oL D it UPDATED FOR ASP.NET MVC 3
Wrox Programmer to Programmer
Wirox:

Professional

ASPNET MVC 3

Foreword by Scoft Hanselman, Principal Community Architect, Web Platform and Tools for Microsoft

Jon Galloway, Phil Haack, Brad Wilson, K. Scott Allen

PROFESSIONAL ASP.NET MVC 3

FOREWORDititiitttietttneeetneeeenaesenaeseeaeseenaesennenanaasenns xxiii
INTRODUCTION. ..ottt ittt ittt ittt ittt etat i etntetnteeenneeennneenns XXV
CHAPTER 1 Getting Started. 1
CHAPTER 2 Controllers. e e 23
CHAPTER 3 ViBWS .« .ottt et et ettt e e e e e e e e e e e e e 39
CHAPTER 4 Models e e e 69
CHAPTERS5 Formsand HTML Helpers. i 93
CHAPTER 6 Data Annotations and Validation 17
CHAPTER7 Securing Your Application i 135
CHAPTER 8 AJAX L e 179
CHAPTER O ROULING. . .ottt N1
CHAPTER 10 NUGEt. . ..ot e e 239
CHAPTER 1 Dependency lnjection. i 271
CHAPTER 12 Unit Testing.ot e 291
CHAPTER 13 Extending MV C. e 315
CHAPTER 14 Advanced TOPICS . .. vt ittt 339
1] 0 = PR 389

PROFESSIONAL

ASP.NET MVC 3

Jon Galloway
Phil Haack
Brad Wilson
K. Scott Allen

WILEY

John Wiley & Sons, Inc.

Professional ASP.NET MVC 3

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by John Wiley & Sons, Inc. Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-07658-3

ISBN: 978-1-118-15535-6 (ebk)
ISBN: 978-1-118-15537-0 (ebk)
ISBN: 978-1-118-15536-3 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011930287

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To my wife Rachel, my daughters Rosemary, Esther,
and Ellie, and to you for reading this book. Enjoy!

— Jon GALLOWAY

My wife, Akumi, deserves to have her name on the
cover as much as I do for all her support made this

possible. And thanks to Cody for his
infectious happiness.

— PHIL HAACK

To Potten on Potomac.

— K. ScorT ALLEN

CREDITS

ACQUISITIONS EDITOR
Paul Reese

PROJECT EDITOR
Maureen Spears

TECHNICAL EDITORS
Eilon Lipton

PRODUCTION EDITOR
Daniel Scribner

COPY EDITOR
Kimberly A. Cofer

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

BUSINESS MANAGER
Any Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katherine Crocker

PROOFREADER
Sheilah Ledwidge, Word One

INDEXER
Robert Swanson

COVER DESIGNER
LeAndra Young

COVER IMAGE
© Getty / David Madison

ABOUT THE AUTHORS

JON GALLOWAY works at Microsoft as a Community Program Manager focused on ASP.NET
MVC. He wrote the MVC Music Store tutorial, helped organize mvcConf (a free online conference
for the ASP.NET MVC community), and travelled the world in 2010 teaching MVC classes for the
Web Camps tour. Jon previously worked at Vertigo Software, where he worked on several Microsoft
conference websites, high profile Silverlight video players, and MIX keynote demos. Prior to that,
he’s worked in a wide range of web development shops, from scrappy startups to Fortune 500
financial companies. He’s part of the Herding Code podcast (http://herdingcode.com), blogs at
http://weblogs.asp.net/jgalloway, and twitters as @jongalloway. He lives in San Diego with
his wife, three daughters, and a bunch of avocado trees.

PHIL HAACK is a Senior Program Manager with the ASP.NET team working on the ASP.NET MVC
project. Prior to joining Microsoft, Phil worked as a product manager for a code search engine, a
dev manager for an online gaming company, and as a senior architect for a popular Spanish lan-
guage television network, among other crazy pursuits. As a code junkie, Phil Haack loves to craft
software. Not only does he enjoy writing software, he enjoys writing about software and software
management on his blog, http://haacked.com/. In his spare time, Phil contributes to various open

source projects and is the founder of the Subtext blog engine project, which is undergoing a re-write,
using ASP.NET MVC, of course.

BRAD WILSON works for Microsoft as a Senior Software Developer on the Web Platform and Tools
team on the ASP.NET MVC project. He joined Microsoft on the Patterns and Practices team in
2005, and also worked on the team that builds the CodePlex open source hosting site. Prior to
Microsoft, he has been a developer, consultant, architect, team lead, and CTO at various software
companies for nearly 20 years. He’s also the co-author of the xUnit.net open source developer test-
ing framework, along with James Newkirk (of NUnit fame). He has been an active blogger since
2001 and writes primarily on ASP.NET topics at http: //bradwilson. typepad.com/ as well as
tweeting as @bradwilson. Brad lives in beautiful Redmond, WA, where he hones his love for all
types of games — especially Poker.

K. SCOTT ALLEN is the founder of OdeToCode LLC. Scott provides custom development, consulting,
and mentoring services for clients around the world.

ABOUT THE TECHNICAL EDITORS

EILON LIPTON joined the ASP.NET team as a developer at Microsoft in 2002. On this team, he has
worked on areas ranging from data source controls to localization to the UpdatePanel control. He
now works on the ASP.NET MVC Framework as a principal development lead. Eilon is also a fre-
quent speaker on a variety of ASP.NET-related topics at conferences worldwide. He graduated from
Boston University with a dual degree in Math and Computer Science. In his spare time Eilon spends
time in his garage workshop building what he considers to be well-designed furniture. If you know
anyone who needs a coffee table that’s three feet tall and has a slight slope to it, send him an e-mail.

ACKNOWLEDGMENTS

THANKS TO FAMILY AND FRIENDS who graciously acted as if “Jon without sleep” is someone you’d
want to spend time with. Thanks to the whole ASP.NET team for making work fun since 2002,
and especially to Brad Wilson and Phil Haack for answering tons of random questions. Thanks to
Warren G. Harding for normalcy. Thanks to Philippians 4:4-9 for continually reminding me which
way is up.

— Jon GALLOWAY

THANKS GO TO MY LOVELY WIFE, Akumi, for her support which went above and beyond all expecta-
tions and made this possible. I’d like to also give a shout out to my son, Cody, for his sage advice,
delivered only as a two year old can deliver it. I'm sure he’ll be embarrassed ten years from now
that I used such an anachronism (“shout out”) in my acknowledgment to him. Thanks go to my
daughter, Mia, as her smile lights up the room like unicorns.

— PHIL HAaACK

CONTENTS

FOREWORD Xxiii
INTRODUCTION XXV
CHAPTER 1: GETTING STARTED 1
A Quick Introduction to ASP.NET MVC 1
How ASP.NET MVC Fits in with ASP.NET 2
The MVC Pattern 2
MVC as Applied to Web Frameworks 3
The Road to MVC 3 3
ASP.NET MVC 1 Overview 4
ASP.NET MVC 2 Overview 4
ASP.NET MVC 3 Overview 5
Razor View Engine 5
Validation Improvements 8
.NET 4 Data Annotation Support 8
Streamlined Validation with Improved Model Validation 8

Rich JavaScript Support 9
Unobtrusive JavaScript 9
jQuery Validation 9
JSON Binding 9
Advanced Features 10
Dependency Resolution 10
Global Action Filters 10

MVC 3 Feature Summary: Easier at All Levels 10
Creating an MVC 3 Application 1"
Software Requirements for ASP.NET MVC 3 1
Installing ASP.NET MVC 3 1
Installing the MVC 3 Development Components 1
Installing MVC 3 on a Server 12
Creating an ASP.NET MVC 3 Application 12
The New ASP.NET MVC 3 Dialog 14
Application Templates 15
View Engines 15
Testing 15
Understanding the MVC Application Structure 18
ASP.NET MVC and Conventions 21

CONTENTS

Convention over Configuration 21
Conventions Simplify Communication 22
Summary 22
CHAPTER 2: CONTROLLERS 23
The Controller’s Role 23
A Brief History of Controllers 24
A Sample Application: The MVC Music Store 25
Controller Basics 29
A Simple Example: The Home Controller 29
Writing Your First (Outrageously Simple) Controller 32
Creating the New Controller 32
Writing Your Action Methods 33

A Few Quick Observations 35
Parameters in Controller Actions 35
Summary 37
CHAPTER 3: VIEWS 39
What a View Does 40
Specifying a View 42
Strongly Typed Views 43
View Models 45
Adding a View 46
Understanding the Add View Dialog Options 46
Customizing the T4 View Templates 49
Razor View Engine 50
What is Razor? 50
Code Expressions 52
Html Encoding 53
Code Blocks 54
Razor Syntax Samples 55
Implicit Code Expression 55
Explicit Code Expression 56
Unencoded Code Expression 56
Code Block 56
Combining Text and Markup 56
Mixing Code and Plain Text 57
Escaping the Code Delimiter 57
Server Side Comment 58
Calling a Generic Method 58
Layouts 58

xii

CONTENTS

ViewStart 60
Specifying a Partial View 60
The View Engine 61

Configuring a View Engine 62

Finding a View 63

The View ltself 64

Alternative View Engines 65
New View Engine or New ActionResult? 67
Summary 67

CHAPTER 4: MODELS 69
Modeling the Music Store 70
Scaffolding a Store Manager 72

What Is Scaffolding? 72

Empty Controller 73
Controller with Empty Read/Write Actions 73
Controller with Read/Write Actions and Views,

Using Entity Framework 73

Scaffolding and the Entity Framework 74

Code First Conventions 74

The DbContext 75
Executing the Scaffolding Template 75
The Data Context 76

The StoreManagerController 76

The Views 78
Executing the Scaffolded Code 79
Creating Databases with the Entity Framework 79
Using Database Initializers 80
Seeding a Database 81
Editing an Album 83
Building a Resource to Edit an Album 83
Models and View Models Redux 85

The Edit View 85
Responding to the Edit POST Request 86
The Edit Happy Path © 87

The Edit Sad Path ® 87
Model Binding 88

The DefaultModelBinder 88

A Word on Model Binding Security 89

Explicit Model Binding 89
Summary o1

xiii

CONTENTS

CHAPTER 5: FORMS AND HTML HELPERS 93
Using Forms 93
The Action and the Method 94
To GET or To POST 94
Searching for Music with a Search Form 95
Searching for Music by Calculating the Action Attribute Value 97
HTML Helpers 98
Automatic Encoding 99
Make Helpers Do Your Bidding 99
Inside HTML Helpers 100
Setting Up the Album Edit Form 101
Html.BeginForm 101
Html.ValidationSummary 101
Adding Inputs 102
Html.TextBox (and Html.TextArea) 103
Html.Label 103
Html.DropDownList (and Html.ListBox) 104
Html.ValidationMessage 105
Helpers, Models, and View Data 106
Strongly-Typed Helpers 108
Helpers and Model Metadata 109
Templated Helpers 109
Helpers and ModelState 110
Other Input Helpers 10
Html.Hidden 110
Html.Password m
Html.RadioButton 1M
Html.CheckBox 12
Rendering Helpers 12
Html.ActionLink and Html.RouteLink 12
URL Helpers 13
Html.Partial and Html.RenderPartial 114
Html.Action and Html.RenderAction 15
Passing Values to RenderAction 16
Cooperating with the ActionName Attribute 116
Summary 16
CHAPTER 6: DATA ANNOTATIONS AND VALIDATION 117
Annotating Orders for Validation 118
Using Validation Annotations 19

Xiv

CONTENTS

Required 19
StringLength 120
RegularExpression 121
Range 121
Validation Attributes from System.Web.Mvc 121
Custom Error Messages and Localization 122
Looking Behind the Annotation Curtain 123
Validation and Model Binding 124
Validation and Model State 124
Controller Actions and Validation Errors 125
Custom Validation Logic 126
Custom Annotations 126
IValidatableObject 130
Display and Edit Annotations 131
Display 131
ScaffoldColumn 132
DisplayFormat 132
ReadOnly 133
DataType 133
UlHint 133
Hiddenlnput 133
Summary 134
CHAPTER 7: SECURING YOUR APPLICATION 135
Using the Authorize Attribute to Require Login 137
Securing Controller Actions 138

How the AuthorizeAttribute Works with Forms Authentication and the
AccountController 143
Windows Authentication in the Intranet Application Template 144
Securing Entire Controllers 145
Using the Authorize Attribute to Require Role Membership 145
Extending Roles and Membership 146

Understanding the Security Vectors in a

Web Application 147
Threat: Cross-Site Scripting (XSS) 147
Threat Summary 147
Passive Injection 147
Active Injection 150
Preventing XSS 151
Threat: Cross-Site Request Forgery 157
Threat Summary 157

XV

CONTENTS

Preventing CSRF Attacks 160
Threat: Cookie Stealing 161
Threat Summary 162
Preventing Cookie Theft with HttpOnly 163
Threat: Over-Posting 163
Threat Summary 163
Preventing Over-Posting with the Bind Attribute 164
Threat: Open Redirection 165
Threat Summary 165
Protecting Your ASP.NET MVC 1 and MVC 2 Applications 170
Taking Additional Actions When an Open Redirect Attempt Is Detected 172
Open Redirection Summary 174
Proper Error Reporting and the Stack Trace 174
Using Configuration Transforms 174
Using Retail Deployment Configuration in Production 175
Using a Dedicated Error Logging System 176
Security Recap and Helpful Resources 176
Summary: It’s Up to You 177
CHAPTER 8: AJAX 179
jQuery 180
jQuery Features 180
The jQuery Function 180
jQuery Selectors 182
jQuery Events 182
jQuery and AJAX 183
Unobtrusive JavaScript 183
Using jQuery 184
Custom Scripts 185
Placing Scripts in Sections 186

And Now for the Rest of the Scripts 186
AJAX Helpers 187
AJAX ActionLinks 187
HTML 5 Attributes 189
AJAX Forms 190
Client Validation 192
jQuery Validation 192
Custom Validation 194
IClientValidatable 195
Custom Validation Script Code 196

XVi

CONTENTS

Beyond Helpers 198
jQuery Ul 198
Autocomplete with jQuery Ul 200

Adding the Behavior 200
Building the Data Source 201
JSON and jQuery Templates 203
Adding Templates 204
Modifying the Search Form 204
Get JSON! 206
jQuery.ajax for Maximum Flexibility 207

Improving AJAX Performance 208
Using Content Delivery Networks 208
Script Optimizations 208

Summary 209

CHAPTER 9: ROUTING 211

Understanding URLs 212

Introduction to Routing 213
Comparing Routing to URL Rewriting 213
Defining Routes 213

Route URLs 214
Route Values 215
Route Defaults 217
Route Constraints 220
Named Routes 221
MVC Areas 223
Area Route Registration 223
Area Route Conflicts 224
Catch-All Parameter 225
Multiple URL Parameters in a Segment 225
StopRoutingHandler and IgnoreRoute 226
Debugging Routes 227
Under the Hood: How Routes Generate URLs 228
High-Level View of URL Generation 229
Detailed Look at URL Generation 230
Ambient Route Values 232
Overflow Parameters 233
More Examples of URL Generation with the Route Class 234

Under the Hood: How Routes Tie Your URL to an Action 235

The High-Level Request Routing Pipeline 235

xvii

CONTENTS

RouteData 235
Custom Route Constraints 236
Using Routing with Web Forms 237
Summary 238

CHAPTER 10: NUGET 239
Introduction to NuGet 239
Installing NuGet 240
Adding a Library as a Package 242

Finding Packages 242

Installing a Package 244

Updating a Package 247

Recent Packages 248

Using the Package Manager Console 248
Creating Packages 250

Folder Structure 251

NuSpec File 251

Metadata 252

Dependencies 253

Specifying Files to Include 254

Tools 255

Framework and Profile Targeting 258
Publishing Packages 260

Publishing to NuGet.org 260

Publishing Using NuGet.exe 263

Using the Package Explorer 264

Hosting A Private NuGet Feed 266
Summary 270

CHAPTER 11: DEPENDENCY INJECTION 271
Understanding Software Design Patterns 271
Design Pattern: Inversion of Control 272
Design Pattern: Service Locator 274
Strongly-Typed Service Locator 274
Weakly-Typed Service Locator 275

The Pros and Cons of Service Locators 278

Design Pattern: Dependency Injection 278
Constructor Injection 278
Property Injection 279

xviii

CONTENTS

Dependency Injection Containers 280
Using the Dependency Resolver 281
Singly-Registered Services 283
Multiply-Registered Services 284
Creating Arbitrary Objects 287
Creating Controllers 288
Creating Views 289
Summary 290
CHAPTER 12: UNIT TESTING 291
The Meaning of Unit Testing and Test-Driven Development 292
Defining Unit Testing 292
Testing Small Pieces of Code 292
Testing in Isolation 292
Testing Only Public Endpoints 293
Automated Results 293
Unit Testing as a Quality Activity 293
Defining Test-Driven-Development 294
The Red/Green Cycle 294
Refactoring 295
Structuring Tests with Arrange, Act, Assert 295
The Single Assertion Rule 296
Creating a Unit Test Project 296
Examining the Default Unit Tests 297
Only Test the Code You Write 300
Tips and Tricks for Unit Testing Your ASP.NET
MVC Application 301
Testing Controllers 301
Keep Business Logic out of Your Controllers 302
Pass Service Dependencies via Constructor 302
Favor Action Results over HttpContext Manipulation 303
Favor Action Parameters over UpdateModel 305
Utilize Action Filters for Orthogonal Activities 306
Testing Routes 306
Testing Calls to IgnoreRoute 307
Testing Calls to MapRoute 308
Testing Unmatched Routes 309
Testing Validators 309
Summary 313

Xix

CONTENTS

CHAPTER 13: EXTENDING MVC 315
Extending Models 316
Turning Request Data into Models 316
Exposing Request Data with Value Providers 316
Creating Models with Model Binders 317
Describing Models with Metadata 322
Validating Models 324
Extending Views 328
Customizing View Engines 328
Writing HTML Helpers 330
Writing Razor Helpers 331
Extending Controllers 332
Selecting Actions 332
Choosing Action Names with Name Selectors 332
Filtering Actions with Method Selectors 332
Action Filters 333
Authorization Filters 334
Action and Result Filters 334
Exception Filters 335
Providing Custom Results 335
Summary 337
CHAPTER 14: ADVANCED TOPICS 339
Advanced Razor 339
Templated Razor Delegates 339
View Compilation 341
Advanced Scaffolding 342
Customizing T4 Code Templates 343
The MvcScaffolding NuGet Package 343
Updated Add Controller Dialog Options 344
Using the Repository Template 344
Adding Scaffolders 347
Additional Resources 347
Advanced Routing 347
RouteMagic 347
Editable Routes 348
Templates 353
The Default Templates 353
MVC Futures and Template Definitions 354

XX

CONTENTS

Template Selection

Custom Templates

Advanced Controllers

Defining the Controller: The IController Interface

The ControllerBase Abstract Base Class

The Controller Class and Actions
Action Methods

The ActionResult
Action Result Helper Methods
Action Result Types
Implicit Action Results

Action Invoker
How an Action Is Mapped to a Method
Invoking Actions

Using Asynchronous Controller Actions
Choosing Synchronous versus Asynchronous Pipelines
Writing Asynchronous Action Methods
The MVC Pattern for Asynchronous Actions
Performing Multiple Parallel Operations
Using Filters with Asynchronous Controller Actions
Timeouts
Additional Considerations for Asynchronous Methods

Summary

INDEX

356
357
359
359
361
361
363
367
368
369
373
375
375
378
379
380
381
382
382
384
384
385
387

389

XXi

FOREWORD

I was thrilled to work on the first two versions of this book. When I decided to take a break from
writing on the third version, I wondered who would take over. Who could fill the vacuum left by my
enormous ego? Well, only four of the smartest and nicest fellows one could know, each one far more
knowledgeable than I.

Phil Haack, the Program Manager ASP.NET MVC, has been with the project from the very start.
With a background rooted in community and open source, I count him not only as an amazing tech-
nologist but also a close friend. Phil currently works on ASP.NET, as well as the new .NET Package
Manager called NuGet. Phil and I share a boss now on the Web Platform and Tools and are working
to move both ASP.NET and Open Source forward at Microsoft.

Brad Wilson is not only my favorite skeptic but also a talented Developer at Microsoft working on
ASP.NET MVC. From Dynamic Data to Data Annotations to Testing and more, there’s no end to
Brad’s knowledge as a programmer. He’s worked on many open source projects such as XUnit.NET,
and continues to push people both inside and outside Microsoft towards the light.

Jon Galloway works in the Developer Guidance Group at Microsoft, where he’s had the opportunity
to work with thousands of developers who are both new to and experienced with ASP.NET MVC.
He’s the author of the MVC Music Store tutorial, which has helped hundreds of thousands of new
developers write their first ASP.NET MVC application. Jon also helped organize mvcConf —a
series of free, online conferences for ASP.NET MVC developers. His interactions with the diverse
ASP.NET community give him some great insights on how developers can begin, learn, and master

ASP.NET MVC.

And last but not least, K. Scott Allen rounds out the group, not just because of his wise decision
to use his middle name to sound smarter, but also because he brings his experience and wisdom as
a world-renown trainer. Scott Allen is a member of the Pluralsight technical staff and has worked
on websites for Fortune 50 companies, as well as consulted with startups. He is kind, thoughtful,
respected, and above all, knows his stuff backwards and forwards.

These fellows have teamed up to take this ASP.NET MVC 3 book to the next level, as the ASP.NET
web development platform continues to grow. The platform is currently used by millions of devel-
opers worldwide. A vibrant community supports the platform, both online and offline; the online
forums at www.asp.net average thousands of questions and answers a day.

ASP.NET and ASP.NET MVC 3 powers news sites, online retail stores, and perhaps your favorite
social networking site. Your local sports team, book club or blog uses ASP.NET MVC 3 as well.

When it was introduced, ASP.NET MVC broke a lot of ground. Although the pattern was old, it
was new to much of the existing ASP.NET community; it walked a delicate line between productiv-
ity and control, power and flexibility. Today, to me, ASP.NET MVC 3 represents choice — your
choice of language, your choice of frameworks, your choice of open source libraries, your choice of
patterns. Everything is pluggable. MVC 3 epitomizes absolute control of my environment — if you

FOREWORD

like something, use it; if you don’t like something, change it. I unit test how I want, create compo-
nents as [want, and use my choice of JavaScript framework.

ASP.NET MVC 3 brings you the new Razor View Engine, an integrated scaffolding system exten-
sible via NuGet, HTML 5 enabled project templates, powerful hooks with dependency injection
and global action filters, and rich JavaScript support (including unobtrusive JavaScript, jQuery
Validation, and JSON binding).

The ASP.NET MVC team has created version 3 of their amazing framework and has given us the
source. I encourage you to visit www.asp.net /mvec for fresh content, new samples, videos, and
tutorials.

We all hope this book, and the knowledge within, represents the next step for you in your mastery
of ASP.NET MVC 3.

— ScoTT HANSELMAN
Principal Community Architect
Web Platform and Tools
Microsoft

XXiv

INTRODUCTION

IT'S A GREAT TIME to be an ASP.NET developer!

Whether you’ve been developing with ASP.NET for years, or are just getting started, now is a great
time to dig into ASP.NET MVC 3. ASP.NET MVC has been a lot of fun to work with from the
start, but with features like the new Razor view engine, integration with the NuGet package man-
agement system, deep integration with jQuery, and powerful extensibility options, ASP.NET MVC 3
is just a lot of fun to work with!

With this new release, things have changed enough that we’ve essentially rewritten the book, as
compared to the previous two releases. ASP.NET MVC team member Brad Wilson and noted ASP
.NET expert K. Scott Allen joined the author team, and we’ve had a blast creating a fresh new book.
Join us for a fun, informative tour of ASP.NET MVC 3!

WHO THIS BOOK IS FOR

This book is for web developers who are looking to add more complete testing to their web sites,
and who are perhaps ready for “something different.”

In some places, we assume that you’re somewhat familiar with ASP.NET WebForms, at least periph-
erally. There are a lot of ASP.NET WebForms developers out there who are interested in ASP.NET
MVC so there are a number of places in this book where we contrast the two technologies. Even if
you’re not already an ASP.NET developer, you might still find these sections interesting for context,
as well as for your own edification as ASP.NET MVC 3 may not be the web technology that you’re
looking for.

It’s worth noting, yet again, that ASP.NET MVC 3 is not a replacement for ASP.NET Web Forms.
Many web developers have been giving a lot of attention to other web frameworks out there (Ruby
on Rails, Django) which have embraced the MVC (Model-View-Controller) application pattern, and
if you’re one of those developers, or even if you’re just curious, this book is for you.

MVC allows for (buzzword alert!) a “greater separation of concerns” between components in your
application. We’ll go into the ramifications of this later on, but if it had to be said in a quick sen-
tence: ASP.NET MVC 3 is ASP.NET Unplugged. ASPNET MVC 3 is a tinkerer’s framework that
gives you very fine-grained control over your HTML and Javascript, as well as complete control
over the programmatic flow of your application.

There are no declarative server controls in MVC, which some people may like and others may
dislike. In the future, the MVC team may add declarative view controls to the mix, but these will
be far different from the components that ASP.NET Web Forms developers are used to, in which
a control encapsulates both the logic to render the view and the logic for responding to user input,
etc. Having all that encapsulated in a single control in the view would violate the “separation of

INTRODUCTION

concerns” so central to this framework. The levels of abstraction have been collapsed, with all the
doors and windows opened to let the air flow freely.

The final analogy we can throw at you is that ASP.NET MVC 3 is more of a motorcycle, whereas
ASP.NET Web Forms might be more like a minivan, complete with airbags and a DVD player in
case you have kids and you don’t want them to fight while you’re driving to the in-laws for Friday
dinner. Some people like motorcycles, some people like minivans. They’ll both get you where you
need to go, but one isn’t technically better than the other.

HOW THIS BOOK IS STRUCTURED

XXVi

This book is divided into two very broad sections, each comprising several chapters.

The first half of the book is concerned with introducing the MVC pattern and how ASP.NET MVC
implements that pattern.

Chapter 1 helps you get started with ASP.NET MVC 3 development. It explains what ASP.NET
MVC is and explains how ASP.NET MVC 3 fits in with the previous two releases. Then, after
making sure you have the correct software installed, you’ll begin creating a new ASP.NET MVC 3
application.

Chapter 2 then explains the basics of controllers and actions. You’ll start with some very basic
“hello world” examples, then build up to pull information from the URL and return it to the screen.

Chapter 3 explains how to use view templates to control the visual representation of the output from

your controller actions. You’ll learn all about Razor, the new view engine that’s included in ASP
.NET MVC 3.

Chapter 4 teaches you the third element of the MVC pattern: the model. In this chapter, you’ll learn
how to use models to pass information from controller to view and how to integrate your model
with a database (using Entity Framework 4.1).

Chapter 5 dives deeper into editing scenarios, explaining how forms are handled in ASP.NET MVC.
You’ll learn how to use HTML Helpers to keep your views lean.

Chapters 6 explains how to use attributes to define rules for how your models will be displayed,
edited, and validated.

Chapter 7 teaches you how to secure your ASP.NET MVC application, pointing out common secu-
rity pitfalls and how you can avoid them. You’ll learn how to leverage the ASP.NET membership
and authorization features within ASP.NET MVC applications to control access.

Chapter 8 covers Ajax applications within ASP.NET MVC applications, with special emphasis to
jQuery and jQuery plugins. You’ll learn how to use ASP.NET MVC’s Ajax helpers, and how to
work effectively with the jQuery powered validation system that’s included in ASP.NET MVC 3.

Chapter 9 digs deep into the routing system that manages how URL’s are mapped to controller actions.

INTRODUCTION

Chapter 10 introduces you to the NuGet package management system. You’ll learn how it relates to
ASP.NET MVC, how to install it, and how to use it to install, update, and create new packages.

Chapter 11 explains dependency injection, the changes ASP.NET MVC 3 includes to support it, and
how you can leverage it in your applications.

Chapter 12 teaches you how to practice test driven development in your ASP.NET applications,
offering helpful tips on how to write effective tests.

Chapter 13 dives into the extensibility points in ASP.NET MVC, showing how you can extend the
framework to fit your specific needs.

Chapter 14 looks at advanced topics that might have blown your mind before reading the first 13
chapters of the book. It covers sophisticated scenarios in Razor, scaffolding, routing, templating,
and controllers.

WHAT YOU NEED TO USE THIS BOOK

To use ASP.NET MVC 3, you’ll probably want a copy of Visual Studio. You can use Microsoft
Visual Web Developer 2010 Express, or any of the paid versions of Visual Studio 2010 (such as
Visual Studio 2010 Professional). Visual Studio 2010 includes ASP.NET MVC 3.

The following list shows you where to go to download the required software:

> Visual Studio or Visual Studio Express: www.microsoft.com/vstudio or www.microsoft
.com/express/

» ASP.NET MVC 3: www.asp.net/mvc

Chapter 1 reviews the software requirements in depth, showing how to get everything set up on
both your development and server machines.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Occasionally the product team will take a moment to provide an interesting aside or four-bit of
trivia, and those will appear in boxes like the one below.

%% PRODUCT TEAM ASIDE
Boxes like this one hold tips, tricks, trivia from the ASP.NET Product

Team or some other information that is directly relevant to the surrounding text.

XXVii

INTRODUCTION

Tips, hints and tricks to the current discussion are offset and placed in italics
like this.

As for styles in the text:

>

>
>
>

We italicize new terms and important words when we introduce them.
We show keyboard strokes like this: Ctrl+A.
We show file names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

SOURCE CODE

You’ll notice that throughout the book, we have places where we suggest that you install a NuGet
package to try out some sample code.

vi

Install-Package SomePackageName

NuGet is a new package manager for .NET and Visual Studio written by the Outercurve
Foundation and incorporated by Microsoft into ASP.NET MVC.

Rather than having to search around for zip files on the Wrox website for source code samples, you
can use NuGet to easily add these files into an ASP.NET MVC application from the convenience of
Visual Studio. We think this will make it much easier and painless to try out the samples and hope-
fully you’re more likely to do so.

Chapter 10 explains the NuGet system in greater detail.

In some instances, the book covers individual code snippets which you may wish to download. This
code is available for download at www.wrox.com. Once at the site, simply locate the book’s title (use
the Search box or one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book. Code that is included on the Web site is highlighted by
the following icon:

XXviii

J

Available for
download on
Wrox.com

INTRODUCTION

Listings include the filename in the title. If it is just a code snippet, you’ll find the filename in a code
note such as this:

Code snippet filename

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-1-118-07658-3.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p .wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

XXiX

INTRODUCTION

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

XXX

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Getting Started

— By Jon Galloway

WHAT’S IN THIS CHAPTER?

Understanding ASP.NET MVC
An ASP.NET MVC 3 overview

How to create MVC 3 applications

Y Y VY Y

How MVC applications are structured

This chapter gives you a quick introduction to ASP.NET MVC, explains how ASP.NET MVC
3 fits into the ASP.NET MVC release history, summarizes what’s new in ASP.NET MVC 3,
and shows you how to set up your development environment to build ASP.NET MVC 3
applications.

This is a Professional Series book about a version 3 web framework, so we’re going to keep the
introductions short. We’re not going to spend any time convincing you that you should learn
ASP.NET MVC. We’re assuming that you’ve bought this book for that reason, and that the
best proof of software frameworks and patterns is in showing how they’re used in real-world
scenarios.

A QUICK INTRODUCTION TO ASP.NET MVC

ASP.NET MVC is a framework for building web applications that applies the general Model
View Controller pattern to the ASP.NET framework. Let’s break that down by first looking at
how ASP.NET MVC and the ASP.NET framework are related.

2 | CHAPTER1 GETTING STARTED

How ASP.NET MVC Fits in with ASP.NET

When ASP.NET 1.0 was first released in 2002, it was easy to think of ASP.NET and Web Forms as
one and the same thing. ASP.NET has always supported two layers of abstraction, though:

> gystem.Web.UTI: The Web Forms layer, comprising server controls, ViewState, and so on

> gystem.wWeb: The plumbing, which supplies the basic web stack, including modules, han-
dlers, the HTTP stack, and so on

The mainstream method of developing with ASP.NET included the whole Web Forms stack — tak-

ing advantage of drag-and-drop controls, semi-magical statefulness, and wonderful server controls

while dealing with the complications behind the scenes (an often confusing page life cycle, less than
optimal HTML, and so on).

However, there was always the possibility of getting below all that — responding directly to HTTP
requests, building out web frameworks just the way you wanted them to work, crafting beautiful
HTML — using Handlers, Modules, and other handwritten code. You could do it, but it was pain-
ful; there just wasn’t a built-in pattern that supported any of those things. It wasn’t for lack of pat-
terns in the broader computer science world, though. By the time ASP.NET MVC was announced in
2007, the MVC pattern was becoming one of the most popular ways of building web frameworks.

The MVC Pattern

Model-View-Controller (MVC) has been an important architectural pattern in computer science for
many years. Originally named Thing-Model-View-Editor in 1979, it was later simplified to Model-
View-Controller. It is a powerful and elegant means of separating concerns within an application
(for example, separating data access logic from display logic) and applies itself extremely well to
web applications. Its explicit separation of concerns does add a small amount of extra complexity
to an application’s design, but the extraordinary benefits outweigh the extra effort. It has been used
in dozens of frameworks since its introduction. You’ll find MVC in Java and C++, on Mac and on
Windows, and inside literally dozens of frameworks.

The MVC separates the user interface of an application into three main aspects:

> The Model: A set of classes that describes the data you’re working with as well as the busi-
ness rules for how the data can be changed and manipulated

The View: Defines how the application’s user interface (UI) will be displayed

> The Controller: A set of classes that handles communication from the user, overall applica-
tion flow, and application-specific logic

MVC AS A USER INTERFACE PATTERN

Notice that we’re referred to MVC as a pattern for the User Interface. The MVC
pattern presents a solution for handling user interaction, but says nothing about how
you will handle other application concerns like data access, service interactions, etc.
It’s helpful to keep this in mind as you approach MVC: it is a useful pattern, but
likely one of many patterns you will use in developing an application.

A Quick Introduction to ASP.NET MVC | 3

MVC as Applied to Web Frameworks

The MVC pattern is used frequently in web programming. With ASP.NET MVC, it’s translated
roughly as:

> Models: These are the classes that represent the domain you are interested in. These domain
objects often encapsulate data stored in a database as well as code used to manipulate the
data and enforce domain-specific business logic. With ASP.NET MVC, this is most likely a
Data Access Layer of some kind using a tool like Entity Framework or NHibernate combined
with custom code containing domain-specific logic.

> View: This is a template to dynamically generate HTML . We cover more on that in Chapter 3
when we dig into views.

> Controller: This is a special class that manages the relationship between the View and Model.
It responds to user input, talks to the Model, and it decides which view to render (if any). In
ASP.NET MVC, this class is conventionally denoted by the suffix Controller.

@ It’s important to keep in mind that MVC is a high-level architectural pattern,
and its application varies depending on use. ASP.NET MVC is contextualized

both to the problem domain (a stateless web environment) and the host system
(ASP.NET).

Occasionally I talk to developers who have used the MVC pattern in very dif-
ferent environments, and they get confused, frustrated, or both (confustrated?)
because they assume that ASP.NET MVC works the exact same way it worked
in their mainframe account processing system fifteen years ago. It doesn’t, and
that’s a good thing— ASP.NET MVC is focused on providing a great web devel-
opment framework using the MVC pattern and running on the .NET platform,
and that contextualization is part of what makes it great.

ASP.NET MVC relies on many of the same core strategies that the other MVC
platforms use, plus it offers the benefits of compiled and managed code and
exploits newer .NET language features such as lambdas and dynamic and
anonymous types. At its beart, though, ASP.NET applies the fundamental tenets
found in most MVC-based web frameworks:

> Convention over configuration

> Don’t repeat yourself (aka the DRY principle)
> Pluggability wherever possible
>

Try to be helpful, but if necessary, get out of the developer’s way

The Road to MVC 3

Two short years have seen three major releases of ASP.NET MVC and several more interim releases.
In order to understand ASP.NET MVC 3, it’s important to understand how we got here. This sec-
tion describes the contents and background of each of the three major ASP.NET MVC releases.

4 | CHAPTER1 GETTING STARTED

ASP.NET MVC 1 Overview

In February 2007, Scott Guthrie (“ScottGu”) of Microsoft sketched out the core of ASPNET MVC
while flying on a plane to a conference on the East Coast of the United States. It was a simple appli-
cation, containing a few hundred lines of code, but the promise and potential it offered for parts of
the Microsoft web developer audience was huge.

As the legend goes, at the Austin ALT.NET conference in October 2007 in Redmond, Washington,
ScottGu showed a group of developers “this cool thing I wrote on a plane” and asked if they saw the
need and what they thought of it. It was a hit. In fact, many people were involved with the original
prototype, codenamed Scalene. Eilon Lipton e-mailed the first prototype to the team in September
2007, and he and ScottGu bounced prototypes, code, and ideas back and forth.

Even before the official release, it was clear that ASP.NET MVC wasn’t your standard Microsoft
product. The development cycle was highly interactive: there were nine preview releases before the
official release, unit tests were made available, and the code shipped under an open source license.
All of these highlighted a philosophy that placed a high value in community interaction throughout
the development process. The end result was that the official MVC 1.0 release — including code and
unit tests — had already been used and reviewed by the developers who would be using it. ASP.NET
MVC 1.0 was released on 13 March 2009.

ASP.NET MVC 2 Overview

ASP.NET MVC 2 was released just one year later, in March 2010. Some of the main features in
MVC 2 included:

> Ul helpers with automatic scaffolding with customizable templates

» Attribute-based Model validation on both client and server

> Strongly-typed HTML helpers

> Improved Visual Studio tooling
There were also lots of API enhancements and “pro” features, based on feedback from developers
building a variety of applications on ASP.NET MVC 1, such as:

> Support for partitioning large applications into areas

> Asynchronous Controllers support

> Support for rendering subsections of a page/site using Html . RenderAction

> Lots of new helper functions, utilities, and API enhancements
One important precedent set by the MVC 2 release was that there were very few breaking changes.

I think this is a testament to the architectural design of ASP.NET MVC, which allows for a lot of
extensibility without requiring core changes.

A Quick Introduction to ASP.NETMVC | 5

ASP.NET MVC 3 Overview

ASP.NET MVC 3 (generally abbreviated as MVC 3 from now on) shipped just 10 months after
MVC 2, driven by the release date for Web Matrix. If MVC 3 came in a box, it might say something
like this on the front:

> Expressive Views including the new Razor View Engine!
.NET 4 Data Annotation Support!

Streamlined validation with improved Model validation!

>

>

> Powerful hooks with Dependency Resolution and Global Action Filters!

> Rich JavaScript support with unobtrusive JavaScript, jQuery Validation, and JSON binding!
>

Now with NuGet!!!!

For those who have used previous versions of MVC, we’ll start with a quick look at some of these
major features.

If you’re new to ASP.NET MVC, don’t be concerned if some of these features
don’t make a lot of sense right now; we’ll be covering them in a lot more detail
throughout the book.

Razor View Engine

Razor is the first major update to rendering HTML since ASP.NET 1.0 shipped almost a decade
ago. The default view engine used in MVC 1 and 2 was commonly called the Web Forms View
Engine, because it uses the same ASPX/ASCX/MASTER files and syntax used in Web Forms. It
works, but it was designed to support editing controls in a graphical editor, and that legacy shows.
An example of this syntax in a Web Forms page is shown here:

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage<MvcMusicStore.ViewModels.StoreBrowseViewModel>"

%>
<asp:Content ID="Contentl" ContentPlaceHolderID="TitleContent" runat="server">
Browse Albums
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server">

<div class="genre">
<h3><%: Model.Genre.Name %> Albums</h3>

6 | CHAPTER1 GETTING STARTED

<ul id="album-list">
<% foreach (var album in Model.Albums) { %>

<a href="<%: Url.Action("Details", new { id = album.AlbumId }) %>">
<img alt="<%: album.Title %>" src="<%: album.AlbumArtUrl %>" />
<%: album.Title %>

</1li>

>

oe

<% }

</div>
</asp:Content>

Razor was designed specifically as a view engine syntax. It has one main focus: code-focused tem-
plating for HTML generation. Here’s how that same markup would be generated using Razor:

@model MvcMusicStore.Models.Genre
@{ViewBag.Title = "Browse Albums";}

<div class="genre">
<h3>@Model .Name Albums</h3>

<ul id="album-list">
@foreach (var album in Model.Albums)
{

@album.Title

</1li>
}

</div>

The Razor syntax is easier to type, and easier to read. Razor doesn’t have the XML-like heavy syn-
tax of the Web Forms view engine.

We’ve talked about how working with the Razor syntax feels different. To put this in more quantifi-
able terms, let’s look at the team’s design goals in creating the Razor syntax:

> Compact, expressive, and fluid: Razor’s (ahem) sharp focus on templating for HTML genera-
tion yields a very minimalist syntax. This isn’t just about minimizing keystrokes — although
that’s an obvious result — it’s about how easy it is to express your intent. A key example is
the simplicity in transitions between markup and code. You can see this in action when writ-
ing out some model properties in a loop:

@foreach (var album in Model.Albums)

{

A Quick Introduction to ASP.NET MVC | 7

@album.Title

</1li>

@ You only needed to signify the end of a code block for the loop — in the cases
where model properties were being emitted, only the @ character was needed to
signify the transition from markup to code, and the Razor engine automatically
detected the transition back to markup.

Razor also simplifies markup with an improvement on the Master Pages concept — called
Layouts — that is both more flexible and requires less code.

> Not a new language: Razor is a syntax that lets you use your existing .NET coding skills in a
template in a very intuitive way. Scott Hanselman summarized this pretty well when describ-
ing his experiences learning Razor:

I kept [...] going cross-eyed when I was trying to figure out what the syntax
rules were for Razor until someone said stop thinking about it, just type an
“at” sign and start writing code and 1 realize that there really is no Razor.

— HANSELMINUTES #249: ON WEBMATRIX WITH ROB CONERY
http://hanselminutes.com/default.aspx?showID=268

> Easy to learn: Precisely because Razor is not a new language, it’s easy to learn. You know
HTML, you know .NET; just type HTML and hit the @ sign whenever you need to write
some .NET code.

> Works with any text editor: Because Razor is so lightweight and HTML-focused, you’re free
to use the editor of your choice. Visual Studio’s syntax highlighting and IntelliSense features
are nice, but it’s simple enough that you can edit it in any text editor.

> Great IntelliSense: Though Razor was designed so that you shouldn’t need IntelliSense to
work with it, IntelliSense can come in handy for things like viewing the properties your
model object supports. For those cases, Razor does offer nice IntelliSense within Visual
Studio, as shown in Figure 1-1.

Your password is @odel.Password.l| characters
i dlgﬁsabdm rrfarmationclegend ¢ 202t
egead>Accamt tntamatianc/legend o
= <div class—"editor-label”s @ Tshiormalized
@Html.LabelFor(m => m.Userlame) % Join<>
7 T % o> e
=l <d1v@:lais: edl‘tor—fzald > @ LastindeOf
Html.TextBoxFor(m => m.UserNam _
@Html.validationMessageFor(m =3 ¥} Lastinciddiiy
i @; LastOrDefault<>
int string Length 7 Length -
Gets the number of characters in the current System.String object.
@Htm1. LabelFor(m = m.Email)

FIGURE 1-1

8 | CHAPTER1 GETTING STARTED

> Unit testable: The Razor view engine’s core compilation engine has no dependencies on
system.Web or ASP.NET whatsoever — it can be executed from unit tests, or even from
the command line. Though there isn’t direct tooling support for this yet, it’s possible to use
systems like David Ebbo’s Visual Studio Single File Generator (http://visualstudiogal-
lery.msdn.microsoft.com/lf6ec6ff—e89b—4c47—8e79—d2d68df894ec/)u)annpﬂeyour
views into classes that you can then load and test like any other object.

This is just a quick highlight of some of the reasons that Razor makes writing View code
really easy and, dare I say, fun. We’ll talk about Razor in a lot more depth in Chapter 3.

Validation Improvements

Validation is an important part of building web applications, but it’s never fun. I’ve always wanted
to spend as little time as possible writing validation code, as long as [was confident that it worked
correctly.

MVC 2’ attribute-driven validation system removed a lot of the pain from this process by replacing
repetitive imperative code with declarative code. However, support was focused on a short list of
top validation scenarios. There were plenty of cases where you'd get outside of the “happy path” and
have to write a fair amount more code. MVC 3 extends the validation support to cover most scenar-
ios you’re likely to encounter. For more information on validation in ASP.NET MVC, see chapter 6.

.NET 4 Data Annotation Support

MVC 2 was compiled against .NET 3.5 and thus didn’t support any of the .NET 4 Data
Annotations enhancements. MVC 3 picks up some new, very useful validation features available due
to .NET 4 support. Some examples include:

» MVC 2’s DisplayName attribute wasn’t localizable, whereas the .NET 4 standard system
.ComponentModel .DataAnnotations Display attribute is.

> validationAttribute was enhanced in .NET 4 to better work with the validation context
for the entire model, greatly simplifying cases like validators that compare or otherwise refer-
ence two model properties.

Streamlined Validation with Improved Model Validation

MVC 3’s support for the .NET 4 1validatableobject interface deserves individual recognition.
You can extend your model validation in just about any conceivable way by implementing this inter-
face on your model class and implementing the validate method, as shown in the following code:

public class VerifiedMessage : IValidatableObject {
public string Message { get; set; }
public string AgentKey { get; set; }
public string Hash { get; set; }

public IEnumerable<ValidationResult> Validate(
ValidationContext validationContext) {
if (SecurityService.ComputeHash (Message, AgentKey) != Hash)

A Quick Introduction to ASP.NET MVC | 9

vield return new ValidationResult ("Agent compromised") ;

Rich JavaScript Support

JavaScript is an important part of any modern web application. ASP.NET MVC 3 adds some sig-
nificant support for client-side development, following current standards for top quality JavaScript
integration. For more information on the new JavaScript related features in ASP.NET MVC 3, see
Chapter 8.

Unobtrusive JavaScript

Unobtrusive JavaScript is a general term that conveys a general philosophy, similar to the term
REST (for Representational State Transfer). The high-level description is that unobtrusive JavaScript
doesn’t affect your page markup. For example, rather than hooking in via event attributes like
onclick and onsubmit, the unobtrusive JavaScript attaches to elements by their ID or class.

Unobtrusive JavaScript makes a lot of sense when you consider that your HTML document is just

that — a document. It’s got semantic meaning, and all of it — the tag structure, element attributes,
and so on — should have a precise meaning. Strewing JavaScript gunk across the page to facilitate

interaction (I’m looking at you, __doPostBack!) harms the content of the document.

MVC 3 supports unobtrusive JavaScript in two ways:

> Ajax helpers (such as Ajax.ActionLink and Ajax.BeginForm) render clean markup for the
FORM tag, wiring up behavior leveraging extensible attributes (data- attributes) and jQuery.

> Ajax validation no longer emits the validation rules as a (sometimes large) block of JSON
data, instead writing out the validation rules using data- attributes. While technically T con-
sidered MVC 2’s validation system to be rather unobtrusive, the MVC 3 system is that much
more — the markup is lighter weight, and the use of data- attributes makes it easier to lever-
age and reuse the validation information using jQuery or other JavaScript libraries.

jQuery Validation

MVC 2 shipped with jQuery, but used Microsoft Ajax for validation. MVC 3 completed the transi-
tion to using jQuery for Ajax support by converting the validation support to run on the popular
jQuery Validation plugin. The combination of Unobtrusive JavaScript support (discussed previously)
and jQuery validation using the standard plugin system means that the validation is both extremely
flexible and can benefit from the huge jQuery community.

Client-side validation is now turned on by default for new MVC 3 projects, and can be enabled site-
wide with a web.config setting or by code in global.asax for upgraded projects.

JSON Binding

MVC 3 includes JSON (JavaScript Object Notation) binding support via the new
JsonValueProviderFactory, enabling your action methods to accept and model-bind data in JSON

10 | CHAPTER1 GETTING STARTED

format. This is especially useful in advanced Ajax scenarios like client templates and data binding
that need to post data back to the server.

Advanced Features

So far, we’ve looked at how MVC 3 makes a lot of simple-but-mind-numbing tasks like view tem-
plates and validation simpler. MVC 3 has also made some big improvements in simplifying more
sophisticated application-level tasks with support for dependency resolution and global action filters.

Dependency Resolution

ASP.NET MVC 3 introduces a new concept called a dependency resolver, which greatly simplifies
the use of dependency injection in your applications. This makes it easier to decouple application
components, which makes them more configurable and easier to test.

Support has been added for the following scenarios:

>

Y Y Y VY Y Y

Controllers (registering and injecting controller factories, injecting controllers)

Views (registering and injecting view engines, injecting dependencies into view pages)
Action filters (locating and injecting filters)

Model binders (registering and injecting)

Model validation providers (registering and injecting)

Model metadata providers (registering and injecting)

Value providers (registering and injecting)

This is a big enough topic that we’ve devoted an entire new chapter (Chapter 11) to it.

Global Action Filters

MVC 2 action filters gave you hooks to execute code before or after an action method ran. They
were implemented as custom attributes that could be applied to controller actions or to an entire
controller. MVC 2 included some filters in the box, like the Authorize attribute.

MVC 3 extends this with global action filters, which apply to all action methods in your application.
This is especially useful for application infrastructure concerns like error handling and logging.

MVC 3 Feature Summary: Easier at All Levels

They’re great features, but if I was designing the box, I’d just put this on it:

>

If you’ve been putting off learning ASP.NET MVC, it’s just become so easy there’s no excuse
to delay anymore.

If you’ve been using ASP.NET MVC for a while, MVC 3 makes your most difficult code
unnecessary.

Creating an MVC 3 Application | 11

This is a quick introductory summary, and we’ll be covering these and other MVC 3 features
throughout the book. If you'd like an online summary of what’s new in MVC 3 (perhaps to con-
vince your boss that you should move all your projects to MVC 3 as soon as possible), see the list at
http://asp.net/mvc/mvc3#overview.

CREATING AN MVC 3 APPLICATION

The best way to learn about how MVC 3 works is to get started with building an application, so
let’s do that.

Software Requirements for ASP.NET MVC 3
MVC 3 runs on the following Windows client operating systems:
> Windows XP
> Windows Vista

» Windows 7

It runs on the following server operating systems:
> Windows Server 2003
> Windows Server 2008
> Windows Server 2008 R2

The MVC 3 development tooling installs in both Visual Studio 2010 and Visual Web Developer
2010 Express.

Installing ASP.NET MVC 3

After ensuring you’ve met the basic software requirements, it’s time to install ASP.NET MVC 3 on
your development and production machines. Fortunately, that’s pretty simple.

SIDE-BY-SIDE INSTALLATION WITH MVC 2

MVC 3 installs side-by-side with MVC 2, so you can install and start using MVC
3 right away. You’ll still be able to create and update existing MVC 2 applications
as before.

Installing the MVC 3 Development Components

The developer tooling for ASP.NET MVC 3 supports Visual Studio 2010 or Visual Web Developer
2010 Express (free).

12

CHAPTER1 GETTING STARTED

You can install MVC 3 using either the Web Platform Installer (http: //www.microsoft.com/web/
gallery/install.aspx?appid=MvC3) or the executable installer package (available at http://
go.microsoft.com/fwlink/?LinkID=208140). I generally prefer to use the Web Platform Installer
(often called the WebPI, which makes me picture it with a magnificent Tom Selleck moustache for
some reason) because it downloads and installs only the components you don’t already have; the
executable installer is able to run offline so it includes everything you might need, just in case.

Installing MVC 3 on a Server

The installers detect if they’re running on a computer without a supported development environ-
ment and just install the server portion. Assuming your server has Internet access, WebPl is a lighter
weight install, because there’s no need to install any of the developer tooling.

When you install MVC 3 on a server, the MVC runtime assemblies are installed in the Global
Assembly Cache (GAC), meaning they are available to any website running on that server.
Alternatively, you can just include the necessary assemblies in your application without requir-
ing that MVC 3 install on the server at all. This process, called bin deployment, is accomplished
by adding project references to the following assemblies and setting them to “Copy Local” in the
Visual Studio property grid:

» Microsoft.Web.Infrastructure
System.Web.Helpers

System.Web.Mvc

System.Web.WebPages

>

>

> System.Web.Razor
>

> System.Web.WebPages.Deployment
>

System.Web.WebPages.Razor

For more information on these installation options, see Scott Guthrie’s blog post titled “Running
an ASP.NET MVC 3 app on a web server that doesn’t have ASP.NET MVC 3 installed,” available
at http://weblogs.asp.net/scottgu/archive/2011/01/18/running-an-asp-net-mvc-3-app-
on-a-web-server-that-doesn-t-have-asp-net-mvc-3-installed.aspx.

Creating an ASP.NET MVC 3 Application

After installing MVC 3, you’ll have some new options in Visual Studio 2010 and Visual Web
Developer 2010. The experience in both IDEs is very similar; because this is a Professional Series
book we’ll be focusing on Visual Studio development, mentioning Visual Web Developer only when
there are significant differences.

Creating an MVC 3 Application | 13

MVC MUSIC STORE

We’ll be loosely basing some of our samples on the MVC Music Store tutorial. This
tutorial is available online at http: //mvcmusicstore.codeplex. com and
includes a 150-page e-book covering the basics of building an MVC 3 application.
We’ll be going quite a bit further in this book, but it’s nice to have a common base
if you need more information on the introductory topics.

To create a new MVC project:

1. Begin by choosing File &> New = Project as shown in Figure 1-2.

©0 Microsoft Visual Studio e

|F|Ia Edit View Theme Debug Team Data Tools Architecture Test Analyze Window Help

New P |E] Project. Ctrl+Shift+ N
Open b @ WebSite.. Shift+Alt+N
Close i Team Project...

Close Solution O File.. Crl+N

Project From Existing Code...

i Save Selected Items Ctrl+5

Save Selected ltems As,

@ Save Al Cirl+Shift+5
Export Template...
Source Centrol 3

M Page Setup..

= Print... Ctrl+P
Recent Files 3
Recent Projects and Solutions 3

Exit

sau0jdg anias e siojda wiea Al 1210/ UONNIS it

) ErrorList B Output % Find Symbol Results B Test Results Package Manager Console

FIGURE 1-2

2. In the Installed Templates section on the left column of the New Project dialog, shown in
Figure 1-3, select the Visual C# = Web templates list. This displays a list of web application
types in the center column.

3. Select ASP.NET MVC 3 Web Application, name your application MvcMusicStore, and
click OK.

14 |

CHAPTER1 GETTING STARTED

(2 [t

New Project
Recent Templates [.NET Frameworkd ~ | Sort by: | Default | search Installed Tem 2 |
Installed Templates 2| e Visual C#
. ;’ﬂ ASP.NET Web Application Visual C# T

4 Visual C# = A project for creating an application using

Windows " ASP.NET MVC 3

o | [SE) ASPINETMVC2 Web Applice.Visusl G

Cloud 1

MenoDroid ;ﬁ ASP.NET MVC 3 Web Applica...Visual C#

Reporting -

Sibverlight ;ﬁ ASP.NET Empty Web Applica...Visual C¥

Test o

WCF % ASP.NETMVC 2 Empty Web... Visual G

I=c

Warkflow 5
Online Templates ‘c&/’ ASP.NET Dynamic Data Entiti..Visual C&
Mame: MuchusicStore]
e CAUsersJontDocuments\Visual Studio 2010\Projects\ -
Solution name: MuvcMusicStore Create directory for solution

["] Add to source control
0K Cancel

FIGURE 1-3

The New ASP.NET MVC 3 Dialog

After creating a new MVC 3 application, you’ll be presented with an intermediate dialog with some
MVC-specific options for how the project should be created, as shown in Figure 1-4. The options
you select from this dialog can set up a lot of the infrastructure for your application, from account
management to view engines to testing.

-
MNew ASP.NET MVC 3 Project

Project Template

Select a template: Description:

A default ASP.NET MVC 3 project with an
account controller that uses forms
authentication.

2 a8 2
Empty Tnternet Tntranet
Application T T

View engine:

[Razor [] Use HTMLS semantic markup

[] Create a unit test project
Test project name:
MvcApplication21 Tests
Test framework:

Visual Studio Unit Test Additional Info

FIGURE 1-4

Creating an MVC 3 Application | 15

Application Templates

First, you have the option to select from two preinstalled project templates (shown in Figure 1-4).

>

The Internet Application template: This contains the beginnings of an MVC web applica-

tion — enough so that you can run the application immediately after creating it and see a few
pages. You’ll do that in just a minute. This template also includes some basic account manage-
ment functions which run against the ASP.NET Membership system (as discussed in Chapter 7).

@)

The Intranet Application template was added as part of the ASP.NET MVC 3
Tools Update. It is similar to the Intranet Application template, but the account

management functions run against Windows accounts rather than the ASP.NET
Membership system.

The Empty template: This template is, well, mostly empty. It still has the basic folders, CSS,
and MVC application infrastructure in place, but no more. Running an application created
using the Empty template just gives you an error message — you need to work just to get

to square one. Why include it, then? The Empty template is intended for experienced MVC
developers who want to set up and configure things exactly how they want them. We’ll take
a brief look at the Empty application structure later in this chapter; for more information
consult the MVC Music Store application, which starts with the Empty template.

View Engines

The next option on the New ASP.NET MVC 3 Project dialog is a View [\i:fﬂgi“: m)
Engine drop-down. View engines offer different templating languages ASPX
used to generate the HTML markup in your MVC application. Prior to hav

MVC 3, the only built-in option was the ASPX, or Web Forms, view
engine. That option is still available, as shown in Figure 1-5.

FIGURE 1-5

However, MVC 3 adds a new option here: the Razor view engine. We’ll be looking at that in a lot
more detail, especially in Chapter 3.

Testing

If you’re using either the Internet Application or Intranet Application templates, you’ll have one
more option on the New ASP.NET MVC 3 Project dialog. This section deals with testing, as shown
in Figure 1-6.

|| Create a unit test project
Test project name:
MveMusicStore, Tests

Test framework:

Visual Studio Unit Test Additional Info

FIGURE 1-6

Leaving the Create a Unit Test Project checkbox unselected means that your project will be created
without any unit tests, so there’s nothing else to do.

16 | CHAPTER1 GETTING STARTED

RECOMMENDATION: CHECK THE BOX

I’'m hoping you’ll get in the habit of checking that Create a Unit Test Project box for
every project you create.

I’m not going to try to sell you the Unit Testing religion — not just yet. We’ll be
talking about unit testing throughout the book, especially in Chapter 12, which
covers unit testing and testable patterns, but we’re not going to try to ram it down
your throat.

Most developers I talk to are convinced that there is value in unit testing. Those
who aren’t using unit tests would like to, but they’re worried that it’s just too hard.
They don’t know where to get started, they’re worried that they’ll get it wrong, and
are just kind of paralyzed. I know just how you feel, I was there.

So here’s my sales pitch: just check the box. You don’t have to know anything to do
it; you don’t need an ALT.NET tattoo or a certification. We’ll cover some unit test-
ing in this book to get you started, but the best way to get started with unit testing
is to just check the box, so that later you can start writing a few tests without hav-

ing to set anything up.

After checking the Create a Unit Test Project box, you’ll have a few more choices:
> The first is simple: You can change the name of your unit test project to anything you want.

> The second option allows selecting a test framework, as shown in Figure 1-7.

[7] Create a unit test project
Test project name:
MvcMusicStore Tests

Test framework:
Visual Studio Unit Test x| Additional Info
Visual Studio Unit Test i

FIGURE 1-7

You may have noticed that there’s only one test framework option shown, which doesn’t seem to
make a whole lot of sense. The reason there’s a drop-down is that unit testing frameworks can regis-
ter with the dialog, so if you’ve installed other unit testing frameworks (like xUnit, NUnit, MbUnit,
and so on) you’ll see them in that drop-down list as well.

The Visual Studio Unit Test Framework is available only with Visual Studio
2010 Professional and higher versions. If you are using Visual Studio 2010
Standard Edition or Visual Web Developer 2010 Express, you will need to
download and install the NUnit, MbUnit, or X Unit extensions for ASP.NET
MVC in order for this dialog to be shown.

Creating an MVC 3 Application | 17

REGISTERING UNIT TESTING FRAMEWORKS WITH THE UNIT TESTING
FRAMEWORK DROP-DOWN

Ever wondered what’s involved in registering a testing framework with the MVC
New Project dialog?

The process is described in detail on MSDN (http: //msdn.microsoft.com/
en-us/library/dd381614.aspx). There are two main steps:

1. Create and install a template project for the new MVC Test Project.

2. Register the test project type by adding a few registry entries under HKEY_
CURRENT_USER\Software\Microsoft\VisualStudio\10.0_Config\MVC3\
TestProjectTemplates.

These are both of course things that can be included in the installation process for
a unit testing framework, but you can customize them if you'd like without a huge
amount of effort.

Review your settings on the New MVC 3 Project dialog to make sure they match Figure 1-8 and
click OK.

New ASP.NET MVC 2 Project [

Project Template

Select a template: Description:
.’ " .’ A default ASP.NET MVC 3 project with an | =
\=ch l=ct \=cH account controller that uses forms
Empty Internet Intranet authentication.

Application Application

View engine:

[Razor - Use HTMLS semantic markup

Create a unit test project
Test project name:
MuvcMusicStore. Tests

Test framework:

Visual Studic Unit Test v] Additional Info

FIGURE 1-8

This creates a solution for you with two projects — one for the web application and one for the unit
tests, as shown in Figure 1-9.

18 | CHAPTER1 GETTING STARTED

o0 MycMusicStore - Micrasoft Visual Studio [E= =

File Edit View Git Theme Project Build Debug Team Data Tools Architecture Test Analyze Window Help
PSS % B9 - -5 b [Deug ~| [any cPU B = 3
Solution Explorer - 1 x
b=

o) Solution ‘MvcMusicStore' (2 projects)
4 2B MvcMusicStore

[=d| Properties

> [zl References

5 App_Data

3 Content

[Controllers

3 Models

[Scripts

[Views

] Global.asax

% packages.config

> 3 Web.config
(] MvcMusicStore. Tests
» [l Properties
» [References
» [Controllers
i3 App.config

orList B Output f& Find bol Results BB Test Results Package Manager Console

FIGURE 1-9

UNDERSTANDING THE MVC APPLICATION STRUCTURE

When you create a new ASP.NET MVC application with Visual Studio, it automatically adds several
files and directories to the project, as shown in Figure 1-10. ASP.NET MVC projects by default have
six top-level directories, shown in Table 1-1.

Solution Explorer Bl

laElal@
; Solution 'MvcMusicStore' (2 projects)
4 _—a MvcMusicStore
j Prupértia‘s.
>[5 References
3 App_Data
3 Content
3 Controllers
Cd Models
3 Scripts
3 Views
iﬁj Global.asax
| packages.config
>[5 Web.config
4 [MyveMusicStore. Tests
> [=d Properties
> [l References
» [Controllers
|3 App.config

FIGURE 1-10

Understanding the MVC Application Structure | 19

TABLE 1-1: Default Top-Level Directories

DIRECTORY

/Controllers

/Models

/Views

/Scripts

/Content

/App_Data

PURPOSE

Where you put Controller classes that handle URL requests

Where you put classes that represent and manipulate data and business objects

Where you put Ul template files that are responsible for rendering output, such as

HTML

Where you put JavaScript library files and scripts (. js)

Where you put CSS and image files, and other non-dynamic/non-JavaScript

content

Where you store data files you want to read/write

WHAT IF | DON'T LIKE THAT DIRECTORY STRUCTURE?

ASP.NET MVC does not require this structure. In fact, developers working on
large applications will typically partition the application across multiple projects to
make it more manageable (for example, data model classes often go in a separate
class library project from the web application). The default project structure, how-
ever, does provide a nice default directory convention that you can use to keep your

application concerns clean.

Note the following about these files and directories. When you expand:

>

The /controllers directory, you’ll find that Visual Studio added two controller classes
(Figure 1-11) — HomeController and AccountController — by default to the project.

Solution

o Sol

@

Explorer > o x

=al

ution 'MwvcMusicStore' (2 projects)
MvcMusicStore
=d Properties

» [:3 References

3 App_Data

» [Content
7= C_ontmller;

#] AccountController.cs
4] HomeController.cs

[Models

p [Scripts

» [l Views

» 4] Global.asax

% packages.config
i3 Web.config
MveMusicStore Tests

FIGURE 1-11

20 | CHAPTER1 GETTING STARTED

> The /views directory, you’ll find that three subdirectories — /Account, /Home, and /
Shared — as well as several template files within them, were also added to the project by
default (Figure 1-12).

> The /Content and /Scripts directories, you’ll find a Site.css file that is used to style all
HTML on the site, as well as JavaScript libraries that can enable jQuery support within the
application (Figure 1-13).

Solution Explorer > 4 x

4 -
» [Ed| Properties L
p [3] References
Solutien Explorer - 3. = App_Data
2 (2] | w 4 | Content
[d Solution 'MvcMusicStore' (2 projects) > [themes
4 _53 MvcMusicStore Aj Site.css
i+ [=d Properties > D Controllers
3] References | D Models
3 App_Data 4 [Scripts :
.1 Content ~=13 jquery-1.51-vsdoc.js

[Controllers 3:] query-151.js

>

Account
U\’_@] ChangePassword.cshtml
‘@ ChangePasswordSuccess.cshtml
4] LogOn.cshtmi
(@ Register.cshtml
4 [Home
74 About.cshtml
(@ Index.cshtml
4 [Shared
‘f’_@] _Layout.cshtml
(@ _LogOnPartial.cshtml
‘-Lm'] Error.cshtml
_ViewStart.cshtml
Web.config
I 4] Global.asax
=% Web.config
,;ﬁ MuvcMusicStore Tests

FIGURE 1-12

The MvcMusicStore.Tests project, you’ll find two classes that contain unit tests for your
Controller classes (see Figure 1-14).

Solution Explorer v X
5]
|; Solution 'MvchMusicStore' (2 projects)
b 3 MvcMusicStore
Fl .EMV:MusicStore.Test;
> =4 Properties
> [:3] References

#] AccountControllerTest.cs
] HomeControllerTest.cs
5 App.config

FIGURE 1-14

. [3 Models query-1.51.min,js
b Bl Scipts query-ui-1.811,js
a [Views| query-ui-1.8.11.min.js

query.uncbtrusive-ajax.min.js
query.validate-vsdoc.js
query.validate,js
query.validate.minjs

J
J
J
J
jquery.unobtrusive-ajax.js
J
J
J
J
jquery.validate.unobtrusive.js

B 8 5) 8)) 1)

57 jquery.validate.unobtrusive.min.js
2] Microsofthjax.debug.js

2] MicrosoftAjaxjs

2] MicrosoftMvcAjax.debug.js

357 Microsofthvehjaxjs

2] MicrosoftMvcValidation.debug js
2] MicrosoftMvcValidation.js

%] modernizr-1.7.js

3] modernizr-1.7.min js

[Views
] Global.asax

i packages.config
e Web.config

m

FIGURE 1-13

Understanding the MVC Application Structure | 21

These default files, added by Visual Studio, provide you with a basic structure for a working appli-
cation, complete with homepage, about page, account login/logout/registration pages, and an
unhandled error page (all wired-up and working out-of-the-box).

ASP.NET MVC and Conventions

ASP.NET MVC applications, by default, rely heavily on conventions. This allows developers to
avoid having to configure and specify things that can be inferred based on convention.

For instance, MVC uses a convention-based directory-naming structure when resolving View tem-
plates, and this convention allows you to omit the location path when referencing Views from within
a Controller class. By default, ASP.NET MVC looks for the View template file within the \vViews\
[ControllerName]\ directory underneath the application.

MVC is designed around some sensible convention-based defaults that can be overridden as needed.
This concept is commonly referred to as “convention over configuration.”

Convention over Configuration

The convention over configuration concept was made popular by Ruby on Rails a few years back,
and essentially means:

We know, by now, how to build a web application. Let’s roll that experience into
the framework so we don’t have to configure absolutely everything, again.

You can see this concept at work in ASP.NET MVC by taking a look at the three core directories
that make the application work:

> Controllers
> Models
> Views

You don’t have to set these folder names in the web.config file — they are just expected to be there
by convention. This saves you the work of having to edit an XML file like your web.config, for
example, in order to explicitly tell the MVC engine, “You can find my views in the Views direc-
tory” — it already knows. It’s a convention.

This isn’t meant to be magical. Well, actually, it is; it’s just not meant to be black magic — the kind
of magic where you may not get the outcome you expected (and moreover can actually harm you).

ASP.NET MVC’s conventions are pretty straightforward. This is what is expected of your applica-
tion’s structure:

» Each Controller’s class name ends with Controller — productController,
HomeController, and so on, and lives in the controllers directory.

> There is a single views directory for all the Views of your application.

> Views that Controllers use live in a subdirectory of the views main directory and are named
according to the controller name (minus the Controller suffix). For example, the views for the
ProductController discussed earlier would live in /views/Product.

22 | CHAPTER1 GETTING STARTED

All reusable UI elements live in a similar structure, but in a Shared directory in the Views folder.
You’ll hear more about Views in Chapter 3.

Conventions Simplify Communication

You write code to communicate. You’re speaking to two very different audiences:

> You need to clearly and unambiguously communicate instructions to the computer for
execution

> You want developers to be able to navigate and read your code for later maintenance, debug-
ging, and enhancement

We’ve already discussed how convention over configuration helps you to efficiently communicate
your intent to MVC. Convention also helps you to clearly communicate with other developers
(including your future self). Rather than having to describe every facet of how your applications

are structured over and over, following common conventions allows MVC developers worldwide to
share a common baseline for all our applications. One of the advantages of software design patterns
in general is the way they establish a standard language. Because ASP.NET MVC applies the MVC
pattern along with some opinionated conventions, MVC developers can very easily understand

code — even in large applications — that they didn’t write (or don’t remember writing).

SUMMARY

We’ve covered a lot of ground in this chapter. We began with an introduction to ASP.NET MVC,
showing how the ASP.NET web framework and the MVC software pattern combine to provide a
powerful system for building web applications. You looked at how ASP.NET MVC has matured
through two previous releases, looking in more depth at the features and focus of ASP.NET MVC 3.
With the background established, you set up your development environment and began creating a
sample MVC 3 application. You finished up by looking at the structure and components of an
MVC 3 application. You’ll be looking at all of those components in more detail in the following
chapters, starting with Controllers in Chapter 2.

Controllers

— By Jon Galloway

WHAT'’S IN THIS CHAPTER?

> The controller’s role

> A brief history of controllers

> Sample application: The MVC Music Store
>

Controller basics

This chapter explains how controllers respond to user HTTP requests and return information
to the browser. It focuses on the function of controllers and controller actions. We haven’t
covered views and models yet, so our controller action samples will be a little high level. This
chapter lays the groundwork for the following several chapters.

Chapter 1 discussed the Model-View-Controller pattern in general and then followed up
with how ASP.NET MVC compared with ASP.NET Web Forms. Now it’s time to get into a
bit more detail about one of the core elements of the three-sided pattern that is MVC — the
controller.

THE CONTROLLER’S ROLE

It’s probably best to start out with a definition and then dive into detail from there. Keep this
definition in the back of your mind as you read this chapter, because it helps to ground the dis-
cussion ahead with what a controller is all about and what it’s supposed to do.

You might want to remember a quick definition: Controllers within the MVC pattern are
responsible for responding to user input, often making changes to the model in response to

24 | CHAPTER2 CONTROLLERS

user input. In this way, controllers in the MVC pattern are concerned with the flow of the applica-
tion, working with data coming in, and providing data going out to the relevant view.

Web servers way back in the day served up HTML stored in static files on disk. As dynamic web
pages gained prominence, web servers served HTML generated on-the-fly from dynamic scripts that
were also located on disk. With MVC, it’s a little different. The URL tells the routing mechanism
(which youw’ll get into in Chapter 4) which controller to instantiate and which action method to call,
and supplies the required arguments to that method. The controller’s method then decides which
view to use, and that view then does the rendering.

Rather than having a direct relationship between the URL and a file living on the web server’s hard
drive, there is a relationship between the URL and a method on a controller class. ASP.NET MVC
implements the front controller variant of the MVC pattern, and the controller sits in front of every-
thing except the routing subsystem, as you’ll see in Chapter 9.

A good way to think about the way that MVC works in a Web scenario is that MVC serves up the
results of method calls, not dynamically generated (aka scripted) pages.

A BRIEF HISTORY OF CONTROLLERS

It’s important to remember that the MVC pattern has been around for a long time — decades before
this era of modern web applications. When MVC first developed, graphical user interfaces (GUIs)
were just a few years old, and the interaction patterns were still evolving. Back then, when the user
pressed a key or clicked the screen, a process would “listen,” and that process was the controller.
The controller was responsible for receiving that input, interpreting it and updating whatever data
class was required (the model), and then notifying the user of changes or program updates (the view,
which is covered in more detail in Chapter 3).

In the late 1970s and early 1980s, researchers at Xerox PARC (which, coincidentally, was where the
MVC pattern was incubated) began working with the notion of the GUI, wherein users “worked”
within a virtual “desktop” environment on which they could click and drag items around. From this
came the idea of event-driven programming — executing program actions based on events fired by a
user, such as the click of a mouse or the pressing of a key on the keypad.

Over time, as GUIs became the norm, it became clear that the MVC pattern wasn’t entirely appro-
priate for these new systems. In such a system, the GUI components themselves handle user input.
If a button was clicked, it was the button that responded to the mouse click, not a controller. The
button would, in turn, notify any observers or listeners that it had been clicked. Patterns such as
the Model-View-Presenter (MVP) proved to be more relevant to these modern systems than the
MVC pattern.

ASP.NET Web Forms is an event-based system, which is unique with respect to web application
platforms. It has a rich control-based, event-driven programming model that developers code
against, providing a nice componentized GUI for the Web. When you click a button, a Button
control responds and raises an event on the server indicating that it’s been clicked. The beauty
of this approach is that it allows the developer to work at a higher level of abstraction when
writing code.

A Sample Application: The MVC Music Store | 25

Digging under the hood a bit, however, reveals that a lot of work is going on to simulate that com-
ponentized event-driven experience. At its core, when you click a button, your browser submits a
request to the server containing the state of the controls on the page encapsulated in an encoded hid-
den input. On the server side, in response to this request, ASP.NET has to rebuild the entire control
hierarchy and then interpret that request, using the contents of that request to restore the current
state of the application for the current user. All this happens because the Web, by its nature, is state-
less. With a rich-client Windows GUI app, there’s no need to rebuild the entire screen and control
hierarchy every time the user clicks a UI widget, because the app doesn’t go away.

With the Web, the state of the app for the user essentially vanishes and then is restored with every
click. Well, that’s an oversimplification, but the user interface, in the form of HTML, is sent to the
browser from the server. This raises the question: “Where is the application?” For most web pages,
the application is a dance between client and server, each maintaining a tiny bit of state, perhaps

a cookie on the client or chunk of memory on the server, all carefully orchestrated to cover up the
Tiny Lie. The Lie is that the Internet and HTTP can be programmed against in a stateful manner.

The underpinning of event-driven programming (the concept of state) is lost when programming for
the Web, and many are not willing to embrace the Lie of a virtually stateful platform. Given this,
the industry has seen the resurgence of the MVC pattern, albeit with a few slight modifications.

One example of such a modification is that in traditional MVC, the model can “observe” the view
via an indirect association to the view. This allows the model to change itself based on view events.
With MVC for the Web, by the time the view is sent to the browser, the model is generally no longer
in memory and does not have the ability to observe events on the view. (Note that you’ll see excep-
tions to this change when this book covers applying Ajax to MVC in Chapter 8.)

With MVC for the Web, the controller is once again at the forefront. Applying this pattern requires

that every user input to a web application simply take the form of a request. For example, with ASP.
NET MVC, each request is routed (using routing, discussed in Chapter 4) to a method on a control-
ler (called an action). The controller is entirely responsible for interpreting that request, manipulat-

ing the model if necessary, and then selecting a view to send back to the user via the response.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specific implementation of
controllers. You’ll be continuing from the new project you created in Chapter 1. If you skipped over
that, you can just create a new MVC 3 application using the Internet Application template and the
Razor View Engine, as shown in Figure 1-9 in the previous chapter.

A SAMPLE APPLICATION: THE MVC MUSIC STORE

As mentioned in Chapter 1, we will use the MVC Music Store sample application for a lot of our
samples in this book. You can find out more about the MVC Music Store application at http: //
mvcmusicstore.codeplex.com. The Music Store tutorial is intended for beginners and moves at a
pretty slow pace; because this is a professional series book, we’ll move faster and cover some more
advanced background detail. If you want a slower, simpler introduction to any of these topics, feel
free to refer to the MVC Music Store tutorial. It’s available online in HTML format and as a 150-
page downloadable PDF. I published MVC Music Store under Creative Commons license to allow
for free reuse, and we’ll be referencing it at times.

26 | CHAPTER2 CONTROLLERS

The MVC Music Store application is a simple music store that includes basic shopping, checkout,
and administration, as shown in Figure 2-1.

(P& _‘w\’é hitp://localhost: 26641/ pL-Bex || & ASP.NET MVC Music Store J

@ Home @ Store @ Cart (0) Admin

ASP.NET MVC MUSIC STORE

Rock
Classical
Jazz
Pop

Disco

Latin
Metal
Alternative
Reggae
Blues

Fresh off the grill

Sample Sample Sample Sample Sample

Balls to the Restless and

The Best Of For Those
IMen At Work About To Rock
We Salute You

built with ASE

FIGURE 2-1
The following store features are covered:

> Browse: Browse through music by genre and artist, as shown in Figure 2-2.

G')@ nttp/localhost26641/Store/Browse 0 ~ B & X

{e Browse Albums % L_]

Home @ Store @ Cart(0) | Admin

ASP.NET MVC MUSIC STORE

Rock ! Jazz Albums
Classical
Jazz
Pop
Disco
Latin
Metal !
Alternative
Reggae
Blues

Samnple Sarnple Sample Sample Sample

Worlds Quiet Songs Warner 25 Anos The Best Of Outbreak
Billy Cobham

w

Sample Sample Sample Sample Sample

Quanta Gente Blue Moods Miles Ahead The Essential
s M
[Disc 2]
Samplé Sample
Heart of the Morning Dance
Night -

FIGURE 2-2

A Sample Application: The MVC Music Store | 27

> Add: Add songs to your cart as shown in Figure 2-3.

P

ALY

J| @ nittp://localhost:26641/Store/Details/153 P-B2eCX || & Album - Miles Ahead x

B2

Home Store Cart (0) | Admin
ASP.NET MVC MUSIC STORE

Rock Miles Ahead
Classical

Jazz Sample

Pop 2]

Disco

Latin

Metal Genre: Jazz
Alternative Artist: Miles Davis
Reggae Price: 8.99

Blues

built with ASP.NET MVC 3

FIGURE 2-3
> Shop: Update shopping cart (with Ajax updates) as shown in Figure 2-4.
(< J5)
0 Home = Store Cart(2) Admin

ASP.NET MVC MUSIC STORE

= x|

e
@ nttp://localhost26641/ShappingCart P~RBeX H 2 Shopping Cart X e

Rock Review your cart:

Classical

Jazz Checkout >>

Pop

]%?9221 Miles Ahead 8.99 1 Remove from cart

Alternative The Best Of Men At Work 5.99 1 Remove from cart

Reggae Total 17.98

Blues

built with ASP.NET MVC 3

FIGURE 2-4

> Order: Create an order and check out as shown in Figure 2-5.

> Administer: Edit the song list (restricted to administrators) as shown in Figure 2-6.

28 | CHAPTER2 CONTROLLERS

2| @ nttp://localhost: 26641 /Checkout/ AddressAndPaymen O = B & X

ddress And Payment

g™

T 498

N
it

Home | Store | Cart(2) | Admin
ASP.NET MVC MUSIC STORE : : :
Rock Address And Payment
Classical
Jazz — Shipping Information
Pop First Name
Disco Jon |
L Last Name
Metal [Galloway |
Alternative o
e ress
123 Main Street
i [123 Main Stree \
City
|San Diego |
State
[cA]
Postal Code
50210 |
Country
[usa]
Phone
[(123)456-7390 \
Email Address
[test@test.com |
— Payment
We're running a promotion: all music is free with the promo code: "FREE"
Promo Code
[FREE \
built with ASP.NET MVC 3
FIGURE 2-5
e(”’e http://localhost: 26641 /StoreManager/ P-BeX H & Index X L) ?Jj Gt

Home . Store Cart (2) Admin

ASP.NET MVC MUSIC STORE

Rock
Classical
Jazz

Pop

Disco
Latin
Metal
Alternative
Reggae
Blues

Index

Create New

Rock Men At Work The Best Of Men At Work 8.99 Edit | Details | Delete|
Rock AC/DC For Those About To Rock W... 899 Edit | Details | Delete
Rock AC/DC Let There Be Rock 8.99 Edit | Details | Delete|
Rock Accept Balls to the Wall 8.99 Edit | Details | Dalete
Rock Accept Restiess and Wild B8.99 Edit | Details | Delete
Rock Aerosmith Big Ones 8.99 Edit | Details | Delete|
Rock Alanis Morisselie Jagged Littie Pill 8.99 Edit | Details | Delete
Rock Alice In Chains Facelift 8.99 Edit | Details | Delete|
Rock Audioslave Audioslave 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revi... Chronicle, Vol. 1 8.99 Edit | Details | Delete
Rock Creedence Clearwater Revi... Chronicle, Vol. 2 8.99 Edit | Details | Delete
Rock David Coverdale Into The Light 8.99 Edit | Details | Delete|
Rock Deep Purple Come Taste The Band 8.99 Edit | Details | Delete

FIGURE 2-6

Controller Basics | 29

CONTROLLER BASICS

Getting started with MVC presents something of a chicken and egg problem: there are three parts
(model, view, and controller) to understand, and it’s difficult to really dig into one of those parts
without understanding the others. In order to get started, you’ll first learn about controllers at a
very high level, ignoring models and views for a bit.

After learning the basics of how controllers work, you’ll be ready to learn about views, models, and
other ASP.NET MVC development topics at a deeper level. Then you’ll be ready to circle back to
advanced controllers topics in Chapter 14.

A Simple Example: The Home Controller

Before writing any real code, we’ll start by looking at what’s included by default in a new project.
Projects created using the Internet Application template include two controller classes:

> HomeController: Responsible for the “home page” at the root of the website and an “about page”

> AccountController: Responsible for account-related requests, such as login and account
registration

In the Visual Studio project, expand the /Controllers folder and open HomeController.cs as
shown in Figure 2-7.

ecture Test Analyze Devbxpress Window Help
| Debug -| | Any cPU - || # | people

4] HomeController.cs tion Explarer
% MvcMusicStore.Controllers. HomeController <[®Inden [EE e
1 cusi ng System; |5 Solution ‘MvcMusicStore' (2 projects)

= < < 4 (£} MycMusicStare
2 'using System.Collections.Generic; . [Properties
using System.Ling; > [l References
E 1 App_Data
" &
using System.Web; W
using System.Web.Mvc; [Controllers
] AccountController.cs

5] HomeController.cs
Enamespace MvcMusicStore.Controllers [Models

{ > [Scripts

E public class HomeController : Controller , ﬁ;‘\x:mm
{

W~V B W

=3 Web.config

public ActionResult Index() b [MveMusicStore Tests

{

ViewBag.Message = "Welcome to ASP.NET MVC!";

return View();

}

public ActionResult About()
f

}

return View();

Soluti... [CRELINY B Team...

I ErrorList B9 Output Package Manager Console
Ready : Chid

FIGURE 2-7

30 | CHAPTER2 CONTROLLERS

Notice that this is a pretty simple class that inherits from the Controller base class. The Tndex
method of the HomeController class is responsible for deciding what will happen when you browse
to the homepage of the website. Follow these steps to make a simple edit and run the application:

1.

Replace “Welcome to ASP.NET MVC!” in the Tndex method with the phrase of your choice,
perhaps “I like cake!”:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers
{
Public class HomeController : Controller

{
public ActionResult Index()

{

ViewBag.Message = "I like cake!";

return View() ;

}

public ActionResult About ()
{

return View() ;

}

Run the application by hitting the F5 key (or using the Debug = Start Debugging) menu
item, if you prefer. Visual Studio compiles the application and launches the ASP.NET Web
Development Server. A notification appears in the bottom corner of the screen to indicate
that the ASP.NET Development Server has started up, and shows the port number that it is
running under (see Figure 2-8).

@ ASP.NET Development Server % *
http://localhost: 26641/

FIGURE 2-8

Controller Basics | 31

ASP.NET DEVELOPMENT SERVER

Visual Studio includes the ASP.NET Development Server (sometimes referred to by
its old codename, Cassini), which will run your website on a random free “port”
number. In the Figure 2-8, the site is running at http://localhost:26641/, so it’s
using port 26641. Your port number will be different. When we talk about URLs
like /store/Browse in this tutorial, that will go after the port number. Assuming
a port number of 26641, browsing to /Store/Browse will mean browsing to
http://localhost:26641/Store/Browse.

Note that as of Visual Studio 2010 SP1, it’s pretty easy to use IIS 7.5 Express
instead of the Development Server. Although the Development Server is similar to
IIS, IIS 7.5 Express actually is a version of IIS that has been optimized for develop-
ment purposes. You can read more about using IIS 7.5 Express on Scott Guthrie’s
blog at http://weblogs.asp.net/scottgu/7673719 .aspx.

Next, a browser window opens and displays the message you just typed, as shown in Figure 2-9.

. o)
o) @ v/ ocsbomitis) £ = & x| @romersss

My MVC Application

I like cakel

To learn more about ASP.NET MVC visit http://asp.net/mvc.

FIGURE 2-9

32 | CHAPTER2 CONTROLLERS

Great, you created a new project and put some words on the screen! Now let’s get to work on build-
ing an actual application by creating a new controller.

Writing Your First (Outrageously Simple) Controller
Start by creating a controller to handle URLs related to browsing through the music catalog. This
controller will support three scenarios:
> The index page lists the music genres that your store carries.

> Clicking a genre leads to a browse page that lists all of the music albums in a particular
genre.

> Clicking an album leads to a details page that shows information about a specific music
album.

Creating the New Controller

Start by adding a new StoreController class. Right-click the controllers folder within the
Solution Explorer and select the Add => Controller menu item as shown in Figure 2-10.

Solution Explorer F Il
GlaEe
%; Solution 'MvcMusicStore' (2 projects)
4 2} MvcMusicStore
> [=d| Properties
3] References
|3 App_Data
3 Content

~|Controllers |

Convert to Web Application T O N

@ Check Accessibility...] HomeController.cs
Controller... Add » Models
3 Scripts
New Iem... Ctrl+Shift+A Exclude From Project .
Existing ltem... Shift+Alt+A Cut Ctri+X Global.asax
New Folder Copy Ctrl=C Web.config
Add ASP.NET Folder P, Paste o Tt
Properties
Class... Shift+AltsC | 2 Delete Del e
Rename Controllers
ij‘ Open Folder in Windows Explorer App.config
;3 Properties Alt+Enter

FIGURE 2-10

Name the controller StoreController and leave the checkbox labeled Add Action Methods for
Create, Update, Delete, and Details Scenarios unchecked as shown in Figure 2-11.

Controller Basics | 33

[

Controller Name:

M(mtroller

[l Add action methods for Create, Update, Delete, and Details scenarios

I Add] | Cancel

FIGURE 2-11

Writing Your Action Methods

Your new StoreController already has an Index method. You’ll use this Index method to imple-
ment your listing page that lists all genres in your music store. You’ll also add two additional methods
to implement the two other scenarios you want your StoreController to handle: Browse and Details.

These methods (Index, Browse, and Details) within your controller are called controller actions.
As you’ve already seen with the HomeController.Index () action method, their job is to respond to
URL requests, perform the appropriate actions, and return a response back to the browser or user
that invoked the URL.

To get an idea of how a controller action works, follow these steps:

1. Change the signature of the Index() method to return a string (rather than an
ActionResult) and change the return value to "Hello from Store.Index()" as shown
below.

//
// GET: /Store/
public string Index()

{
return "Hello from Store.Index()";

}
2. Add a Store Browse action that returns “Hello from Store.Browse()” and a Store
Details action that returns “Hello from Store.Details()” as shown in the complete
code for the Storecontroller that follows.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{

34 | CHAPTER2 CONTROLLERS

public class StoreController : Controller
{
//
// GET: /Store/
public string Index()
{
return "Hello from Store.Index()";
}
//
// GET: /Store/Browse
public string Browse()
{
return "Hello from Store.Browse()";
}
//
// GET: /Store/Details
public string Details()
{
return "Hello from Store.Details()";
}
}
}

3. Run the project again and browse the following URLs:
> /Store
> /Store/Browse

> /Store/Details

Accessing these URLs invokes the action methods within your controller and returns string
responses, as shown in Figure 2-12.

Hello from Store Details()

FIGURE 2-12

Controller Basics | 35

A Few Quick Observations
Let’s draw some conclusions from this quick experiment:

1. Browsing to /Store/Details caused the Details method of the storecontroller class
to be executed, without any additional configuration. This is Routing in action. We’ll talk a
little more about Routing later in this chapter, and will go into it in detail in Chapter 9.

2. Though we used Visual Studio tooling to create the controller class, it’s a very simple class.
The only way you’d know from looking that this was a controller class was that it inberits
f?onlSystem.Web.Mvc.Controller.

3. We’ve put text in a browser with just a controller — we didn’t use a model or a view.
Although models and views are incredibly useful within ASP.NET MVC, controllers are
really at the heart. Every request goes through a controller, whereas some will not need to
make use of models and views.

Parameters in Controller Actions

The previous examples have been writing out constant strings. The next step is to make them
dynamic actions by reacting to parameters that are passed in via the URL. You can do so by follow-
ing these steps:

1. Change the Browse action method to retrieve a query string value from the URL. You can
do this by adding a “genre” parameter to your action method. When you do this, ASP.NET
MVC automatically passes any query string or form post parameters named “genre” to your
action method when it is invoked.

//
// GET: /Store/Browse?genre=?Disco

public string Browse(string genre)
{
string message =
HttpUtility.HtmlEncode ("Store.Browse, Genre = " + genre);

return message;

HTML ENCODING USER INPUT

We’re using the HttpUtility.HtmlEncode utility method to sanitize the user input.
This prevents users from injecting JavaScript code or HTML markup into our view
with a link like /Store/Browse?Genre=<script>window.location="http://

hacker.example.com'</script>.

36 | CHAPTER2 CONTROLLERS

2. Browse to /Store/Browse?Genre=Disco, as shown in Figure 2-13.

(=] B e
a |f§|htt\:: /localhost:26641 /Store/Browse?Genre=Disco | P~ax H é localhost | | il 2

Store Browse, Genre = Disco

FIGURE 2-13

This shows that your controller actions can read a query string value by accepting it as a parameter
on the action method.

3. Change the petails action to read and display an input parameter named ID. Unlike the
previous method, you won’t be embedding the ID value as a query string parameter. Instead
youw’ll embed it directly within the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets you easily do this without having to configure anything extra. ASP
.NET MVC’s default routing convention is to treat the segment of a URL after the action
method name as a parameter named 1D. If your action method has a parameter named 1D,
then ASP.NET MVC will automatically pass the URL segment to you as a parameter.

//

// GET: /Store/Details/5

public string Details(int id)
{

string message = "Store.Details, ID = " + id;

return message;

}
4. Run the application and browse to /Store/Details/5, as shown in Figure 2-14.

As the preceding examples indicate, you can look at controller actions as if the web browser was
directly calling methods on your controller class. The class, method, and parameters are all speci-
fied as path segments or query strings in the URL, and the result is a string that’s returned to the
browser. That’s a huge oversimplification, ignoring things like:

> The way routing maps URL to actions

> The fact that you’ll almost always use views as templates to generate the strings (usually
HTML) to be returned to the browser

> The fact that actions rarely return raw strings; they usually return the appropriate
ActionResult, which handles things like HTTP status codes, calling the View templating
system, and so on

Summary | 37

Store Details, ID =5

FIGURE 2-14

Controllers offer a lot of opportunities for customization and extensibility, but you’ll probably find
that you rarely — if ever — need to take advantage of that. In general use, controllers are called
via a URL, they execute your custom code, and they return a view. With that in mind, we’ll defer
our look at the gory details behind how controllers are defined, invoked, and extended. You’ll find
those, with other advanced topics, in Chapter 14. You’ve learned enough about the basics of how
controllers work to throw views into the mix, and we’ll cover those in Chapter 3.

SUMMARY

Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the
user, the model objects, and the views. They are responsible for responding to user input, manipu-
lating the appropriate model objects, and then selecting the appropriate view to display back to the
user in response to the initial input.

In this chapter, you’ve learned the fundamentals of how controllers work in isolation from views
and models. With this basic understanding of how your application can execute code in response to
URL requests, you’re ready to tackle the user interface. We’ll look at that next, in Chapter 3: Views.

Views

— By Phil Haack

WHAT'’S IN THIS CHAPTER?

> The purpose of Views

How to specify a View

All about strongly typed Views
Understanding View Models
How to add a View

Using Razor

How to specify a Partial View

Y Y Y VY Y VY

Understanding the View Engine

Developers spend a lot of time focusing on crafting well-factored controllers and model
objects, and for good reason because clean well-written code in these areas form the basis of a
maintainable web application.

But when a user visits your web application in a browser, none of that work is visible. A user’s
first impression and entire interaction with your application starts with the view.

The view is effectively your application’s ambassador to the user — representing your applica-
tion to the user and providing the basis on which the application is first judged.

Obviously, if the rest of your application is buggy, no amount of spit and polish on the view
will make up for the application’s shortcomings. Likewise, build an ugly and hard-to-use
view, and many users will not give your application a chance to prove just how feature-rich
and bug-free it may well be.

40 | CHAPTER3 VIEWS

In this chapter, we won’t show you how to make a pretty view, because our own aesthetic skills
are lacking. Instead, we will demonstrate how Views work in ASP.NET MVC and what their responsi-
bilities are, and provide you with the tools to build Views that your application will be proud to wear.

WHAT A VIEW DOES

The view is responsible for providing the user interface (UI) to the user. It is given a reference to
the model, and it transforms that model into a format ready to be presented to the user. In ASP.
NET MVC, this consists of examining the ViewDataDictionary handed off to it by the Controller
(accessed via the viewData property) and transforming the contents of that to HTML.

Not all views render HTML. HTML is certainly the most common case when
building web applications. HTML is the language of the web. But as the section
on action results later in this chapter points out, views can render other content
types as well.

Starting in ASP.NET MVC 3, view data can also be accessed via the viewBag property. ViewBag

is a dynamic property that provides a convenient syntax for accessing the same data accessible via
the viewData property. It’s effectively a wrapper over viewData that takes advantage of the new
dynamic keyword in C# 4. This allows using property accessor-like syntax to retrieve values from a
dictionary.

Thus viewBag.Message is equivalent to ViewData ["Message"].

For the most part, there isn’t a real technical advantage to choosing one syntax over the other.
ViewBag is just syntactic sugar that some people prefer over the dictionary syntax.

y While there isn’t a real technical advantage to choosing one format over
there other, there are some critical differences to be aware of between the two
syntaxes.

Omne obvious one is that ViewBag only works when the key being accessed is a
valid C# identifier.

For example, if we place a value in ViewData["Key With Spaces"], we can’t
access that value using viewBag.

Another key issue to be aware of is that dynamic values cannot be passed in as
parameters to extension methods. The C# compiler must know the real type of
every parameter at compile-time in order for it to choose the correct extension
method.

If any parameter is dynamic then compilation will fail. For example, this code
will always fail: @Html . TextBox ("name", ViewBag.Name). The ways to work
around this are to either use Viewbata["Name"] or to cast the value to a specific
type:(string) ViewBag.Name.

What a View Does | 41

In the case of a strongly typed view, which is covered in more depth later, the viewbataDictionary
has a strongly typed model object that the view renders. This model might represent the actual
domain object, such as a Product instance, or it might be a presentation model object specific to the
view, such as a ProductEditviewModel instance. For convenience, this model object can be refer-
enced by the view’s Model property.

Let’s take a quick look at an example of a view. The following code sample shows a view named
Sample.cshitml located at the path /views/Home/Sample.cshtml:

N @e{
) Layout = null;

fuallablefor -, pocrypE html>

Wrox.com <html>
<head><title>Sample View</title></head>
<body>
<hl>@ViewBag.Message</hl>
<p>

This is a sample view. It's not much to look at,
but it gets the job done.

</p>

</body>

</html>

Code snippet 3-1.txt

This is an extremely simple example of a view that displays a message (via the @viewBag.Message
expression) set by the controller. When this view is rendered, that expression is replaced with the
value we set in the controller and output as HTML markup.

One important thing to note, unlike ASP.NET Web Forms and PHP, is that views are not themselves
directly accessible. You can’t point your browser to a view and have it render.

Instead, a view is always rendered by a controller that provides the data that the view will render.
Let’s look at one possible controller that might have initiated this view:

public class HomeController : Controller {
public ActionResult Sample() {
ViewBag.Message = "Hello World. Welcome to ASP.NET MVC!";
return View("Sample") ;

Code snippet 3-2.txt

Notice that the controller sets the viewBag.Message property to a string and then returns a view
named Sample. That will correspond to Sample.cshtml we saw in Code Snippet 3-1. That view will
display the value of viewBag.Message that was passed to it. This is just one way to pass data to a
view. In the section “Strongly Typed Views,” we’ll look at another approach to passing data to a view.

If you’ve used ASP.NET MVC in the past, you’ll notice that this view looks dramatically different
than the views you’re used to. This is a result of the new Razor syntax included in ASP.NET MVC 3.

42 | CHAPTER3 VIEWS

SPECIFYING A VIEW

. . Solution Explorer [X
In the previous section, you looked at examples of what goes RS
inside a view. In this section, you look at how to specify the 3 Solution MvcApplicationt2 (L project)
view that should render the output for a specific action. It turns 4 (£} MvcApplication12
.. . b Ed P ;
out that this is very easy when you follow the conventions = Hiopete
. RPN i [References
implicit in the ASP.NET MVC Framework. 3 App_Data
I Conteft
When you create a new project template, you’ll notice that the » 3 Controllers|
. » EF Models
project contains a Views directory structured in a very specific g~
manner (see Figure 3-1). 4 [Views
> [l Account
By convention, the Views directory contains a folder per 4 [Home
. . s
Controller, with the same name as the Controller, but without % ﬁi;“z:t‘:?'
the Controller suffix. Thus for the HomeController, there’s a 4 [Shared
folder in the views directory named Home. 8 _Layout.cshtmi
74 _LogOnPartial.cshtml
Cq . . . i
Within each Controller folder, there’s a view file for each action - ﬂ;’;t';::x'ml
. . .] _ g
method, named the same as the action method. This provides 3 Web.config
the basis for how Views are associated to an action method. & esatmmi
|5 Web.config

For example, an action method can return a viewResult via

the view method like so: FIGURE 3-1

public class HomeController : Controller {

|
) public ActionResult Index() {
Available for V:LewBag.I.JIessage = "Welcome to ASP.NET MVC!";
download on return View();
Wrox.com }
}

Code snippet 3-3.txt

This method ought to look familiar; it’s the Tndex action method of HomeController in the default
project template.

Notice that unlike the sample in Code Snippet 3-3, this controller action doesn’t specify the view
name. When the view name isn’t specified, the viewResult returned by the action method applies a
convention to locate the view. It first looks for a view with the same name as the action within the
/Views/ControllerName directory (the controller name without the “Controller” suffix in this
case). The view selected in this case would be /views/Home/Index.cshtml.

As with most things in ASP.NET MVC, this convention can be overridden. Suppose that you want
the Tndex action to render a different view. You could supply a different view name like so:

public ActionResult Index() {
ViewBag.Message = "Welcome to ASP.NET MVC!";
return View("NotIndex") ;

Code snippet 3-4.txt

Strongly Typed Views | 43

In this case, it will still look in the /Views/Home directory, but choose Not Index. cshtml as the
view. In some situations, you might even want to specify a view in a completely different directory
structure. You can use the tilde syntax to provide the full path to the view like so:

public ActionResult Index() {
ViewBag.Message = "Welcome to ASP.NET MVC!";
return View("~/Views/Example/Index.cshtml") ;

Code snippet 3-5.txt

When using the tilde syntax, you must supply the file extension of the view because this bypasses the
view engine’s internal lookup mechanism for finding Views.

STRONGLY TYPED VIEWS

Suppose you need to write a view that displays a list of Album instances. One possible approach is

to simply add the albums to the view data dictionary (via the ViewBag property) and iterate over
them from within the view.

For example, the code in your Controller action might look like this:

public ActionResult List() {
var albums = new List<Album>();
i for(int 1 = 0; 1 < 10; 1i++) {
Available for

download on albums.Add (new Album {Title = "Product " + i});
Wrox.com }

ViewBag.Albums = albums;
return View() ;

Code snippet 3-6.txt

In your view, you can then iterate and display the products like so:

@foreach (Album a in (ViewBag.Albums as IEnumerable<Album>)) {
@p.Title</1li>
}

Code snippet 3-7.txt

Notice that we needed to cast ViewBag.Albums (which is dynamic) to an TEnumerable<album>
before enumerating it. We could have also used the dynamic keyword here to clean the view code
up, but we would have lost the benefit of IntelliSense.

@foreach (dynamic p in ViewBag.Albums) {
@p.Title</1li>

}

44 | CHAPTER3 VIEWS

It would be nice to have the clean syntax afforded by the dynamic example without losing the benefits
of strong typing and compile-time checking of things such as correctly typed property and method
names. This is where strongly typed views come in.

In the controller method, you can specify the model via an overload of the view method whereby
you pass in the model instance:

public ActionResult List() {
var albums = new List<Album>();
for (int 1 = 0; 1 < 10; 1i++) {
albums.Add (new Album {Title = "Album " + i});
}

return View (albums) ;

Code snippet 3-8.txt

Behind the scenes, this sets the value of the viewData.Model property to the value passed into
the view method. The next step is to indicate to the view what type of model is using the emodel
declaration. Note that you may need to supply the fully qualified type name of the model type.

@model IEnumerable<MvcApplicationl.Models.Album>

@foreach (Album p in Model) {
@p.Title</1li>
}

Code snippet 3-9.txt

To avoid needing to specify a fully qualified type name for the model, you can make use of the
@using declaration.

@Qusing MvcApplicationl.Models

@model IEnumerable<Album>

@foreach (Album p in Model) {
@p.Title</1li>

}

Code snippet 3-10.txt

An even better approach for namespaces that you end up using often within views is to declare the
namespace in the web.config file within the Views directory.

@Qusing MvcApplicationl.Models
<gsystem.web.webPages.razor>

<pages pageBaseType="System.Web.Mvc.WebViewPage">
<namespaces>
<add namespace="System.Web.Mvc" />

View Models | 45

<add namespace="System.Web.Mvc.Ajax" />
<add namespace="System.Web.Mvc.Html" />
<add namespace="System.Web.Routing" />

<add namespace="MvcApplicationl.Models" />
</namespaces>
</pages>
</system.web.webPages.razor>

Code snippet 3-11.txt

To see the previous two examples in action use NuGet to install the Wrox.ProMvc3.Views.AlbumList
package into a default ASP.NET MVC 3 project like so:

v'\? Install-Package Wrox.ProMvc3.Views.AlbumsList

This places the two view examples in the \Views\Albums folder and the controller code within the
\Samples\albumList folder. Hit Ctrl+F5 to run the project and visit /albums/1istweaklytyped
and /albums/liststronglytyped to see the result of the code.

VIEW MODELS

Often a view needs to display a variety of data that doesn’t map directly to a domain model. For
example, you might have a view meant to display details about an individual product. But that same
view also displays other information that’s ancillary to the product such as the name of the currently
logged-in user, whether that user’s allowed to edit the product or not, and so on.

One easy approach to displaying extra data that isn’t a part of your view’s main model is to simply
stick that data in the viewBag. It certainly gets the job done and provides a flexible approach to
displaying data within a view.

But it’s not for everyone. You may want to tightly control the data that flows into your view and
have it all be strongly typed so your view authors can take advantage of IntelliSense.

One approach you might take is to write a custom view model class. You can think of a view model

as a model that exists just to supply information for a view. Note that the way I use the term “view
model” here is different from the concept of view model within the Model View ViewModel (MVVM)
pattern. That’s why I tend to use the term “view specific model’ when I discuss view models.

For example, if you had a shopping cart summary page that needed to display a list of products, the total
cost for the cart, and a message to the user, you could create the ShoppingCartSummaryViewModel class,
shown as follows:

\ public class ShoppingCartViewModel {
) public IEnumerable<Product> Products { get; set; }
Available for public decimal CartTotal { get; set; }
download on public string Message { get; set; }
Wrox.com)

Code snippet 3-12.txt

46 | CHAPTER3 VIEWS

Now you can strongly type a view to this model, using the following @model directive:

@model ShoppingCartSummaryViewModel

Code snippet 3-13.txt

This gives you the benefits of a strongly typed view (including type checking, IntelliSense, and free-
dom from having to cast untyped vViewbDatabDictionary objects) without requiring any changes to
the Model classes.

To see an example of this shopping cart view model, run the following command in NuGet:

Il‘; Install-Package Wrox.ProMvc3.Views.ViewModel

ADDING A VIEW

In the section “Specifying a View,” you learned how a controller specifies a view. But how does that
view get created in the first place? You could certainly create a file by hand and add it to your Views
directory, but the ASP.NET MVC tooling for Visual Studio makes it very easy to add a view using
the Add View dialog.

Understanding the Add View Dialog Options

For this example, you’ll add a new action method named Edit and then create a view for that action
using the Add View dialog. To launch this dialog, right-click within an action method and select
Add View (see Figure 3-2).

= public ActionResult About() {
return View();

}

= public ActionResult Edit(int id) {
return View();
} [Build
]- & Run Test(s)

} Repeat Test Run

Go To Test/Code
E] Add View...

|Z] Go To View

Refactor 3
Organize Usings 3

[vj Create Unit Tests...

FIGURE 3-2

Adding a View | 47

This brings up the Add View dialog shown in Figure 3-3. The following list describes each menu
item in detail:

[Add View e |

View name:

View engine:

[Razor (cSHTML) =

[] Create a strongly-typed view

Model class:

Scaffold template:
Empty

[7] Createasa partial view

[V] Use a layout or master page:

]

(Leave empty if it is set in a Razor _viewstart file)

MainContent

Add | | Caneel

FIGURE 3-3

When launching this dialog from the context of an action method, the view name is prepopulated
using the name of the action method. Naturally, the view name is required.

> View name: When launching this dialog from the context of an action method, the view
name is prepopulated using the name of the action method. Naturally, the view name is
required.

> View Engine: The second option in the dialog is the view engine. Starting in ASP.NET MVC 3,
the Add View dialog supports multiple view engine options. We’ll cover more about view
engines later in this chapter. By default, there are two options in the dialog, Razor and ASPX.
This drop down is extensible so that third party view engines can be listed in the drop down.

> Create a strongly-typed view: Selecting the checkbox labeled Create a Strongly-Typed View
enables typing in or selecting a model class. The list of types in the drop-down is populated using
reflection so make sure to compile the project at least once before specifying a model type.

> Scaffold template: Once you select a type, you can also choose a scaffold template. These are T4
templates that will generate a view based on the model type selected and are listed in Table 3-1.

48

CHAPTER 3 VIEWS

TABLE 3-1: View Scaffold Types

SCAFFOLD DESCRIPTION

Empty Creates an empty view. Only the model type is specified using the @model syntax.

Create Creates a view with a form for creating new instances of the model. Generates a
label and editor for each property of the model type.

Delete Creates a view with a form for deleting existing instances of the model. Displays a
label and the current value for each property of the model.

Details Creates a view that displays a label and the value for each property of the model

type.

Creates a view with a form for editing existing instances of the model. Generates a
label and editor for each property of the model type.

Creates a view with a table of model instances. Generates a column for each
property of the model type. Make sure to pass an IEnumerable<YourModelType>
to this view from your action method. The view also contains links to actions for
performing the create/edit/delete operations.

Reference Script Libraries: This option is used to indicate whether the view you are creating
should include references to a set of JavaScript files if it makes sense for the view. By default,
the _Layout.cshtml file references the main jQuery library, but doesn’t reference the jQuery
Validation library nor the Unobtrusive jQuery Validation library.

When creating a view that will contain a data entry form, such as an Edit view or a Create
view, checking this option ensures that the generated view does reference these libraries.
These libraries are necessary for implementing client-side validation. In all other cases, this
checkbox is completely ignored.

Note that for custom view scaffold templates and other view engines, the behav-
ior of this checkbox may vary as it’s entirely controlled by the particular view
scaffold T4 template.

Create as a Partial View: Selecting this option indicates that the view you will create is not a

full view, thus the Layout option is disabled. For the Razor view engine, the resulting partial
view looks much like a regular view, except there won’t be the <html> tag nor <head> tag at
the top of the view.

Use a layout or Master Page: This option determines whether or not the view you are creat-
ing will reference a layout (or master page) or will be a fully self-contained view. For Razor
view engines, specifying a Layout is not necessary if you choose to use the default layout
because the layout is already specified in the _viewStart.cshtml file. However, this option
can be used to override the default Layout file.

Adding a View | 49

Customizing the T4 View Templates

As mentioned earlier, when creating a strongly-typed view, you can select a view scaffold to quickly
generate a particular type of view for the model.

The list of scaffolds shown in Table 3-1 is populated by the set of T4 templates located in the fol-
lowing directory depending on your Visual Studio install directory and the language of the scaffold
you care about:

[Visual Studio Install Directory]\Common7\IDE\ItemTemplates\ [CSharp |
VisualBasic] \Web\MVC 3\CodeTemplates\AddView\CSHTML\

On my machine, this is located at:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates\
CSharp\Web\MVC 3\CodeTemplates\AddView\CSHTML

This directory contains a . tt file for each view scaffold as shown in Figure 3-4.

[v o[e |
@'\J" <« AddView » CSHTML - [42] 50 2|
Organize = Include in library = Share with » Burn MNew folder 3= = [Tl lﬂ'
-
. 3082 Z MName Date modified Type
. MVC2 - s
Shi |} Creatett 1/4/2011 3:29 PM Text Template
|5} Deletett 1/4/2011 3:29 PM Text Template
. CodeTemplat N i T
e |=h Details.tt 1/4/2011 3:29 PM Text Template
| AddControl | " N——
: |5} Edit.tt 1/4/2011 3:29 PM Text Template
1. AddView _,| ~
|5 Empty.tt /4/2011 3:29 PM Text Template
, AspxCSha e :
|54 List.tt 1/4/2011 3:29 PM Text Template
CSHTML
1, MvcArealtem = ¢ | Tl] b
J 6 items
A
FIGURE 3-4

You can modify these T4 files to your heart’s content. You can also create new ones and they’ll show
up in the view scaffold drop-down list.

In general though, you might not want to change these files because they affect every project on
your machine. Instead you have the option to customize these files per project by copying them
into your project.

The easiest way to do this is to take the codeTemplates folder and copy it directly into the root of
your ASP.NET MVC 3 project. You’ll want to delete any templates you don’t plan to override.

Visual Studio will complain with the following message:
Compiling transformation: The type or namespace name

'MvcTextTemplateHost' could not be found (are you missing a using

directive or an assembly reference?)

50 | CHAPTER3 VIEWS

The reason for this is that when adding a T4 file to a
project, Visual Studio sets the value of the Custom SeltiolEEpiant

Tool property for each template to the value SEI[@] 2=
. . F d l 4 | CodeTemplates -
TextTemplatingFileGenerator. FFor a standalone 4 B Addview
T4 file, this is what you want. But in the case of your 4 [CSHTML (3
. . . . A |
view scaffolds, this value is not correct. To fix this Pl gi:it:t -
. b5 d
issue, select all of the T4 files and clear the Custom b 3 Edittt
Tool property in the Properties window as shown in = Emptt:’-tt
. » |51 Food
Figure 3-5. b j List.tt
4 [Crntent i
The Add View dialog will now give preference to the Properties —
view scaffold T4 templates in your project over the -
default ones of the same name. You can also give some F =
templates a new name and you’ll see the Add View a4 &
dialog will show your new templates as options in the ioloin ., BN e ‘
i Copy to Output Directory Do not copy |
Scaffold Template drop-down list. =
Custom Tool Namespace ‘
> g
RAZOR VIEW ENGINE -
Eustom Tooi
Specifies the tool that transforms a file at design time and places
Th€ preVious two sections looked at hOW to specify a the output of that transformation into another file. For example, a...
view from within a controller as well as how to add
FIGURE 3-5

a view. However they didn’t cover the syntax that goes

inside of a view. ASP.NET MVC 3 includes two different view engines, the new Razor View Engine
and the older Web Forms View Engine. This section covers the Razor View Engine which includes
the Razor syntax, layouts, partial views, and so on.

What is Razor?

The Razor View Engine is new to ASP.NET MVC 3 and is the default view engine moving forward.
This chapter focuses on Razor and does not cover the Web Forms View Engine.

Razor is the response to one of the most requested suggestions received by the ASP.NET MVC feature
team — to provide a clean, lightweight simple view engine that didn’t contain the “syntactic cruft”
contained in the existing Web Forms View Engine. Many developers felt that all that syntactic noise
required to write a view created friction when trying to read that view.

This request was finally answered in version 3 of ASP.NET MVC with the introduction of the new
Razor View Engine.

Razor provides a streamlined syntax for expressing views that minimizes the amount of syntax and
extra characters. It effectively gets out of your way and puts as little syntax as possible between you
and your view markup. Many developers who have written Razor views have commented on feeling
the view code just flowing from their fingertips, akin to a mind-meld with their keyboard. This feel-
ing is enhanced with the first-rate IntelliSense support for Razor in Visual Studio 2010.

Razor View Engine | 51

PRODUCT TEAM ASIDE

The precursor that led to Razor was first started off as a prototype (by
Dmitry Robsman) that attempted to preserve some of the goodness of the ASP
.NET MVC approach, while at the same time allowing for a simpler (one page at a
time) development model.

His prototype was named Plan9, named after the 1959 science fiction/horror film
Plan 9 from Outer Space, considered to be one of the worst movies ever made.

Plan 9 later became ASP.NET Web Pages (the default runtime framework for Web
Matrix), which provides a very simple inline style of web development similar in
spirit to PHP or classic ASP, but using Razor syntax. Many members of the ASP.
NET team still use the term “Plan 9” internally when referring to this technology.

ASP.NET MVC 3 also adopted the Razor syntax, which provides a nice “gradua-
tion” story for developers who start with ASP.NET Web Pages but decide to move
to ASP.NET MVC.

Razor accomplishes this by understanding the structure of markup so that it can make the transi-
tions between code and markup as smooth as possible. To understand what is meant by this, some
examples will help. The following example demonstrates a simple Razor view that contains a bit of
view logic:

[CR

// this is a block of code. For demonstration purposes, we'll
// we'll create a "model" inline.

var items = new string[] {"one", "two", "three"};
}
<html>
<head><title>Sample View</title></head>
<body>
<hl>Listing @items.Length items.</hl>

@foreach(var item in items) {
The item name is @item.
}

</body>
</html>

The previous code sample uses C# syntax which means the file has the . cshtml file
extension. Similarly, Razor views which use the Visual Basic syntax will have the .vbhtml
file extension. These file extensions are important, as they signal the code language syntax to
the Razor parser.

52

CHAPTER 3 VIEWS

Code Expressions

The key transition character in Razor is the “at sign” (@). This single character is used to transition
from markup to code and sometimes also to transition back. There are two basic types of transi-
tions: code expressions and code blocks. Expressions are evaluated and written to the response.

For example, in the following snippet:

<hl>Listing @stuff.Length items.</hl>

notice that the expression @stuff.length is evaluated as an implicit code expression and the result,
3, is displayed in the output. One thing to notice though is that we didn’t need to demarcate the
end of the code expression. In contrast, with a Web Forms View, which supports only explicit code
expressions, this would look like:

<hl>Listing <%: stuff.Length %> items.</hl>

Razor is smart enough to know that the space character after the expression is not a valid identifier
so it transitions smoothly back into markup.

Notice that in the unordered list, the character after the eitem code expression is a valid code
character. How does Razor know that the dot after the expression isn’t meant to start referencing a
property or method of the current expression? Well, Razor peeks at the next character and sees an
angle bracket, which isn’t a valid identifier and transitions back into markup mode. Thus the first
list item will render out:

The item name is one.
This ability for Razor to automatically transition back from code to markup is one of its big appeals
and is the secret sauce in keeping the syntax compact and clean. But it may make some of you worry

that there are potential ambiguities that can occur. For example, what if I had the following Razor
snippet?

[CR

string rootNamespace = "MyApp";
}
@rootNamespace.Models

In this particular case, what I hoped to be output was:

MyApp.Models

Instead what happens is we get an error that there is no Models property of string. In this admit-
tedly edge case, Razor couldn’t understand our intent and thought that @rootNamespace.Models
was our code expression. Fortunately, Razor also supports explicit code expressions by wrapping
the expression in parentheses:

@ (rootNamespace) .Models
This tells Razor that .Models is literal text and not part of the code expression.

While we’re on the topic of code expressions, we should also look at the case where you intend to
show an email address. For example, my email address is:

philha@microsoft.com

Razor View Engine | 53

At first glance, this seems like it would cause an error because @microsoft.com looks like a
valid code expression where we’re trying to print out the com property of the microsoft variable.
Fortunately, Razor is smart enough to recognize the general pattern of an email address and will
leave this expression alone.

@ Razor uses a very simple algorithm to determine whether something looks like
an email address or not. It’s not meant to be perfect, but handles most cases.
Some valid emails may appear not to be emails in which case you can always
escape the @ sign with a double ee sign.

But of course, what if you really did mean for this to be an expression? For example, going back to
an earlier example in this section, what if you had the following list items:

Ttem_@item.Length</1li>

In this particular case, that expression seems to match an email address so Razor will print it out
verbatim. But it just so happened that we expected the output to be something like:

Item_3</1i>

Once again, parentheses to the rescue! Any time there’s an ambiguity in Razor, you can use paren-
theses to be explicit about what you want. You are in control.

Item_@ (item.Length)</1i>

There’s one other ambiguity we haven’t yet discussed. Suppose your view needs to display some
Twitter handles, which conventionally start with an @ sign:
<p>
You should follow
@haacked, @jongalloway, @bradwilson, @odetocode
</p>

Well, Razor is going to attempt to resolve those implicit code expressions and fail. In the case where
you need to escape the @ sign, you can do so by using a double @@ sign. Thus this view becomes:
<p>
You should follow

@@haacked, @@jongalloway, @@bradwilson, @Rodetocode
</p>

Html Encoding

Because there are many cases where a view is used to display user input, there’s always the poten-
tial for cross-site script injection attacks (also known as XSS which is covered in more detail in
Chapter 7). The good news is that Razor expressions are HTML encoded.

[CR

string message = "<script>alert ('haacked!');</script>";
}
@message

54 | CHAPTER3 VIEWS

This code will not result in an alert box popping up but will instead display the encoded message:
<script>alert('haacked!');<script>

However, in cases where you intend to show HTML markup, you can return an instance of System
.Web.THtmlString and Razor will not encode it. For example, all the view helpers we’ll discuss
later in this section return instances of this interface. You can also create an instance of HtmlString
or use the Html .Raw convenience method:

@{
string message = "This is bold!";
}

@Html .Raw (message)

This will result in the message being displayed without HTML encoding;:

This is bold!

This automatic HTML encoding is great for mitigating XSS vulnerabilities by encoding user input
meant to be displayed as HTML, but it is not sufficient for displaying user input within JavaScript.
For example:

<script type="text/javascript">
$ (function () {
var message = 'Hello @ViewBag.Username;
$("#message") .html (message) .show('slow') ;
1)
</script>

In this code snippet, a JavaScript variable, message, is being set to a string, which includes the value
of a user-supplied user name. The user name comes from a Razor expression.

Using the jQuery HTML method, this message is set to be the HTML for a DOM element the ID
“message.” Even though the user name is HTML encoded within the message string, there is still a
potential XSS vulnerability. For example, if someone supplies the following as their user name, the
HTMUL will be set to a script tag that will get evaluated.

\x3cscript\x3e%20alert (\x27pwnd\x27)%20\x3c/script\x3e

When setting variables in JavaScript to values supplied by the user, it’s important to use JavaScript
string encoding and not just HTML encoding. Use the @Ajax.JavaScriptStringEncode to encode
the input. Here’s the same code again using this method to better protect against XSS attacks.

<script type="text/javascript">
$ (function () {
var message = 'Hello @Ajax.JavaScriptStringEncode (ViewBag.Username) ';
$("#message") .html (message) .show('slow') ;
1)
</script>

Code Blocks

In addition to code expressions, Razor also supports code blocks within a view. Going back to the
sample view, you may remember seeing a foreach statement:

Razor View Engine | 55

@foreach(var item in stuff) {
<1li>The item name is @item.</1i>

}
This block of code iterates over an array and displays a list item element for each item in the array.

What’s interesting about this statement is how the foreach statement automatically transitions to
markup with the open <1i> tag. Sometimes, when people see this code block, they assume that the
transition occurs because of the new line character, but the following valid code snippet shows that’s
not the case:

@foreach(var item in stuff) {<1li>The item name is @item.</1i>}

Because Razor understands the structure of HTML markup, it also transitions automatically back
to code when the <1i> tag is closed. Thus we didn’t need to demarcate the closing curly brace at all.

Contrast this to the Web Forms View Engine equivalent snippet where the transitions between code
and markup have to be explicitly denoted:

<% foreach(var item in stuff) { %>
The item name is <%: item %>.</1li>
<% } %>

Blocks of code (sometimes referred to as a code block) require curly braces to delimit the block of
code in addition to an @ sign.
One example of this is in a multi-line code block:

[CR
string s = "One line of code.";
ViewBag.Title "Another line of code";

}

Another example of this is when calling methods that don’t return a value (i.e. the return type is
void):

@{Html.RenderPartial ("SomePartial") ;}

Note that curly braces are not required for block statements such as foreach loops and if
statements.

The handy Razor quick reference in the next section, “Razor Syntax Samples,” shows the various
Razor syntaxes as well as comparisons to Web Forms.

Razor Syntax Samples

This section provides samples meant to illustrate the syntax for Razor by comparing a Razor exam-
ple with the equivalent example using the Web Forms View Engine syntax. Each sample is meant to
highlight a specific Razor concept.

Implicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

56 | CHAPTER3 VIEWS

Razor @model .Message

Web Forms <%: model.Message %>
Code expressions in Razor are always HTML encoded.

Explicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

Razor ISBN@ (isbn)

Web Forms ISBN<%: isbn %>

Unencoded Code Expression

In some cases, you need to explicitly render some value that should not be HTML encoded. You can
use the Html .Raw method to ensure that the value is not encoded.

Razor @Html .Raw (model .Message)
Web Forms <%: Html.Raw (model.Message) %>
or

<%= model .Message %>

Code Block

Unlike code expressions which are evaluated and outputted to the response, blocks of code are sim-
ply, well, sections of code that are executed. They are useful for declaring variables that you may
need to use later.

Razor ef{
int x = 123;
string y = "because.";
}
Web Forms <%
int x = 123;
string y = "because.";
%>

Combining Text and Markup

This example shows what intermixing text and markup looks like using Razor as compared to
Web Forms.

Razor View Engine | 57

Razor @foreach (var item in items) {
<gspan>Item @item.Name.

}

Web Forms <% foreach (var item in items) { %>
Item <%: item.Name %>.
<% } %>

Mixing Code and Plain Text

Razor looks for the beginning of a tag to determine when to transition from code to markup.
However, sometimes you want to output plain text immediately after a code block. For example, in
this sample we display some plain text within a conditional block.

Razor @if (showMessage) {
<text>This is plain text</text>
}
or
@if (showMessage) {
@:This is plain text.
}

Web Forms <% if (showMessage) { %>
This is plain text.

<% } %>

Note that there are two different ways of doing this with Razor. The first case uses the

special <text> tag. The tag itself is not written to the response, only its contents. I personally
like this approach because it makes logical sense to me. If [want to transition back to markup,
use a tag.

Others prefer the second approach, which is a special syntax for switching from code back to plain
text.

Escaping the Code Delimiter

As you saw earlier in this chapter, you can display “@” by encoding it using “ee.” Alternatively, you
always have the option to use HTML encoding.

Razor My Twitter Handle is @hacked
or
My Twitter Handle is @@haacked

Web Forms &1t;% expression %$> marks a code
nugget.

58 | CHAPTER3 VIEWS

Server Side Comment

Razor includes a nice syntax for commenting out a block of markup and code.

Razor @x
This is a multiline server side comment.
@if (showMessage) {
<hl>@ViewBag.Message</hl>
}
All of this is commented out.
*@

Web Forms <%--
This is a multiline server side comment.
<% if (showMessage) { %>
<hl><%: ViewBag.Message %></hl>
<% } %>
All of this is commented out.

o
-=%>

Calling a Generic Method

This is really no different than an explicit code expression. Even so, many folks get tripped up when
trying to call a generic method. The confusion comes from the fact that the code to call a generic
method includes angle brackets. And as you’ve learned, angle brackets cause Razor to transition
back to markup unless you wrap the whole expression in parentheses.

Razor @ (Html . SomeMethod<AType> ())
Web Forms <%: Html.SomeMethod<AType> () %>
Layouts

Layouts in Razor help maintain a consistent look and feel across multiple views within your applica-
tion. If you’re familiar with Web Forms, layouts serve the same purpose as Master Pages, but offer
both a simpler syntax and greater flexibility.

You can use a Layout to define a common template for your site (or just part of it). This template
contains one or more placeholders that the other views in your application provide content for. In
some ways, it’s like an abstract base class for your views.

Let’s look at a very simple layout; we’ll creatively call siteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>

<hl>@ViewBag.Title</hl>

<div id="main-content">@RenderBody ()</div>
</body>
</html>

Razor View Engine | 59

It looks like a standard Razor view, but note that there’s a call to @RenderBody in the view. This is a
placeholder that marks the location where views using this layout will have their main content rendered.
Multiple Razor views may now take advantage of this layout to enforce a consistent look and feel.

Let’s look at an example that uses this layout, ITndex.cshtml:

[CR
Layout = "~/Views/Shared/SiteLayout.cshtml";
View.Title = "The Index!";

}

<p>This is the main content!</p>

This view specifies its Layout via the Layout property. When this view is rendered, the HTML con-
tents in this view will be placed within the DIV element, main-content of SiteLayout.cshtml,
resulting in the following combined HTML markup:

<!DOCTYPE html>
<html>
<head><title>The Index!</title></head>
<body>
<hl1>The Index!</hl>
<div id="main-content"><p>This is the main content!</p></div>
</body>
</html>

Notice that the view content, the title, and the h1 heading have all been marked in bold to empha-
size that they were supplied by the view and everything else was supplied by the layout.

A layout may have multiple sections. For example, let’s add a footer section to the previous Layout,
SiteLayout.cshtml:

<!DOCTYPE html>
<html>
<head><title>@ViewBag.Title</title></head>
<body>
<hl>@ViewBag.Title</hl>
<div id="main-content">@RenderBody ()</div>
<footer>@RenderSection("Footer")</footer>
</body>
</html>

Running the previous view again without any changes will throw an exception stating that a section
named Footer was not defined. By default, a view must supply content for every section defined in
the layout.

Here’s the updated view:

e{
Layout = "~/Views/Shared/SiteLayout.cshtml";
View.Title = "The Index!";

}

<p>This is the main content!</p>

@section Footer {
This is the footer.

60 | CHAPTER3 VIEWS

The @section syntax specifies the contents for a section defined in the layout.

Earlier, I pointed out that by default, a view must supply content for every defined section. So what
happens when you want to add a new section to a Layout? Will that break every view?

Fortunately, the RenderSection method has an overload that allows you to specify that the section
is not required. To mark the Footer section as optional you can pass in false for the required
parameter:

<footer>@RenderSection ("Footer", false)</footer>

But wouldn’t it be nicer if you could define some default content in the case that the section isn’t
defined in the view? Well here’s one way. It’s a bit verbose, but it works.

<footer>
@if (IsSectionDefined("Footer")) {
RenderSection("Footer") ;
}
else {
This is the default footer.
}

</footer>

In a later section, we’ll look at an advanced feature of the Razor syntax you can leverage called
Templated Razor Delegates to implement an even better approach to this.

ViewStart

In the preceding examples, each view specified its layout page using the Layout property. For a
group of views that all use the same layout, this can get a bit redundant and harder to maintain.

The _viewsStart.cshtml page can be used to remove this redundancy. The code within this file
is executed before the code in any view placed in the same directory. This file is also recursively
applied to any view within a subdirectory.

When you create a default ASP.NET MVC 3 project, you’ll notice there is already a _viewStart
.cshtml file in the Views directory. It specifies a default Layout.
@

Layout = "~/Views/Shared/_Layout.cshtml";
}

Because this code runs before any view, a view can override the Layout property and choose a
different one. If a set of views share common settings, the _viewStart.cshtml file is a useful place
to consolidate these common view settings.

SPECIFYING A PARTIAL VIEW

In addition to returning a view, an action method can also return a partial view in the form of a
PartialViewResult via the Partialview method. Here’s an example:

public class HomeController : Controller {
public ActionResult Message() {

The View Engine | 61

ViewBag.Message = "This is a partial view.";
return PartialvView();

In this case, the view named Message.cshtml will be rendered, but if the layout is specified by a
_ViewStart.cshtml page (and not directly within the view), the layout will not be rendered.
The partial view itself looks much like a normal view, except it doesn’t specify a layout:

<h2>@ViewBag.Message</h2>

This is useful in partial update scenarios using AJAX. The following shows a very simple example
using jQuery to load the contents of a partial view into the current view using an AJAX call:

<div id="result"></div>

<script type="text/javascript">

S (function() {
S('#result').load (' /home/message') ;

)

</script>

The preceding code uses the jQuery 1oad method to make an AJAX request to the Message action
and updates the DIV with the id result with the result of that request.

To see the examples of specifying views and partial views described in the previous two sections,
use NuGet to install the Wrox.ProMvc3.Views.SpecifyingViews package into a default ASP.NET
MVC 3 project like so:

| _i; Install-Package Wrox.ProMvc3.Views.SpecifyingViews

This will add a sample controller to your project in the samples directory with multiple action meth-
ods, each specifying a view in a different manner. To run each sample action, press Ctrl+F5 on your
project and visit:

> /sample/index
> /sample/index2
> /sample/index3
>

/sample/partialviewdemo

THE VIEW ENGINE

Scott Hanselman, community program manager at Microsoft, likes to call the view engine “just

an angle bracket generator.” In simplest terms, that’s exactly what it is. A view engine will take an
in-memory representation of a view and turn it into whatever other format you like. Usually, this
means that you will create a CSHTML file containing markup and script, and ASP.NET MVC’s
default view engine implementation, the RazorViewEngine, will use some existing ASP.NET APIs to
render your page as HTML.

62

CHAPTER 3 VIEWS

View engines aren’t limited to using CSHTMUL pages, nor are they limited to rendering HTML.
You’ll see later how you can create alternate view engines that render output that isn’t HTML, as
well as unusual view engines that take a custom DSL (Domain Specific Language) as input.

To better understand what a view engine is, let’s review the ASP.NET MVC life cycle (very simpli-
fied in Figure 3-6).

RHTTP > Routing > Controller> ViewResuIt> ViewEngin(> View > Response>
equest

FIGURE 3-6

A lot more subsystems are involved than Figure 3-6 shows; this figure just highlights where the
view engine comes into play — which is right after the controller action is executed and returns a
ViewResult in response to a request.

It is very important to note here that the Controller itself does not render the view; it simply pre-
pares the data (that is, the model) and decides which view to display by returning a viewResult
instance. As you saw earlier in this chapter, the controller base class contains a simple conve-
nience method, named view, used to return a ViewResult. Under the hood, the ViewResult calls
into the current view engine to render the view.

Configuring a View Engine

As just mentioned, it’s possible to have alternative view engines registered for an application.

View engines are configured in Global.asax.cs. By default, there is no need to register other view
engines if you stick with just using RazorviewEngine (and the WwebFormviewEngine is also regis-
tered by default).

However, if you want to replace these view engines with another, you could use the following code
in your Application_Start method:

protected void Application_Start() {
ViewEngines.Engines.Clear () ;
ViewEngines.Engines.Add (new MyViewEngine()) ;
RegisterRoutes (RouteTable.Routes) ;

}

Code snippet 3-14.txt

Engines is a static ViewEngineCollection used to contain all registered view engines. This is
the entry point for registering view engines. You needed to call the clear method first because
RazorViewEngine and WebFormviewEngine are included in that collection by default. Calling the
Cclear method is not necessary if you want to add your custom view engine as another option in
addition to the default one, rather than replace the default view engines.

The View Engine | 63

In most cases though, it’s probably unnecessary to manually register a view engine if it’s available
on NuGet. For example, to use the Spark view engine, after creating a default ASP.NET MVC 3
project, simply run the NuGet command, Install-Package Spark.Web.Mvc. This adds and con-
figures the Spark view engine in your project. You can quickly see it at work by renaming Tndex.
cshtml to Index.spark. Change the mark up to the following to display the message defined in the
controller.

<!DOCTYPE html>
<html>
<head>
<title>Spark Demo</title>
</head>
<body>
<hl if="!String.IsNullOrEmpty (ViewBag.Message) ">${ViewBag.Message}</hl>
<p>
This is a spark view.
</p>
</body>
</html>

Code snippet 3-15.txt

Code snippet 3-15 shows a very simple example of a Spark view. Notice the special 1 f attribute
which contains a boolean expression that determines whether the element it’s applied to is displayed
or not. This declarative approach to controlling markup output is a hallmark of Spark.

Finding a View
The TviewEngine interface is the key interface to implement when building a custom view engine:

public interface IViewEngine {

,) ViewEngineResult FindPartialView (ControllerContext controllerContext,
Available for . str%ng partialyiewﬁame, bool useCache) ; . .
download on ViewEngineResult FindView (ControllerContext controllerContext, string viewName,
Wrox.com string masterName, bool useCache);

void ReleaseView (ControllerContext controllerContext, IView view) ;

Code snippet 3-16.txt

With the ViewEngineCollection, the implementation of Findview iterates through the registered
view engines and calls Findview on each one, passing in the specified view name. This is the means
by which the viewEngineCollection can ask each view engine if it can render a particular view.

The Findview method returns an instance of ViewEngineResult, which encapsulates the answer to
the question, “Can this view engine render the view?” (See Table 3-2.)

64 | CHAPTER3 VIEWS

TABLE 3-2: ViewEngineResult Properties

PROPERTY DESCRIPTION

View Returns the found Iview instance for the specified view name. If the view
could not be located, it returns null.

ViewEngine Returns an IViewEngine instance if a view was found; otherwise null.

SearchedLocations Returns an IEnumerable<string> that contains all the locations that the
view engine searched.

If the Tview returned is null, the view engine was not able to locate a vfiew corresponding to

the view name. Whenever a view engine cannot locate a view, it will return the list of locations it
checked. These are typically file paths for view engines that use a template file, but they could be
something else entirely, such as database locations for view engines that store Views in a database.

Note that the FindPartialview method works in the same way as Findview, except that it focuses
on finding a partial view. It is quite common for view engines to treat Views and partial Views differ-
ently. For example, some view engines automatically attach a master view (or layout) to the current
view by convention. It’s important for that view engine to know whether it’s being asked for a full
view or a partial view. Otherwise, every partial view might have the master layout surrounding it.

The View ltself

The Tview interface is the second interface one needs to implement when implementing a custom
view engine. Fortunately, it is quite simple, containing a single method:

public interface IView ({
) void Render (ViewContext viewContext, TextWriter writer);
Available for }

download on
Wrox.com Code snippet 3-17.txt

Custom Views are supplied with a viewContext instance, which provides the information that
might be needed by a custom view engine, along with a Textwriter instance. The view is expected
to consume the data in the viewContext (such as the view data and model) and then call methods of
the TextwWriter instance to render the output.

The viewContext contains the following properties, accessible by the view as shown in Table 3-3.

TABLE 3-3: ViewContext Properties

PROPERTY DESCRIPTION

HttpContext An instance of Ht tpContextBase, which provides
access to the ASP.NET intrinsic objects such as Server,
Session, Request, Response

Controller An instance of ControllerBase, which provides access
to the Controller making the call to the view engine

The View Engine | 65

PROPERTY

RouteData

ViewData

TempData

View

ClientValidationEnabled

FormContext

FormIdGenerator

IsChildAction

ParentActionViewContext

Writer

UnobtrusiveJavaScriptEnabled

DESCRIPTION

An instance of RouteData, which provides access to the
route values for the current request

An instance of ViewDataDictionary containing the
data passed from the Controller to the view

An instance of TempDataDictionary containing data
passed to the view by the Controller in a special one-
request-only cache

An instance of IView, which is the view being rendered

Boolean value indicating whether Client Validation has
been enabled for the view

Contains information about the form, used in client-side
validation

Allows you to override how forms are named (“formO”-
style by default)

Boolean value indicating whether the action is being
displayed as a result of a call to Html . Action or Html
.RenderAction

When IsChildAction is true, contains the
ViewContext of this view’s parent view

HtmlTextWriter to use for HTML helpers that don’t
return strings (that is, BeginForm), so that you remain
compatible with non-WebForms view engines

New in ASP.NET MVC 3, this property determines
whether or not an unobtrusive approach to client valida-
tion and AJAX should be used. When true, rather than
emitting script blocks into the markup, HTML 5 data-*
attributes are emitted by the helpers, which the unobtru-
sive scripts use as a means of attaching behavior to the
markup.

Not every view needs access to all these properties to render a view, but it’s good to know they are
there when needed.

Alternative View Engines

When working with ASP.NET MVC for the first time, you’re likely to use the view engine that
comes with ASP.NET MVC: the RazorvViewEngine.

66

CHAPTER3 VIEWS

The many advantages to this are that it:
> Is the default
Has clean lightweight syntax
Has layouts
Has HTML encoded by default
Has support for scripting with C#/VB

Y VYV VY Y Y

Has IntelliSense support in Visual Studio

There are times, however, when you might want to use a different view engine, for example, when
you:

> Desire to use a different language (like Ruby or Python)
> Render non-HTML output such as graphics, PDFs, RSS, and the like

> Have legacy templates using another format

Several different third-party view engines are available at the time of this writing. Table 3-4 lists
some of the more well-known view engines, but there are likely many others we’ve never heard of.

TABLE 3-4: View Engines Properties

VIEW ENGINE DESCRIPTION

Spark Spark (http://sparkviewengine.com/) is the brainchild of Louis DeJardin
(now a Microsoft employee) and is being actively developed with support for both
MonoRail and ASP.NET MVC. It is of note because it blurs the line between markup
and code using a very declarative syntax for rendering views.

NHaml NHaml (hosted on GitHub at https://github.com/NHaml /NHaml), created by
Andrew Peters and released on his blog in December 2007, is a port of the popular
Ruby on Rails Haml View engine. It’s a very terse Domain Specific Language (DSL)
used to describe the structure of XHTML with a minimum of characters.

Brail Brail (part of the MvcContrib project http: //mvccontrib. org) is interesting for
its use of the Boo Language. Boo is an object-oriented statically typed language for
the CLR with a Python language style to it, such as significant white space.

StringTemplate StringTemplate (hosted at Google code http://code.google.com/p/
string-template-view-engine-mvc) is a lightweight templating engine that is
interpreted rather than compiled. It's based on the Java StringTemplate engine.

NVelocity NVelocity (http: //www.castleproject.org/others/nvelocity)is an Open
Source templating engine and a port of the Apache/Jakarta Velocity project, built
for Java-based applications. The NVelocity project did quite well for a few years,
until 2004, when check-ins stopped and the project slowed down.

Summary | 67

NEW VIEW ENGINE OR NEW ACTIONRESULT?

One question we are often asked is when someone should create a custom view engine as opposed to
a new ActionResult type. For example, suppose that you want to return objects in a custom XML
format. Should you write a custom view engine or a new MyCustomXmlFormatActionResult?

The general rule of thumb for choosing between one and the other is whether or not it makes sense
to have some sort of template file that guides how the markup is rendered. If there’s only one way
to convert an object to the output format, then writing a custom ActionResult type makes more
sense.

For example, the ASP.NET MVC Framework includes a JsonResult, by default, which serializes an
object to JSON syntax. In general, there’s only one way to serialize an object to JSON. You wouldn’t
change the serialization of the same object to JSON according to which action method or view is
being returned. Serialization is generally not controlled via a template.

But suppose that you wanted to use XSLT to transform XML into HTML. In this case, you may
have multiple ways to transform the same XML into HTML depending on which action you’re
invoking. In this case, you would create an Xs1tviewEngine, which uses XSLT files as the view
templates.

SUMMARY

View engines have a very specific, constrained purpose. They exist to take data passed to them from
the Controller and generate formatted output, usually HTML. Other than those simple responsibili-
ties, or concerns, as the developer you are empowered to achieve the goals of your view in any way
that makes you happy.

Models

— By Scott Allen

WHAT'’S IN THIS CHAPTER?

> How to model the Music Store
> What it means to scaffold

> How to edit an album
>

All about model binding

The word model in software development is overloaded to cover hundreds of different con-
cepts. You have maturity models, design models, threat models, and process models. It’s rare
to sit through a development meeting without talking about a model of one type or another.
Even when you scope the term “model” to the context of the MVC design pattern, you can
still debate the merits of having a business-oriented model object versus a view-specific model
object (you might remember this discussion from Chapter 3).

This chapter talks about models as the objects you use to send information to the database,
perform business calculations, and even render in a view. In other words, these objects repre-
sent the domain the application focuses on, and the models are the objects you want to save,
create, update, and delete.

ASP.NET MVC 3 provides a number of tools and features to build out application features
using only the definition of model objects. You can sit down and think about the problem you
want to solve (like how to let a customer buy music), and write plain C# classes, like A1bum,
ShoppingCart, and User, to represent the primary objects involved. Then when you are ready,
you can use tools to construct the controllers and views for the standard index, create, edit,
and delete scenarios for each of the model objects. The construction work is called scaffolding,
but before I talk about scaffolding, you need some models to work with.

70 | CHAPTER4 MODELS

MODELING THE MUSIC STORE

Imagine you are building the ASP.NET MVC Music Store from scratch. You start, as with all great
applications, by using the File & New Project menu command in Visual Studio. Once you give the
project a name, Visual Studio will open the dialog you see in Figure 4-1, and you can tell Visual
Studio you want to work with the Internet Application project template.

New ASP.NET MVC 3 Project

=)

Project Template

Empty Internet Intranet guthenticabon
Application bl

Select a template: Description:
" " A default ASP.MET MVC 3 project with an
=ch L{% =ch account controller that uses forms

View engine:

[Razor v] Use HTMLS semantic markup

Create a unit test project
Test project name:

MvcMusicStore. Tests

Test framework:

Visual Studio Unit Test V] Additional Info

FIGURE 4-1

The Internet Application project template gives you everything you
need to get started (see Figure 4-2): a basic layout view, a default
homepage with a link for a customer to log in, an initial style sheet,
and a relatively empty Models folder. All you find inside the Models
folder is an AccountModels.cs file with some view-specific model
classes for account management (the classes are specific to the views
for registering, logging in, and changing a password).

Why is the models folder nearly empty? Because the project tem-
plate doesn’t know what domain you are working in and it doesn’t
know what problem you are trying to solve.

At this point, you might not know what problem you are trying
to solve, either! You might need to talk to customers and business

Solution Explorer * [X

= 2E e
; Solution "MvcMusicStore’ (2 projects)
4 ‘;& MvcMusicStore
> [=d| Properties
> [=3] References
3 App_Data
> [Content
> [Controllers
4+ (G moges
#] AccountModels.cs
> [l Scripts
> [Views
> ,‘j Global.asax
_} packages.config
> |Ep Web.config
> E MvcMusicStore Tests

FIGURE 4-2

Modeling the Music Store | 71

owners, and do some initial prototyping or test-driven-development to start fleshing out a design.
The ASP.NET MVC framework doesn’t dictate your process or methodologies.

Eventually, you might decide the first step in building a music store is having the ability to
list, create, edit, and delete music album information. You’ll use the following class to model
an album:

public class Album
{

public virtual int AlbumId { get; set; }
public virtual int GenreId { get; set; }
public virtual int ArtistId { get; set; }
public virtual string Title { get; set; }
public virtual decimal Price { get; set; }
public virtual string AlbumArtUrl { get; set; }
public virtual Genre Genre { get; set; }
public virtual Artist Artist { get; set; }

The primary purpose of the album model is to simulate attributes of a music album, such as the title
and the price. Every album also has an association with a single artist:

public class Artist

{
public virtual int ArtistId { get; set; }
public virtual string Name { get; set; }

You might notice how each Album has fwo properties for managing an associated artist: the
Artist property and the Artist1d property. We call the artist property a navigational property,
because given an album, you can navigate to the album’s associated artist using the dot operator
(favoriteAlbum.Artist).

We call the artist1d property a foreign key property, because you know a bit about how data-
bases work, and you know artists and albums will each maintain records in two different tables.
Each artist may maintain an association with multiple albums. Because there will be a foreign key
relationship between the table of artist records and the table of album records, you want to have
the foreign key value for an artist embedded in the model for your album.

MODEL RELATIONSHIPS

I’m sure some readers won’t like the idea of using foreign key properties in a model,
because foreign keys are an implementation detail for a relational database to man-
age. Foreign key properties are not required in a model object, so you could leave
them out.

In this chapter, you are going to use foreign key properties because they offer many
conveniences with the tools you’ll be using.

72 | CHAPTER4 MODELS

An album also has an associated genre, and every genre can maintain a list of associated albums:

public class Genre

{
public virtual int GenreId { get; set;
public virtual string Name { get; set;
public virtual string Description { get; set;
public virtual List<Album> Albums { get; set;

[N

You might also notice how every property is virtual. I discuss why the properties are virtual later
in this chapter. For now, these three simple class definitions are your starting models, and include
everything you need to scaffold out a controller, some views, and even create a database.

SCAFFOLDING A STORE MANAGER

Your next decision might be to create a store manager. A store manager is a controller enabling you
to edit album information. To get started you can right-click the controllers folder in your new
solution and select Add Controller. In the dialog that appears (shown in Figure 4-3), you can set the
controller name and select scaffolding options. The scaffolding template selected in the screenshot
requires a model class and a data context.

Add Controller (]
Controller name:
StoreManagerController
Scaffolding options
Template:
Controller with read/write actions and views, using Entity Framewaork -
Model class:
Album (MvcMusicStore.Models) -
Data context class:
| -
Views:
Razor (CSHTML v| [Advancedoptions.. |
FIGURE 4-3

What Is Scaffolding?

Scaffolding in ASP.NET MVC can generate the boilerplate code you need for create, read, update,
and delete (CRUD) functionality in an application. The scaffolding templates can examine the type
definition for a model (such as the Album class you’ve created), and then generate a controller and
the controller’s associated views. The scaffolding knows how to name controllers, how to name
views, what code needs to go in each component, and also knows where to place all these pieces in
the project for the application to work.

Scaffolding a Store Manager | 73

SCAFFOLDING OPTIONS

Like nearly everything else in the MVC framework, if you don’t like the default
scaffolding behavior, you can customize or replace the code generation strategy to
fulfill your own desires. You can also find alternative scaffolding templates through
NuGet (just search for scaffolding). The NuGet repository is filling up with scaf-
folding to generate code using specific design patterns and technologies.

If you really don’t like the scaffolding behavior, you can always handcraft everything
from scratch. Scaffolding is not required to build an application, but scaffolding can
save you time when you can make use of it.

Don’t expect scaffolding to build an entire application. Instead, expect scaffolding to release you
from the boring work of creating files in the right locations and writing 100 percent of the applica-
tion code by hand. You can tweak and edit the output of the scaffolding to make the application
your own. Scaffolding runs only when you tell it to run, so you don’t have to worry about a code
generator overwriting the changes you make to the output files.

Three scaffolding templates are available in MVC 3. The scaffolding template you select will control
just how far the scaffolding will go with code generation.

Empty Controller

The empty controller template adds a controller-derived class to the controllers folder with
the name you specify. The only action in the controller will be an Index action with no code inside
(other than the code to return a default viewResult). This template will not create any views.

Controller with Empty Read/Write Actions

This template adds a controller to your project with Index, Details, Create, Edit, and Delete
actions. The actions inside are not entirely empty, but they won’t perform any useful work until you
add your own code and create the views for each action.

Controller with Read/Write Actions and Views, Using Entity Framework

This template is the template you are about to select. This template not only generates your controller
with the entire suite of Tndex, Details, Create, Edit, and Delete actions, but also generates all
the required views and the code to persist and retrieve information from a database.

For the template to generate the proper code, you have to select a model class (in Figure 4-3, you
selected the Album class). The scaffolding examines all the properties of your model and uses the
information it finds to build controllers, views, and data access code.

To generate the data access code, the scaffolding also needs the name of a data context object.
You can point the scaffolding to an existing data context, or the scaffolding can create a new data
context on your behalf. What is a data context? I have to take another aside to give a quick intro-
duction to the Entity Framework.

74 | CHAPTER4 MODELS

Scaffolding and the Entity Framework

A new ASP.NET MVC 3 project, with the MVC 3 Tools Update installed, will automatically
include a reference to the Entity Framework (EF) version 4.1 (this is not the version of the EF that
shipped with .NET 4.0, but a newer version). EF is an object-relational mapping framework and
understands how to store .NET objects in a relational database, and retrieve those same objects
given a LINQ query.

FLEXIBLE DATA OPTIONS

If you don’t want to use the Entity Framework in your ASP.NET MVC applica-
tion, there is nothing in the framework forcing you to take a dependency on EF.
In fact, there is nothing in the framework forcing you to use a database, relational
or otherwise. You can build applications using any data access technology or data
source. If you want to work with comma-delimited text files or web services using
the full complement of WS-* protocols, you can!

In this chapter, you work with EF 4.1, but many of the topics covered are broadly
applicable to any data source.

EF 4.1 supports a code first style of development. Code first means you can start storing and
retrieving information in SQL Server without creating a database schema or opening a Visual
Studio designer. Instead, you write plain C# classes and EF figures out how, and where, to store
instances of those classes.

Remember how all the properties in your model objects are virtual? Virtual properties are not required,
but they do give EF a hook into your plain C# classes and enable features like an efficient change track-
ing mechanism. The Entity Framework needs to know when a property value on a model changes
because it might need to issue a SQL UPDATE statement to reconcile those changes with the database.

WHAT COMES FIRST — THE CODE OR THE DATABASE?

If you already are familiar with the Entity Framework, and you are using a model
first or schema first approach to development, the MVC scaffolding will support
you, too. The Entity Framework team designed the code first approach to give
developers a friction-free environment for iteratively working with code and

a database.

Code First Conventions

EF, like ASP.NET MVC, follows a number of conventions to make your life easier. For example, if
you want to store an object of type Album in the database, EF assumes you want to store the data

Scaffolding a Store Manager | 75

in a table named Albums. If you have a property on the object named ID, EF assumes the property
holds the primary key value and sets up an auto-incrementing (identity) key column in SQL Server
to hold the property value.

EF also has conventions for foreign key relationships, database names, and more. These conventions
replace all the mapping and configuration you historically provide to an object-relational mapping
framework. The code-first approach works fantastically well when starting an application from
scratch. If you need to work with an existing database, you’ll probably need to provide mapping
metadata (perhaps by using the Entity Framework’s schema-first approach to development). If you
want to learn more about the Entity Framework, you can start at the Data Developer Center on
MSDN (http://msdn.microsoft.com/en-us/data/aa937723).

The DbContext

When using EF’s code-first approach, the gateway to the database will be a class derived from EF’s
DbContext class. The derived class will have one or more properties of type Dbset<T>, where each
T represents the type of object you want to persist. For example, the following class enables you to
store and retrieve Album and Artist information:

public class MusicStoreDB : DbContext
{
public DbSet<Album> Albums { get; set; }
public DbSet<Artist> Artists { get; set; }
}

Using the preceding data context, you can retrieve all albums in alphabetical order using the LINQ
query in the following code:

var db = new MusicStoreDB() ;

var allAlbums = from album in db.Albums

orderby album.Title ascending
select album;

Now that you know a little bit about the technology surrounding the built-in scaffolding templates,
let’s move ahead and see what code comes out of the scaffolding process.

Executing the Scaffolding Template

B_ack at the Add Controller dialog k_)ox (refer to A ——— P
Figure 4-3), select the drop-down list under Data

Context Class and select New Data Context. The Hew data:context iype:

New Data Context dialog shown in Figure 4-4 SR tose Mde M ineti)

appears and you can enter the name of the class R
you will use to access the database (including the
namespace for the class).

FIGURE 4-4
Name your context MusicStoreDB, click
OK, and the Add Controller dialog (Figure 4-5) is complete. You are about to scaffold a
StoreManagerController and its associated views for the Album class.

76 | CHAPTER4 MODELS

y
Add Controfler [
Controller name:
StoreManagerController
Scaffolding options
Template:
Controller with read/write actions and views, using Entity Framework 7
Model class:
Album (MvcMusicStore.Models) -
Data context dass:
MvchMusicStore.Models.MusicstoreDB -
Views:
Razor [CSHTML) v| [Advancedoptions.. |
Add Cancel
L
FIGURE 4-5

After you click the Add button, scaffolding jumps into action and adds new files to various locations
in the project. Let’s explore these new files before you move forward.

The Data Context

The scaffolding adds a MusicStoreDB.cs file into the Models folder of your project. The class inside
the file derives from the Entity Framework’s Dbcontext class and gives you access to album, genre,
and artist information in the database. Even though you told the scaffolding only about the A1bum
class, the scaffolding saw the related models and included them in the context.

public class MusicStoreDB : DbContext

{
public DbSet<Album> Albums { get; set; }

public DbSet<Genre> Genres { get; set; }

public DbSet<Artist> Artists { get; set; }

To access a database, all you need to do is instantiate the data context class. You might be
wondering what database the context will use. I answer that question later when you first run
the application.

The StoreManagerController

The scaffolding template you selected also generates a StoreManagerController into the
controllers folder of the application. The controller will have all the code required to select and
edit album information. Look at the starting few lines of the class definition:

public class StoreManagerController : Controller

{
private MusicStoreDB db = new MusicStoreDB() ;

//

Scaffolding a Store Manager | 77

// GET: /StoreManager/

public ViewResult Index()

{
var albums = db.Albums.Include(a => a.Genre).Include(a => a.Artist);
return View(albums.ToList ());

}

// more later ...

In this first code snippet, you can see the scaffolding added a private field of type MusicStoreDB to
the controller. Because every controller action requires database access, the scaffolding also initial-
izes the field with a new instance of the data context. In the Index action, you can see the code is
using the context to load all albums from the database into a list, and passing the list as the model
for the default view.

LOADING RELATED OBJECTS

The Tnclude method calls that you see in the Tndex action tell the Entity
Framework to use an eager loading strategy in loading an album’s associated genre
and artist information. An eager loading strategy attempts to load all data using a
single query.

The alternative (and default) strategy for the Entity Framework is a lazy loading
strategy. With lazy loading, EF loads only the data for the primary object in the
LINQ query (the album), and leaves the Genre and Artist properties unpopulated:

var albums = db.Albums;

Lazy loading brings in the related data on an as-needed basis, meaning when
something touches the Genre or Artist property of an Album, EF loads the data
by sending an additional query to the database. Unfortunately, when dealing with
a list of album information, a lazy loading strategy can force the framework to
send an additional query to the database for each album in the list. For a list of 100
albums, lazy loading all the artist data requires 101 total queries. The scenario I've
just described is known as the N+1 problem (because the framework executes 101
total queries to bring back 100 populated objects), and is a common problem to
face when using an object-relational mapping framework. Lazy loading is conve-
nient, but potentially expensive.

You can think of Include as an optimization to reduce the number of queries
needed in building the complete model. To read more about lazy loading see
“Loading Related Objects” on MSDN at http://msdn.microsoft.com/library/
bb896272.aspx.

Scaffolding also generates actions to create, edit, delete, and show detailed album information. You
take a close look at the actions behind the edit functionality later in this chapter.

78 | CHAPTER4 MODELS

The VieWS Solution Explorer
Once the scaffolding finishes running, you’ll also find a collection of 7 %_' »
.) 4 [y Views
views underneath the new Views/StoreManager folder. These views Ed Account
prov.ide.the'UI for listing, editing, and deleting albums. You can see j G
the list in Flgure 4-6. 4 [StoreManager

“ta. Create.cshiml
55 Delete.cshtml

The Tndex view has all the code needed to display a table full of) oetas ot

music albums. The model for the view is an enumerable sequence 5] Edit cshtml
. . . . 5] Index.cshtml
of Album objects, and as you saw in the Tndex action earlier, an e M
enumerable sequence of Album objects is precisely what the Tndex & E% N owmmio
. . . Py obalasax
action delivers. The view takes the model and uses a foreach loop b packages.config

b _} Web.config
© 51 MycMusicStore Tests

to create HTML table rows with album information:

m

@model IEnumerable<MvcMusicStore.Models.Album>

FIGURE 4-6
@{
ViewBag.Title = "Index";
}
<h2>Index</h2>

<p>@Html.ActionLink ("Create New", "Create")</p>
<table>
<tr>
<th>Genre</th>
<th>Artist</th>
<th>Title</th>
<th>Price</th>
<th>AlbumArtUrl</th>
<th></th>
</tr>

@foreach (var item in Model) {
<tr>
<td>@Html.DisplayFor (modelItem => item.Genre.Name)</td>
<td>@Html.DisplayFor (modelItem => item.Artist.Name)</td>
<td>@Html.DisplayFor (modelItem => item.Title)</td>
<td>@Html.DisplayFor (modelItem => item.Price)</td>
<td>@Html.DisplayFor (modelItem => item.AlbumArtUrl)</td>

<td>
@Html .ActionLink ("Edit", "Edit", new { id=item.AlbumId }) |
@Html.ActionLink ("Details", "Details", new { id=item.AlbumId })
@Html.ActionLink ("Delete", "Delete", new { id=item.AlbumId })
</td>
</tr>
}
</table>

Notice how the scaffolding selected all the “important” fields for the customer to see. In other
words, the table in the view does not display any foreign key property values (they would be

Scaffolding a Store Manager | 79

meaningless to a customer), but does display the associated genre’s name, and the associated artist’s
name. The view uses the DisplayFor HTML helper for all model output.

Each table row also includes links to edit, delete, and detail an album. As mentioned earlier,
the scaffolded code you are looking at is just a starting point. You probably want to add,
remove, and change some of the code and tweak the views to your exact specifications. But,
before you make changes, you might want to run the application to see what the current views
look like.

Executing the Scaffolded Code

Before you start the application running, let’s address a burning question from earlier in the chapter.
What database will MusicStoreDB use? You haven’t created a database for the application to use or
even specified a database connection.

Creating Databases with the Entity Framework

The code-first approach of EF attempts to use convention over configuration as much as possible.

If you don’t configure specific mappings from your models to database tables and columns, EF uses
conventions to create a database schema. If you don’t configure a specific database connection to use
at runtime, EF creates one using a convention.

CONFIGURING CONNECTIONS

Explicitly configuring a connection for a code-first data context is as easy as adding
a connection string to the web.config file. The connection string name must match
the name of the data context class. In the code you’ve been building, you could
control the context’s database connections using the following connection string:
<connectionStrings>
<add name="MusicStoreDB"
connectionString="data source=.\SQLEXPRESS;
Integrated Security=SSPI;
initial catalog=MusicStore"
providerName="System.Data.SglClient" />
</connectionStrings>

Without a specific connection configured, EF tries to connect to the local instance of SQL Server
Express and find a database with the same name as the Dbcontext derived class. If EF can connect
to the database server, but doesn’t find a database, the framework creates the database. If you run
the application after scaffolding completes, and navigate to the /StoreManager URL, you’ll dis-
cover that the Entity Framework has created a database named MvcMusicStore.Models
.MusicStoreDB on the local machine’s SQL Express instance. If you look at a complete diagram of
the new database, you’d see what’s shown in Figure 4-7.

80 | CHAPTER4 MODELS

EdmMetadata
T
ModelHash
Artists
Albums - || ® Artistld
% Albumld MName
Artistld
Genreld
Title
Price Genres
AlbumArtUrl om0 | ¥ Genreld
Mame
Description
FIGURE 4-7

The Entity Framework automatically creates tables to store album, artist, and genre informa-
tion. The framework uses the model’s property names and data types to determine the names and
data types of the table column. Notice how the framework also deduced each table’s primary key
column, and the foreign key relationships between tables.

The EdmMetadata table in the database is a table EF uses to ensure the model classes are synchro-
nized with the database schema (by computing a hash from the model class definitions). If you
change your model (by adding a property, removing a property, or adding a class, for example), EF
will either re-create the database based on your new model, or throw an exception. Don’t worry.

EF will not re-create the database without your permission; you need to provide a database initializer.

EDMMETADATA

EF does not require an EdmMetadata table in your database. The table is here
only so EF can detect changes in your model classes. You can safely remove the
EdmMetadata table from the database and the Entity Framework will assume you
know what you are doing. Once you remove the EdmMetadata table, you (or you
DBA) will be responsible for making schema changes in the database to match

the changes in your models. You might also keep things working by changing the
mapping between the models and the database. See http: //msdn.microsoft
.com/library/gg696169 (VS.103) .aspx as a starting point for mapping and
annotations.

Using Database Initializers

An easy way to keep the database in sync with changes to your model is to allow the Entity
Framework to re-create an existing database. You can tell EF to re-create the database every time an
application starts, or you can tell EF to re-create the database only when it detects a change in the

Scaffolding a Store Manager | 81

model. You choose one of these two strategies when calling the static SetTnitializer method of
EF’s Database class (from the System.Data.Entity namespace).

When you call setTnitializer you need to pass in an IDatabaseInitializer object, and two are pro-
\dded\Nkhthefnnnewmmk:DropCreateDatabaseAlwaysznuiDropCreateDatabaseIfModelChanges
You can tell by the names of the classes which strategy each class represents. Both initializers require a
generic type parameter, and the parameter must be a Docontext derived class.

As an example, say you wanted to re-create the music store database every time the application
starts afresh. Inside global.asax.cs, you can set an initializer during application startup:

protected void Application_Start ()
{

Database.SetInitializer (new DropCreateDatabaseAlways<MusicStoreDB>());

AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters (GlobalFilters.Filters);
RegisterRoutes (RouteTable.Routes) ;

You might be wondering why anyone would want to re-create a database from scratch every time an
application restarts. Even when the model changes, don’t you want to preserve the data inside?

These are valid questions, and you’ll have to remember that features in the code-first approach (like
the database initializer) facilitate the iterative and fast changing phases early in the application life
cycle. Once you push a site live and take real customer data, you won’t just re-create the database
every time your model changes.

Of course, even in the initial phase of a project you might still want to preserve data in the database,
or at least have a new database populated with some initial records, like lookup values.

Seeding a Database

For the MVC Music Store let’s pretend you want to start development by re-creating the database
every time your application restarts. However, you want the new database to have a couple genres,
artists, and even an album available so you can work with the application without entering data to
put the application into a usable state.

In this case you can derive a class from the DropCreatebatabasealways class and override the seed
method. The seed method enables you to create some initial data for the application, as you can see
in the following code:

public class MusicStoreDbInitializer
DropCreateDatabaseAlways<MusicStoreDB>

protected override void Seed(MusicStoreDB context)
{
context.Artists.Add (new Artist {Name = "Al Di Meola"});

context.Genres.Add (new Genre { Name = "Jazz" });

context.Albums.Add (new Album

82 | CHAPTER4 MODELS

Artist = new Artist { Name="Rush" },
Genre = new Genre { Name="Rock" },
Price = 9.99m,

Title = "Caravan"

1)

base.Seed(context) ;

Calling into the base class implementation of the seed method saves your new objects into the data-
base. You’ll have a total of two genres (Jazz and Rock), two artists (Al Di Meola and Rush), and a
single album in every new instance of the music store database. For the new database initializer to
work, you need to change the application startup code to register the initializer:

protected void Application_Start ()

{
Database.SetInitializer (new MusicStoreDbInitializer());

AreaRegistration.RegisterAllAreas();
RegisterGlobalFilters (GlobalFilters.Filters);
RegisterRoutes (RouteTable.Routes) ;

}

If you restart and run the application now, and navigate to the /StoreManager URL, you’ll see the
store manager’s Index view as shown in Figure 4-8.

e®|e nttpy//localhost:1 O ~ ‘“Gxue'lndex "u vy &
My MVC Application

Index

m

Create New

Artist Genre Title Price AlbumArtUrl
Rush Rock Caravan 9.99 Edit | Details | Delete

FIGURE 4-8

Voila! A running application with real functionality! And with real data!

Editing an Alboum | 83

Although it might seem like a lot of work, you spent most of the chapter so far on understanding
the generated code and the Entity Framework. Once you know what scaffolding can do for you, the
actual amount of work is relatively small and requires only three steps.

1. Implement your model classes.
2. Scaffold your controller and views.

3. Choose your database initialization strategy.

Remember, scaffolding only gives you a starting point for a particular piece of the application.

You are now free to tweak and revise the code. For example, you may or may not like the links on
the right side of each album row (Edit, Details, Delete). You are free to remove those links from the
view. What you’ll do in this chapter, however, is drill into the edit scenario to see how to update
models in ASP.NET MVC.

EDITING AN ALBUM

One of the scenarios the scaffolding will handle is the edit scenario for an album. This scenario
begins when the user clicks the Edit link in the Index view from Figure 4-8. The edit link sends an
HTTP GET request to the web server with a URL like /StoreManager/Edit/8 (where 8 is the ID of
a specific album). You can think of the request as “get me something to edit album #8.”

Building a Resource to Edit an Album

The default MVC routing rules deliver the HTTP GET for /StoreManager/Edit/8 to the Edit
action of the storeManager controller (shown in the following code):

//
// GET: /StoreManager/Edit/8

public ActionResult Edit (int id)
{
Album album = db.Albums.Find(id);
ViewBag.GenreId = new SelectList(db.Genres, "GenreId", "Name", album.GenreId);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

}

The Edit action has the responsibility of building a model to edit album #8. It uses the
MusicStoreDB class to retrieve the album, and hands the album to the view as the model. But
what is the purpose of the two lines of code putting data into the viewBag? The two lines of code
might make more sense when you look at the page a user will see for editing an album shown

in Figure 4-9.

84 | CHAPTER4 MODELS

|| @ nttp://localhost1 O ~ B & X H & Edit

Edit

Album
Artist
Rush []

Genre

Rock|~]

Rock

Price
9.99

AlbumArtUrl

Save

(%

FIGURE 4-9

When users edit an album, you don’t want them to enter freeform text for the genre and artist
values. Instead, you want them to select a genre and artist that are already available from the data-
base. The scaffolding was smart enough to realize this too, because the scaffolding understood the
association between album, artist, and genre.

Instead of giving the user a textbox to type into, the scaffolding generated an edit view with a drop-
down list to select an existing genre. The following code is from the store manager’s Edit view, and
it is the code that builds the drop-down list for genre (shown opened with the two available genres
in Figure 4-9):
<div class="editor-field">
@Html.DropDownList ("GenreId", String.Empty)
@Html.ValidationMessageFor (model => model.GenreId)
</div>

You look at the bropDownList helper in more detail in the next chapter, but for now, picture
yourself building a drop-down list from scratch. To build the list, you need to know what all the
available list items are. An Album model object does not keep all the available genres from the
database — an Album object holds only the one genre associated with itself. The two extra lines of
code in the Edit action are building the lists of every possible artist and every possible genre, and
storing those lists in the viewBag for the DropDownList helper to retrieve later.

ViewBag.GenreId = new SelectList (db.Genres, "GenreId", "Name", album.GenreId);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId", "Name", album.ArtistId);

Editing an Alboum | 85

The selectList class that the code is using represents the data required to build a drop-down list.
The first parameter to the constructor specifies the items to place in the list. The second parameter
is the name of the property containing the value to use when the user selects a specific item (a key
value, like 52 or 2). The third parameter is the text to display for each item (like “Rock” or “Rush”).
Finally, the third parameter contains the value of the initially selected item.

Models and View Models Redux

Remember the preceding chapter talked about the concept of a view-specific model? The album edit
scenario is a good example where your model object (an a1bum object) doesn’t quite contain all the
information required by the view. You need the lists of all possible genres and artists, too. There are
two possible solutions to this problem.

The scaffolding generated code demonstrates the first option: pass the extra information along in
the viewBag structure. This solution is entirely reasonable and easy to implement, but some people
want all the model data to be available through a strongly typed model object.

The strongly typed model fans will probably look at the second option: build a view-specific model to
carry both the album information and the genre and artists information to a view. Such a model might
use the following class definition:

public class AlbumEditViewModel

{
public Album AlbumToEdit { get; set; }
public SelectList Genres { get; set; }
public SelectList Artists { get; set; }

Instead of putting information in ViewBag, the Edit action would need to instantiate the
AlbumEditViewModel, set all the object’s properties, and pass the view model to the view. I can’t
say one approach is better than the other. You have to pick the approach that works best with your
personality (or your team’s personality).

The Edit View

The following code isn’t exactly what is inside the Edit view, but it does represent the essence of
what is in the Edit view:

@Qusing (Html.BeginForm()) {
@Html.DropDownList ("GenreId", String.Empty)
@Html .EditorFor (model => model.Title)
@Html .EditorFor (model => model.Price)
<p>
<input type="submit" value="Save" />
</p>

The view includes a form with a variety of inputs for a user to enter information. Some of the
inputs are drop-down lists (HTML <select> elements), and others are textbox controls (HTML

86

CHAPTER 4 MODELS

<input type="text"> elements). The essence of the HTML rendered by the Edit view looks like
the following code:

<form action="/storemanager/Edit/8" method="post">
<select id="GenreId" name="GenrelId">
<option value=""></option>
<option selected="selected" value="1">Rock</option>
<option value="2">Jazz</option>
</select>
<input class="text-box single-line" id="Title" name="Title"
type="text" value="Caravan" />
<input class="text-box single-line" id="Price" name="Price"
type="text" value="9.99" />
<p>
<input type="submit" value="Save" />
</p>
</form>

The HTML sends an HTTP POST request back to /StoreManager/Edit/8 when the user clicks the
Save button on the page. The browser automatically collects all the information a user enters into
the form and sends the values (and their associated names) along in the request. Notice the name
attributes of the input and select elements in the HTML. The names match the property names of
your Album model, and you’ll see why the naming is significant shortly.

Responding to the Edit POST Request

The action accepting an HTTP POST request to edit album information also has the name Edit,
but is differentiated from the previous Edit action you saw because of an HttpPost action selector
attribute:

//
// POST: /StoreManager/Edit/8

[HttpPost]
public ActionResult Edit (Album album)
{
if (ModelState.IsValid)
{
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;
}
ViewBag.GenreId = new SelectList (db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

The responsibility of this action is to accept an Album model object with all the user’s edits inside,
and save the object into the database. You might be wondering how the updated a1bum object
appears as a parameter to the action, but I am going to defer the answer to this question until you get
to the next section of the chapter. For now, let’s focus on what is happening inside the action itself.

Editing an Album | 87

The Edit Happy Path ©

The happy path is the code you execute when the model is in a valid state and you can save

the object in the database. An action can check the validity of a model object by checking the
ModelState.IsValid property. I talk more about this property later in the chapter, and also in
Chapter 6 where you learn how to add validation rules to a model. For now, you can think of
ModelState.TIsValid as a signal to ensure the user entered usable data for an album’s attributes.

If the model is in a valid state, the Edit action then executes the following line of code:

db.Entry(album) .State = EntityState.Modified;

This line of code is telling the data context about an object whose values already live in the database
(this is not a brand new album, but an existing album), so the framework should apply the values
inside to an existing album and not try to create a new album record. The next line of code invokes
SaveChanges on the data context, and at this point the context formulates a SQL UPDATE command
to persist the new values.

The Edit Sad Path ®

The sad path is the path the action takes if the model is invalid. In the sad path, the controller action
needs to re-create the Edit view so the user can fix the errors he or she produced. For example, say
the user enters the value abc for the album price. The string abc is not a valid decimal value, and
model state will not be valid. The action rebuilds the lists for the drop-down controls and asks the
Edit view to re-render. The user will see the page shown in Figure 4-10.

=

@'.':_;.__J|{é http://localhost1 0 = B ¢ X ” & Edit % ok

Edit

Album
Artist
Rush []
Genre
Rock|[~]
Title
Caravan
Price

abc The value ‘abc’ is not
valid for Price.

AlbumArtUrl

Save

FIGURE 4-10

1%

CHAPTER 4 MODELS

You are probably wondering how the error message appears. Again, I cover model validation in
depth in Chapter 6. For now, you want to understand how this Edit action receives an Album object
with all of the user’s new data values inside. The process behind the magic is model binding, and
model binding is a central feature of ASP.NET MVC.

MODEL BINDING

Imagine you implemented the Edit action for an HTTP POST, and you didn’t know about any
of the ASP.NET MVC features that can make your life easy. Because you are a professional web
developer, you realize the Edit view is going to post form values to the server. If you want to retrieve
those values to update an album, you might choose to pull the values directly from the request:
[HttpPost]
public ActionResult Edit ()
{
var album = new Album() ;
album.Title = Request.Form["Title"];
album.Price = Decimal.Parse(Request.Form["Price"]);

// ... and so on ...

}

As you can imagine, code like this becomes quite tedious. I’ve only shown the code to set two
properties; you have four or five more to go. You have to pull each property value out of the Form
collection (which contains all the posted form values, by name), and move those values into A1bum
properties. Any property that is not of type string will also require a type conversion.

Fortunately, the Edit view carefully named each form input to match with an A1bum property. If
you remember the HTML you looked at earlier, the input for the Title value had the name Title,
and the input for the Price value had the name Price. You could modify the view to use differ-
ent names (like Foo and Bar), but doing so would only make the action code more difficult to write.
You’d have to remember the value for Title is in an input named “Foo” — how absurd!

If the input names match the property names, why can’t you write a generic piece of code that

pushes values around based on a naming convention? This is exactly what the model binding feature
of ASP.NET MVC provides.

The DefaultModelBinder

Instead of digging form values out of the request, the Edit action simply takes an Album object as a
parameter:

[HttpPost]
public ActionResult Edit (Album album)
{
//
}

When you have an action with a parameter, the MVC runtime uses a model binder to build the
parameter. You can have multiple model binders registered in the MVC runtime for different types

Model Binding | 89

of models, but the workhorse by default will be the befaultModelBinder. In the case of an Album
object, the default model binder inspects the album and finds all the album properties available for
binding. Following the naming convention you examined earlier, the default model binder can auto-
matically convert and move values from the request into an album object (the model binder can also
create an instance of the object to populate).

In other words, when the model binder sees an A1bum has a Tit1le property, it looks for a parameter
named “Title” in the request. Notice I said the model binder looks “in the request” and not “in the
form collection.” The model binder uses components known as value providers to search for values
in different areas of a request. The model binder can look at route data, the query string, the form
collection, and you can add custom value providers if you so desire.

Model binding isn’t restricted to HTTP POST operations and complex parameters like an Album
object. Model binding can also feed primitive parameters into an action, like for the Edit action
responding to an HTTP GET request:

public ActionResult Edit(int id)
{

/]
}

In this scenario, the model binder uses the name of the parameter (id) to look for values in the
request. The routing engine is the component that finds the ID value in the URL /StoreManager/
Edit/8, but it is a model binder that converts and moves the value from route data into the id
parameter. You could also invoke this action using the URL /StoreManager/Edit?id=8, because
the model binder will find the id parameter in the query string collection.

The model binder is a bit like a search and rescue dog. The runtime tells the model binder it wants a
value for id, and the binder goes off and looks everywhere to find a parameter with the name id.

A Word on Model Binding Security

Sometimes the aggressive search behavior of the model binder can have unintended consequences.

I mentioned how the default model binder looks at the available properties on an Album object and
tries to find a matching value for each property by looking around in the request. Occasionally there
is a property you don’t want (or expect) the model binder to set, and you need to be careful to avoid
an “over-posting” attack.

Jon talks in more detail about the over-posting attack in Chapter 7, and also show you several tech-
niques to avoid the problem. For now, keep this threat in mind, and be sure to read Chapter 7 later!

Explicit Model Binding

Model binding implicitly goes to work when you have an action parameter. You can also explicitly
invoke model binding using the UpdateModel and TryUpdateModel methods in your controller.
UpdateModel will throw an exception if something goes wrong during model binding and the model
is invalid. Here is what the Edit action might look like if you used updateModel instead of an
action parameter:

[HttpPost]
public ActionResult Edit ()

90 | CHAPTER4 MODELS

var album = new Album();

try

{
UpdateModel (album) ;
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;

}

catch

{
ViewBag.GenreId = new SelectList (db.Genres, "GenrelId",

"Name", album.Genreld) ;

ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",

"Name", album.ArtistId);
return View(album) ;

TryUpdateModel also invokes model binding, but doesn’t throw an exception. TryUpdateModel

does return a bool — a value of true if model binding succeeded and the model is valid, and a value
of false if something went wrong.

[HttpPost]
public ActionResult Edit ()
{
var album = new Album() ;
if (TryUpdateModel (album))
{
db.Entry(album) .State = EntityState.Modified;
db.SaveChanges () ;
return RedirectToAction ("Index") ;
}
else
{
ViewBag.GenreId = new SelectList (db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

A byproduct of model binding is model state. For every value the model binder moves into a model,
it records an entry in model state. You can check model state anytime after model binding occurs to
see if model binding succeeded:

[HttpPost]

public ActionResult Edit ()

{
var album = new Album() ;
TryUpdateModel (album) ;
if (ModelState.IsValid)
{

Summary | 91

db.Entry(album) .State = EntityState.Modified;
db. SaveChanges () ;
return RedirectToAction ("Index") ;

}
else

{
ViewBag.GenreId = new SelectList(db.Genres, "GenreId",
"Name", album.Genreld);
ViewBag.ArtistId = new SelectList(db.Artists, "ArtistId",
"Name", album.ArtistId);
return View(album) ;

If any errors occurred during model binding, the model state will contain the names of the proper-
ties that caused failures, the attempted values, and the error messages. In the next two chapters you
will see how model state allows HTML helpers and the MVC validation features to work together
with model binding.

SUMMARY

In this chapter, you saw how you can build an MVC application by focusing on model objects. You
can write the definitions for your models using C# code, and then scaffold out parts of the appli-
cation based on a specific model type. Out of the box, all the scaffolding works with the Entity
Framework, but scaffolding is extensible and customizable, so you can have scaffolding work with a
variety of technologies.

You also looked at model binding and should now understand how to capture values in a request
using the model binding features instead of digging around in form collections and query strings in
your controller actions.

At this point, however, you’ve only scratched the surface of understanding how model objects can
drive an application. In the coming chapters you also see how models and their associated metadata
can influence the output of HTML helpers and affect validation.

Forms and HTML Helpers

— By Scott Allen

WHAT’S IN THIS CHAPTER?

Understanding forms
How to make HTML helpers work for you

Editing and inputting helpers

Y Y VY Y

Displaying and rendering helpers

HTML helpers, as their name implies, help you work with HTML. Because it seems like a
simple task to type HTML elements into a text editor, you might wonder why you need any
help with your HTML. Tag names are the easy part, however. The hard part of working with
HTML is making sure the URLSs inside of links point to the correct locations, form elements
have the proper names and values for model binding, and that other elements display the
appropriate errors when model binding fails.

Tying all these pieces together requires more than just HTML markup. It also requires some
coordination between a view and the runtime. In this chapter, you see how easy it is to estab-
lish the coordination. Before you begin working with helpers, however, you first learn about
forms. Forms are where most of the hard work happens inside an application, and forms are
where you need to use HTML helpers the most.

USING FORMS

You might wonder why a book targeted at professional web developers is going to spend time
covering the HTML form tag. Isn’t it easy to understand?

94 |

CHAPTER5 FORMS AND HTML HELPERS

There are two reasons.

> The form tag is powerful! Without the form tag, the Internet would be a read-only repository
of boring documentation. You wouldn’t be able to search the Web, and you wouldn’t be able
to buy anything (even this book) over the Internet. If an evil genius stole all the form tags
from every website tonight, civilization would crumble by lunchtime tomorrow.

> Many developers coming to the MVC framework have been using ASP.NET WebForms.
WebForms don’t expose the full power of the form tag (you could say WebForms manages and
exploits the form tag for its own purposes). It’s easy to excuse the WebForms developer who
forgets what the form tag is capable of — such as the ability to create an HTTP GET request.

The Action and the Method

A form is a container for input elements: buttons, checkboxes, text inputs, and more. It’s the input
elements in a form that enable a user to enter information into a page and submit information to a
server. But what server? And how does the information get to the server? The answers to these ques-
tions are in the two most important attributes of a form tag: the action and the method attributes.

The action attribute tells a web browser where to send the information, so naturally the action con-
tains a URL. The URL can be relative, or in cases where you want to send information to a different
application or a different server, the action URL can also be an absolute URL. The following form
tag will send a search term (the input named g) to the Bing search page from any application:

<form action="http://www.bing.com/search">
<input name="g" type="text" />
<input type="submit" value"Search!" />
</form>

The form tag in the preceding code snippet does not include a method attribute. The method
attribute tells the browser whether to use an HTTP POST or HTTP GET when sending the infor-
mation. You might think the default method for a form is HTTP POST. After all, you regularly
POST forms to update your profile, submit a credit card purchase, and leave comments on the funny
animal videos on YouTube. However, the default method value is “get,” so by default a form sends
an HTPT GET request:

<form action="http://www.bing.com/search" method="get">
<input name="qg" type="text" />
<input type="submit" value"Search!" />

</form>

When a user submits a form using an HTTP GET request, the browser takes the input names and
values inside the form and puts them in the query string. In other words, the preceding form would
send the browser to the following URL (assuming the user is searching for love): http: //www.bing
.com/search?g=1ove

To GET or To POST

You can also give the method attribute the value post, in which case the browser does not place the
input values into the query string, but places them inside the body of the HTTP request instead.

Using Forms | 95

Although you can successfully send a POST request to a search engine and see the search results, an
HTTP GET is preferable. Unlike the POST request, you can bookmark the GET request because all
the parameters are in the URL. You can use the URLs as hyperlinks in an e-mail or a web page and
preserve all the form input values.

Even more importantly, the GET verb is the right tool for the job because GET represents an idem-
potent, read-only operation. You can send a GET request to a server repeatedly with no ill effects,
because a GET does not (or should not) change state on the server.

A POST, on the other hand, is the type of request you use to submit a credit card transaction, add
an album to a shopping cart, or change a password. A POST request generally modifies state on
the server, and repeating the request might produce undesirable effects (like double billing). Many
browsers help a user avoid repeating a POST request (Figure 5-1 shows what happens when trying
to refresh a POST request in Chrome).

| O localhost:2

Confirm Form Resubmission

The page that you're locking for used information that you
entered. Retumning to that page might cause any action you
took to be repeated. Do you want to continue?

I Continue ” Cancel

FIGURE 5-1

Web applications generally use GET requests for reads and POST requests for writes. A request to
pay for music uses POST. A request to search for music, a scenario you look at next, uses GET.

Searching for Music with a Search Form

Imagine you want to let your music store shoppers search for music from the homepage of the music
store application. Just like the search engine example from earlier, you’ll need a form with an action
and a method. Placing the following code just below the promotion div in the Index view of the
HomeController gives you the form you need:

<form action="/Home/Search" method="get">
<input type="text" name="g" />
<input type="submit" value="Search" />
</form>

96

CHAPTER5 FORMS AND HTML HELPERS

You can make various improvements to the preceding code, but for now, let’s get the
sample working from start to finish. The next step is to implement a Search method on the
HomeController. The next code block makes the simplifying assumption that a user is
always searching for music by album name:

public ActionResult Search(string q)
{
var albums = storeDB.Albums
.Include("Artist")
.Where(a => a.Title.Contains(g) || g == null)
.Take (10) ;
return View(albums) ;

Notice how the search action expects to receive a string parameter named g. The MVC framework
automatically finds this value in the query string, when the name g is present, and also finds the
value in posted form values if you made your search form issue a POST instead of a GET.

The controller tells the MVC framework to render a view, and you can create a simple Search.
cshtml view in the Home views folder to display the results:

@model IEnumerable<MvcMusicStore.Models.Album>
@{ ViewBag.Title = "Search"; }
<h2>Results</h2>

<table>
<tr>
<th>Artist</th>
<th>Title</th>
<th>Price</th>
</tr>

@foreach (var item in Model) {
<tr>
<td>@item.Artist.Name</td>
<td>@item.Title</td>
<td>@String.Format ("{0:c}", item.Price)</td>
</tr>
}
</table>

The result lets customers search for terms such as “led,” which produces the output shown in
Figure 5-2.

The simple search scenario you worked through demonstrates how easy it is to use HTML forms
with ASP.NET MVC. The web browser collects the user input from the form and sends a request to
an MVC application, where the MVC runtime can automatically pass the inputs into parameters for
your action methods to respond.

Using Forms | 97

Home Store Cart (0) Admin

ASP.NET MVC MUSIC STORE

Rock Results

Jazz

Metal aist omwe Price]

Alternative Dread Zeppelin Un-Led-Ed $8.99

D‘S?") Led Zeppelin Led Zeppelin | $8.99

Indie Music

Tatin Led Zeppelin Led Zeppelin 1I $8.99

Dance Led Zeppelin Led Zeppelin 111 $8.99

Bl“es, Black Label Society Alcohol Fueled Brewtality Live! [Disc 1] $8.99

Classical

Black Label Society Alcohol Fueled Brewtality Live! [Disc 2] $8.99
built with ASP.NET MVC 3

FIGURE 5-2

Of course, not all scenarios are as easy as the search form. In fact, you’ve simplified the search
form to the point where it is brittle. If you deploy the application to a directory that is not the root
of a website, or if your route definitions change, the hard-coded action value might lead the user’s
browser to a resource that does not exist: Remember we’ve hard coded “Home/Search” into the
form’s action attribute.

<form action="/Home/Search" method="get">
<input type="text" name="qg" />
<input type="submit" value="Search" />
</form>

Searching for Music by Calculating the Action Attribute Value

A better approach would be to calculate the value of the action attribute, and fortunately, there is
an HTML to do the calculation for you.

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get)) {
<input type="text" name="q" />
<input type="submit" value="Search" />

98

CHAPTER5 FORMS AND HTML HELPERS

The BeginForm helper asks the routing engine how to reach the search action of the
HomeController. Behind the scenes it uses the method named GetvirtualPath on the Routes
property exposed by RouteTable. If you did all this without an HTML helper, you’d have to write
all the following code.

@

var context = this.ViewContext.RequestContext;

var values = new RouteValueDictionary{

{ "controller", "home"}, { "action", "index"}

Y

var path = RouteTable.Routes.GetVirtualPath (context, values);
}
<form action="@path.VirtualPath" method="get">

<input type="text" name="q" />

<input type="submit" value="Search2" />

</form>

The last example demonstrates the essence of HTML helpers. They are not taking away your
control, but they are saving you from writing lots of code.

HTML HELPERS

HTML helpers are methods you can invoke on the Htm1 property of a view. You also have access
to URL helpers (via the url property), and AJAX helpers (via the ajax property). All these helpers
have the same goal: to make views easy to author.

Most of the helpers, particularly the HTML helpers, output HTML markup. For example, the
BeginForm helper you saw earlier is a helper you can use to build a robust form tag for your search
form, but without using lines and lines of code:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get)) {
<input type="text" name="qgq" />
<input type="submit" value="Search" />

}

Chances are the BeginForm helper will output the same markup you had previously when you first
implemented the search form. However, behind the scenes the helper is coordinating with the rout-
ing engine to generate a proper URL, so the code is more resilient to changes in the application
deployment location.

Note the BeginForm helper outputs both the opening <form> and the closing </ form>. The helper
emits the opening tag during the call to BeginForm, and the call returns an object implementing
IDisposable. When execution reaches the closing curly brace of the using statement in the view,
the helper emits the closing tag thanks to the implicit call to Dispose. The using trick makes the
code simpler and elegant. For those who find it completely distasteful, you can also use the follow-
ing approach, which provides a bit of symmetry:

@{Html.BeginForm("Search", "Home", FormMethod.Get);}
<input type="text" name="q" />

HTML Helpers | 99

<input type="submit" value="Search" />
@{Html.EndForm() ;}

At first glance it might seem the helpers like BeginForm are taking the developer away from the
metal — the low-level HTML many developers want to control. Once you start working with the
helpers, you’ll realize they keep you close to metal while remaining productive. You still have com-
plete control over the HTML without writing lines and lines of code to worry about small details.
Helpers do more than just churn out angle brackets. Helpers also correctly encode attributes, build
proper URLSs to the right resources, and set the names of input elements to simplify model binding.
Helpers are your friends!

Automatic Encoding

Like any good friend, an HTML helper can keep you out of trouble. Many of the HTML helpers
you will see in this chapter are helpers you use to output model values. All the helpers that out-
put model values will HTML encode the values before rendering. For example, later you’ll see the
TextArea helper which you can use to output an HTML textarea element.

@Html.TextArea("text", "hello
 world")

The second parameter to the Textarea helper is the value to render. The previous example embeds
some HTML into the value, but the Textarea helper produces the following markup:

<textarea cols="20" id="text" name="text" rows="2">
hello
 world
</textarea>

Notice how the output value is HTML encoded. Encoding by default helps you to avoid cross site
scripting attacks (XSS). You’ll have more details on XSS in Chapter 7.

Make Helpers Do Your Bidding

While protecting you, helpers can also give you the level of control you need. As an example of what
you can achieve with helpers, look at another overloaded version of the BeginForm helper:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank" }))
{
<input type="text" name="qg" />
<input type="submit" value="Search" />

}

In this code, you are passing an anonymously typed object to the htmlattributes parameter of
BeginForm. Nearly every HTML helper in the MVC framework includes an htmlattributes
parameter in one of the overloaded versions. You’ll also find an htmlattributes parameter of type
IDictionary<string, object> in a different overload. The helpers take the dictionary entries (or,
in the case of the object parameter, the property names and property values of an object) and use

100 |

CHAPTER5 FORMS AND HTML HELPERS

them to create attributes on the element the helper produces. For example, the preceding code pro-
duces the following opening form tag:

<form action="/Home/Search" method="get" target="_blank">

You can see you’ve set target="_blank" using the htmlAttributes parameter. You can set as
many attribute values using the htmlAttributes parameter as necessary. There are a few attributes
you might find problematic at first.

For example, setting the class attribute of an element requires you to have a property named class
on the anonymously typed object, or as a key in the dictionary of values. Having a key value of
“class” in the dictionary is not a problem, but it is problematic for an object, because class is a C#
reserved keyword and not available to use as a property name or identifier, so you must prefix the
word with an e sign:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank", @class="editForm" }))

Another problem is setting attributes with a dash in the name (like data-val). You’ll see dashed
attribute names in Chapter 8 when you look at AJAX features of the framework. Dashes are not
valid in C# property names, but fortunately, all HTML helpers convert an underscore in a property
name to a dash when rendering the HTML. The following view code:

@Qusing (Html.BeginForm("Search", "Home", FormMethod.Get,
new { target = "_blank", @class="editForm", data_validatable=true }))

produces the following HTML:

<form action="/Home/Search" class="editForm" data-validatable="true"
method="get" target="_blank">

In the next section, you take a look at how the helpers work, and see some of the other built-in
helpers.

Inside HTML Helpers

Every Razor view inherits an Html property from its base class. The Html property is of type
System.Web.Mvc.HtmlHelper<T>, where T is a generic type parameter representing the type of the
model for the view (dynamic by default). The class provides a few instance methods you can invoke
in a view, such as EnableClientvalidation (to selectively turn client validation on or off on a
view-by-view basis). However, the BeginForm method you used in the previous section is not one of
the methods you’ll find defined on the class. Instead, the framework defines the majority of the help-
ers as extension methods.

You know you are working with an extension method when the IntelliSense window shows the
method name with a blue down arrow to the left (see Figure 5-3). antiForgeryToken is an instance
method, whereas BeginForm is an extension method.

HTML Helpers | 101

Extension methods are a wonderful approach to building @Html.
HTML helpers for two reasons. First, extension methods in |<h3> 14, Action ;
C# are available only when the namespace of the extension <& % ActionLink]
method is in scope. All of MVC’s extension methods for L AN Analsige ok
. . @f v AttributeEncode
HtmlHelper live in the System.Web.Mvc.Html namespace g Yr—
(which is in scope by default thanks to a namespace entry 9; BeginRouteForm
in the Views/web.config file). If you don’t like the built-in ¥4 CheckBox

. . W5 CheckBoxFor<=
extension methods, you can remove this namespace and ¥; Display .

build your own.

FIGURE 5-3
The phrase “build your own” brings us to the second ben-

efit of having helpers as extension methods. You can build your own extension methods to replace
or augment the built-in helpers. You can learn how to build a custom helper in Chapter 14.

Setting Up the Album Edit Form

If you need to build a view that will let a user edit album information, you might start with the
following view code:

@Qusing (Html.BeginForm()) {
@Html.ValidationSummary (excludePropertyErrors: true)
<fieldset>

<legend>Edit Album</legend>

<p>
<input type="submit" value="Save" />
</p>
</fieldset>

The two helpers in this code have some additional descriptions in the following sections.

Html.BeginForm

You’ve used the BeginForm helper previously. The version of BeginForm in the preceding code,
with no parameters, sends an HTTP POST to the current URL, so if the view is a response to
/StoreManager/Edit/52, the opening form tag will look like the following:

<form action="/StoreManager/Edit/52" method="post">

An HTTP POST is the ideal verb for this scenario because you are modifying album information on
the server.

Html.ValidationSummary

The validationSummary helper displays an unordered list of all validation errors in the Modelstate
dictionary. The Boolean parameter you are using (with a value of true) is telling the helper to
exclude property-level errors, however. In other words, you are telling the summary to display only

102 | CHAPTER5 FORMS AND HTML HELPERS

the errors in Modelstate associated with the model itself, and exclude any errors associated with a
specific model property. We will be displaying property-level errors separately.

Assume you have the following code somewhere in the controller action rendering the edit view:

ModelState.AddModelError("", "This is all wrong!");
ModelState.AddModelError ("Title", "What a terrible name!");

The first error is a model-level error, because you didn’t provide a key to associate the error with a
specific property. The second error you associated with the Title property, so in your view it will
not display in the validation summary area (unless you remove the parameter to the helper method,
or change the value to false). In this scenario, the helper renders the following HTML:

<div class="validation-summary-errors">

<1i>This is all wrong!

</div>

Other overloads of the validationSummary helper enable you to provide header text, and, as with
all helpers, set specific HTML attributes.

By convention, the validationSummary helper renders the CSS class
validation-summary-errors along with any specific CSS classes you provide.
The default MVC project template includes some styling to display these items in
red, which you can change in styles.css. See Chapter 9 for more information.

Adding Inputs

Once you have the form and validation summary in place, you can add some inputs for the user to

enter album information into the view. One approach would use the following code (you’ll start by
editing only the album title and genre, but the following code will work with the real version of the
music store’s Edit action):

@Qusing (Html.BeginForm())
{
@Html.ValidationSummary (excludePropertyErrors: true)
<fieldset>
<legend>Edit Album</legend>
<p>
@Html.Label ("GenreId")
@Html .DropDownList ("GenreId", ViewBag.Genres as SelectList)
</p>
<p>
@Html.Label ("Title")
@Html.TextBox("Title", Model.Title)
@Html.ValidationMessage("Title")
</p>
<input type="submit" value="Save" />
</fieldset>

HTML Helpers | 103

The new helpers will give the user the display shown in Figure 5-4.

Edit Album

Edit Album

Genre

[Rock =]

Title
[For Those About To Rock We Salute You |

FIGURE 5-4

There are four new helpers in the view: Label, DropDownList, TextBox, and ValidationMessage.
I’ll talk about the TextBox helper first.

Html.TextBox (and Html.TextArea)

The TextBox helper renders an input tag with the type attribute set to text. You commonly use
the TextBox helper to accept free-form