join
	GroupJoin
	Grouping
	GroupBy
	Set
	Distinct
	Union
	Intersect
	Except
	Conversion
	Cast
	OfType
	AsEnumerable
	Element
	DefaultIfEmpty
	Generation
	Range
	Repeat
	Empty

	Summary

	Nondeferred Operators
	Referenced Namespaces
	Common Classes
	The Nondeferred Operators by Purpose
	Conversion
	ToArray
	ToList
	ToDictionary
	ToLookup
	Equality
	SequenceEqual
	Element
	First
	FirstOrDefault
	Last
	LastOrDefault
	Single
	SingleOrDefault
	ElementAt
	ElementAtOrDefault
	Quantifiers
	Any
	All
	Contains
	Aggregate
	Count
	LongCount
	Sum
	Min
	Max
	Average
	Aggregate

	Summary

	LINQ to XML
	LINQ to XML Introduction
	Introduction
	Cheating the W3C DOM XML API
	Summary

	The LINQ to XML API
	Referenced Namespaces
	Significant API Design Enhancements
	XML Tree Construction Simplified with Functional Construction
	Document Centricity Eliminated in Favor of Element Centricity
	Names, Namespaces, and Prefixes
	Node Value Extraction

	The LINQ to XML Object Model
	Deferred Query Execution, Node Removal, and the Halloween Problem
	XML Creation
	Creating Elements with XElement
	Creating Attributes with XAttribute
	Creating Comments with XComment
	Creating Containers with XContainer
	Creating Declarations with XDeclaration
	Creating Document Types with XDocumentType
	Creating Documents with XDocument
	Creating Names with XName
	Creating Namespaces with XNamespace
	Creating Nodes with XNode
	Creating Processing Instructions with XProcessingInstruction
	Creating Streaming Elements with XStreamingElement
	Creating Text with XText
	Creating CData with XCData

	XML Output
	Saving with XDocument.Save()
	Saving with XElement.Save()

	XML Input
	Loading with XDocument.Load()
	Loading with XElement.Load()
	Parsing with XDocument.Parse() or XElement.Parse()

	XML Traversal
	Traversal Properties
	Forward with XNode.NextNode
	Backward with XNode.PreviousNode
	Up to Document with XObject.Document
	Up with XObject.Parent
	Traversal Methods
	Down with XContainer.Nodes()
	Down with XContainer.Elements()
	Down with XContainer.Element()
	Up Recursively with XNode.Ancestors()
	Up Recursively with XElement.AncestorsAndSelf()
	Down Recursively with XContainer.Descendants()
	Down Recursively with XElement.DescendantsAndSelf()
	Forward with XNode.NodesAfterSelf()
	Forward with XNode.ElementsAfterSelf()
	Backward with XNode.NodesBeforeSelf()
	Backward with XNode.ElementsBeforeSelf()

	XML Modification
	Adding Nodes
	XContainer.Add() (AddLast)
	XContainer.AddFirst()
	XNode.AddBeforeSelf()
	XNode.AddAfterSelf()
	Deleting Nodes
	XNode.Remove()
	IEnumerable<T>.Remove()
	XElement.RemoveAll()
	Updating Nodes
	XElement.Value on XElement Objects, XText.Value on XText Objects, and XComment.Value on XComment Objects
	XDocumentType.Name, XDocumentType.PublicId, XDocumentType.SystemId, and XDocumentType.InternalSubset on XDocumentType Objects
	XProcessingInstruction.Target on XProcessingInstruction Objects and XProcessingInstruction.Data on XProcessingInstruction Object
	XElement.ReplaceAll()
	XElement.SetElementValue() on Child XElement Objects

	XML Attributes
	Attribute Creation
	Attribute Traversal
	Forward with XElement.FirstAttribute
	Forward with XAttribute.NextAttribute
	Backward with XAttribute.PreviousAttribute
	Backward with XElement.LastAttribute
	XElement.Attribute()
	XElement.Attributes()
	Attribute Modification
	Adding Attributes
	Deleting Attributes
	Updating Attributes
	XElement.SetAttributeValue()

	XML Annotations
	Adding Annotations with XObject.AddAnnotation()
	Accessing Annotations with XObject.Annotation() or XObject.Annotations()
	Removing Annotations with XObject.RemoveAnnotations()
	Annotations Example

	XML Events
	XObject.Changing
	XObject.Changed
	A Couple of Event Examples
	Trick or Treat, or Undefined?

	Summary

	LINQ to XML Operators
	Introduction to LINQ to XML Operators
	Ancestors
	Prototypes
	Examples

	AncestorsAndSelf
	Prototypes
	Examples

	Attributes
	Prototypes
	Examples

	DescendantNodes
	Prototypes
	Examples

	DescendantNodesAndSelf
	Prototypes
	Examples

	Descendants
	Prototypes
	Examples

	DescendantsAndSelf
	Prototypes
	Examples

	Elements
	Prototypes
	Examples

	InDocumentOrder
	Prototypes
	Examples

	Nodes
	Prototypes
	Examples

	Remove
	Prototypes
	Examples

	Summary

	Additional XML Capabilities
	Referenced Namespaces
	Queries
	No Reaching
	A Complex Query

	Transformations
	Transformations Using XSLT
	Transformations Using Functional Construction
	Tips
	Simplify Complex Tasks with Helper Methods
	Suppressing Node Construction with null
	Handling Multiple Peer Nodes While Remaining Flat

	Validation
	The Extension Methods
	Prototypes
	Obtaining an XML Schema
	Examples

	XPath
	Prototypes
	Examples

	Summary

	LINQ to DataSet
	LINQ to DataSet Operators
	Assembly References
	Referenced Namespaces
	Common Code for the Examples
	DataRow Set Operators
	Distinct
	Prototypes
	Examples
	Except
	Prototypes
	Examples
	Intersect
	Prototypes
	Examples
	Union
	Prototypes
	Examples
	SequenceEqual
	Prototypes
	Examples

	DataRow Field Operators
	Field<T>
	Prototypes
	Examples
	SetField<T>
	Prototypes
	Examples

	DataTable Operators
	AsEnumerable
	Prototypes
	Examples
	CopyToDataTable<DataRow>
	Prototypes
	Examples

	Summary

	Additional DataSet Capabilities
	Required Namespaces
	Typed DataSets
	Putting It All Together
	Summary

	LINQ to SQL
	LINQ to SQL Introduction
	Introducing LINQ to SQL
	The DataContext
	Entity Classes
	Associations
	Concurrency Conflict Detection
	Concurrency Conflict Resolution

	Prerequisites for Running the Examples
	Obtaining the Appropriate Version of the Northwind Database
	Generating the Northwind Entity Classes
	Generating the Northwind XML Mapping File

	Using the LINQ to SQL API
	IQueryable<T>
	Some Common Methods
	GetStringFromDb()
	ExecuteStatementInDb()

	Summary

	LINQ to SQL Tips and Tools
	Introduction to LINQ to SQL Tips and Tools
	Tips
	Use the DataContext.Log Property
	Use the GetChangeSet() Method
	Consider Using Partial Classes or Mapping Files
	Consider Using Partial Methods

	Tools
	SQLMetal
	XML Mapping File Vs. DBML Intermediate File
	Working with DBML Intermediate Files
	The Object Relational Designer
	Creating Your LINQ to SQL Classes File
	Connecting the DataContext to the Database
	Adding an Entity Class
	Editing the Entity Class Model
	Adding Objects to the Entity Class Model
	Overriding the Insert, Update, and Delete Methods

	Use SQLMetal and the O/R Designer Together
	Summary

	LINQ to SQL Database Operations
	Prerequisites for Running the Examples
	Some Common Methods
	Using the LINQ to SQL API

	Standard Database Operations
	Inserts
	Inserting Attached Entity Objects
	Queries
	Exceptions to the Norm
	Associations
	Joins
	Deferred Query Execution
	The SQL IN Statement with the Contains Operator
	Updates
	Updating Associated Classes
	Deletes
	Deleting Attached Entity Objects
	Deleting Relationships

	Overriding Database Modification Statements
	Overriding the Insert Method
	Overriding the Update Method
	Overriding the Delete Method
	Example
	Overriding in the Object Relational Designer
	Considerations

	SQL Translation
	Summary

	LINQ to SQL Entity Classes
	Prerequisites for Running the Examples
	Entity Classes
	Creating Entity Classes
	Generating Entity Classes
	Writing Entity Classes by Hand
	Entity Class Attributes and Attribute Properties
	XML External Mapping File Schema
	Projecting into Entity Classes vs. Nonentity Classes
	Prefer Object Initialization to Parameterized Construction When Projecting

	Extending Entity Classes with Partial Methods
	Important System.Data.Linq API Classes
	EntitySet<T>
	EntityRef<T>
	Entity
	HasLoadedOrAssignedValue
	Table<T>
	IExecuteResult
	ReturnValue
	GetParameterValue
	ISingleResult<T>
	ReturnValue
	IMultipleResults
	ReturnValue
	GetResult<T>

	Summary

	The LINQ to SQL DataContext
	Prerequisites for Running the Examples
	Some Common Methods
	Using the LINQ to SQL API

	[Your]DataContext Class
	The DataContext Class
	The DataContext Class Implements IDisposable
	Primary Purposes
	Identity Tracking
	Change Tracking
	Change Processing
	The Data Context Lifetime
	DataContext() and [Your]DataContext()
	Prototypes
	Examples
	SubmitChanges()
	Prototypes
	Examples
	DatabaseExists()
	Prototypes
	Examples
	CreateDatabase()
	Prototypes
	Examples
	DeleteDatabase()
	Prototypes
	Examples
	CreateMethodCallQuery()
	Prototypes
	Examples
	ExecuteQuery()
	Prototypes
	Examples
	Translate()
	Prototypes
	Examples
	ExecuteCommand()
	Prototypes
	Examples
	ExecuteMethodCall()
	Prototypes
	Examples
	GetCommand()
	Prototypes
	Examples
	GetChangeSet()
	Prototypes
	Examples
	GetTable()
	Prototypes
	Examples
	Refresh()
	Prototypes
	Examples

	Summary

	LINQ to SQL Concurrency Conflicts
	Prerequisites for Running the Examples
	Some Common Methods
	Using the LINQ to SQL API

	Concurrency Conflicts
	Optimistic Concurrency
	Conflict Detection
	Conflict Resolution
	Pessimistic Concurrency
	An Alternative Approach for Middle Tiers and Servers

	Summary

	Additional LINQ to SQL Capabilities
	Prerequisites for Running the Examples
	Using the LINQ to SQL API
	Using the LINQ to XML API

	Database Views
	Entity Class Inheritance
	Transactions
	Summary

	LINQ to Entities
	LINQ to Entities Introduction
	Introducing LINQ to Entities
	The ObjectContext
	Entity Classes
	Associations

	Prerequisites for Running the Examples
	Obtaining the Appropriate Version of the Northwind Database
	Generating the Northwind Entity Data Model

	Using the LINQ to Entities API
	IQueryable<T>
	Some Common Methods
	GetStringFromDb()
	ExecuteStatementInDb()

	Summary

	LINQ to Entities Operations
	Prerequisites for Running the Examples
	Some Common Methods

	Standard Database Operations
	Inserts
	Creating Partially Populated Entity Types
	Inserting Attached Entity Objects
	Queries
	Basic Queries
	Compiled Queries
	Seeing the SQL Statement
	Loading Related Objects
	Querying Views
	Querying Stored Procedures
	Joins
	Updates
	Updating Associated Objects
	Deletes
	Deleting Related Objects

	Managing Concurrency
	Enabling Concurrency Checks
	Handling Concurrency Conflicts

	Summary

	LINQ to Entities Classes
	Prerequisites for Running the Examples
	The ObjectContext Class
	Constructor
	Prototypes
	Examples
	DatabaseExists()
	Prototypes
	Examples
	DeleteDatabase()
	Prototypes
	Examples
	CreateDatabase()
	Prototypes
	Examples
	SaveChanges()
	Prototypes
	Examples
	Refresh()
	Prototypes
	Examples
	AddObject()
	Prototypes
	Examples
	CreateObject()
	Prototypes
	Examples
	DeleteObject()
	Prototypes
	Examples

	EntityObject
	Constructor
	Prototypes
	Examples
	Factory Method
	Prototypes
	Examples
	Primitive Properties
	Prototypes
	Examples
	Navigation Properties
	Prototypes
	Examples

	EntityReference
	Load()
	Examples
	Value

	EntityCollection
	Add()
	Prototypes
	Examples
	Remove()
	Prototypes
	Examples
	Clear()
	Prototypes
	Examples
	Contains()
	Prototypes
	Examples
	Load()
	Count
	Prototypes
	Examples

	Summary

	Parallel LINQ
	Parallel LINQ Introduction
	Introducing Parallel LINQ
	Parallel LINQ Is for Objects

	Using the LINQ to Entities API
	Summary

	Using Parallel LINQ
	Creating a Parallel LINQ Query
	Preserving Result Ordering
	Controlling Parallelism
	Forcing Parallel Execution
	Limiting the Degree of Parallelism

	Dealing with Exceptions
	Queries Without Results
	Creating Ranges and Repetitions
	Summary

	Parallel LINQ Operators
	ParallelQuery Creation Operators
	AsParallel
	Prototypes
	Examples
	Range
	Prototypes
	Examples

	Repeat
	Prototypes
	Examples
	Empty
	Prototypes

	Execution Control Operators
	AsOrdered
	Prototypes
	Examples
	AsUnordered
	Prototypes
	Examples
	AsSequential
	Prototypes
	Examples
	AsEnumerable
	Prototypes
	Examples
	WithDegreeOfParallelism
	Prototypes
	Examples
	WithExecutionMode
	Prototypes
	Examples
	WithMergeOptions
	Prototypes
	Examples

	Conversion Operators
	Cast
	Prototypes
	Examples
	OfType
	Prototypes
	Examples

	The ForAll Operator
	Prototypes
	Examples

	Summary

	Index
	¦ ¦ ¦ ¦ Special Characters
	¦ A
	¦ B
	¦
	C
	¦ D
	¦ E
	¦ F
	¦ H
	¦ I
	¦ G
	¦ J
	¦ K
	¦ L
	¦ M
	¦ N
	¦ O
	¦ P
	¦ R
	¦ Q
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	¦
	X
	¦ Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Malloy Settings)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

